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C A N C E R

A comprehensive long-read isoform analysis platform 
and sequencing resource for breast cancer
Diogo F. T. Veiga1†, Alex Nesta1,2†, Yuqi Zhao1, Anne Deslattes Mays1, Richie Huynh1, 
Robert Rossi1, Te-Chia Wu1, Karolina Palucka1, Olga Anczukow1,2,3*,  
Christine R. Beck1,2,3*, Jacques Banchereau1*

Tumors display widespread transcriptome alterations, but the full repertoire of isoform-level alternative splicing 
in cancer is unknown. We developed a long-read (LR) RNA sequencing and analytical platform that identifies and 
annotates full-length isoforms and infers tumor-specific splicing events. Application of this platform to breast 
cancer samples identifies thousands of previously unannotated isoforms; ~30% affect protein coding exons and 
are predicted to alter protein localization and function. We performed extensive cross-validation with -omics 
datasets to support transcription and translation of novel isoforms. We identified 3059 breast tumor–specific 
splicing events, including 35 that are significantly associated with patient survival. Of these, 21 are absent from 
GENCODE and 10 are enriched in specific breast cancer subtypes. Together, our results demonstrate the complexity, 
cancer subtype specificity, and clinical relevance of previously unidentified isoforms and splicing events in breast 
cancer that are only annotatable by LR-seq and provide a rich resource of immuno-oncology therapeutic targets.

INTRODUCTION
Transcriptomic and proteomic diversity are influenced by alterna-
tive splicing (AS), transcription initiation, and polyadenylation in 
healthy and diseased cells (1). Human tumors, including breast can-
cers, exhibit widespread changes in the AS isoform repertoire (2–4), 
caused either by somatic mutation or mis-expression of the splicing 
regulatory machinery (5). Specific spliced isoforms are important 
for cancer initiation, progression, metastasis, and drug resistance, 
with some AS events significantly linked to patient survival (5). For 
example, splicing of CD44, a transmembrane glycoprotein that func-
tions in cell division, viability, and adhesion, has been linked with 
tumor progression and epithelial-to-mesenchymal transition in breast 
and ovarian cancer models (6, 7). Although the effects of a handful of 
spliced isoforms in cancer have been studied (5), the clinical relevance 
of most isoform switches in tumors remains poorly characterized.

Global analyses of cancer transcriptomes have cataloged AS pro-
files in oncogenesis using short-read RNA sequencing (RNA-seq) 
data and have identified a number of recurrent and tumor-specific 
splicing alterations across many cancer types, including breast 
(2, 3, 8–10). The detection and quantification of AS events using 
short-read RNA-seq data are inherently dependent on alignment of 
the RNA-seq fragments to a reference genome and applying algo-
rithmic reconstruction to identify cancer-associated isoforms. How-
ever, this approach often yields only a partial view of the splicing 
repertoire because of limitations of transcript assembly tools. Cur-
rent state-of-the-art spliced isoform reconstruction methods can 
only assemble ~20 to 40% of human transcriptomes (11, 12). There-
fore, approaches that exclusively use short-read RNA-seq data 
are unable to fully characterize the cancer-associated AS isoform 

landscape, including the discovery of novel spliced isoforms involv-
ing nonadjacent exons.

Long-read mRNA sequencing (LR-seq) is able to accurately cap-
ture full-length (FL) isoforms from start to end, eliminating the 
need for reference-based transcript reconstruction (11–15). LR-seq 
of human and mouse cell and tissue transcriptomes has revealed a 
rich diversity of spliced isoforms (16–21). In cancer research, the 
use of LR-seq to identify primary tumor-associated spliced isoforms 
remains underexploited and has been limited to the study of human 
leukemia samples (22, 23). The ability to aquire the depth of cover-
age needed to accurately quantitate transcripts using LR data is pro-
hibitively expensive. Therefore, there is a need for a systematic 
application of LR-seq and subsequent analysis with short read 
RNA-seq to provide a more comprehensive view of the complexity 
of transcriptomes in primary tumors.

We use LR-seq and a multilevel analytical platform to thoroughly 
characterize the AS isoform landscape in breast cancer and normal 
breast samples. Our analyses identified tumor-specific isoforms, in-
cluding isoforms associated with poor survival and specific breast can-
cer subtypes, and provide a library of novel breast tumor–specific 
isoforms as a resource for immuno-oncology therapeutic development.

RESULTS
LR-seq uncovers thousands of previously unidentified 
isoforms in human breast tumors
To interrogate the AS isoform landscape of breast cancer, we per-
formed LR-seq on four normal human breast and 26 tumor samples. 
Our normal samples consisted of two cell lines and two primary 
tissues, and our breast cancer samples included 13 primary human 
breast tumor biopsies [three hormone-positive, ER+/PR+; three 
HER2+; and seven triple-negative, TNBC (triple negative breast 
cancer)], nine patient-derived xenograft (PDX) tumors, and four 
cancer cell lines (Fig. 1A and file S1).

Isoforms obtained with single-molecule real time (SMRT) circu-
lar consensus sequencing (CCS) using the PacBio RSII and Sequel 
platforms were polished using the ToFU (Transcript Isoforms Full 
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length and Unassembled) pipeline (Materials and Methods and fig. S1). 
An FL isoform consists of a single-mRNA molecule containing a 
polyadenylation [poly(A)] tail, where the entire transcript including 
cDNA adaptors at the 5′ and 3′ ends are successfully sequenced. After 
ToFU consensus clustering, 84% of CCS reads achieve 99.999% (Q50) 
accuracy (file S2). Overall, per library, we obtained an average of 
546,000 CCS reads, which after processing resulted in ~21,000 FL 

polished isoforms (file S2). As a quality control step after ToFU, we 
filtered transcripts with inadequate splice junction support and those 
that contained signatures of poly(A) intrapriming or noncanonical 
junctions derived from reverse transcriptase template switching 
(Materials and Methods and fig. S1).

Next, isoforms were classified into known or novel isoforms 
based on their splice junction match to a reference transcriptome 

Fig. 1. LR-seq identifies previously undetected isoforms in breast cancer. (A) Schematic of breast cancer isoform profiling by LR-seq and short-read RNA-seq. LR-seq 
isoforms are classified on the basis of their similarity to GENCODE isoforms using SQANTI isoform structural categories (see legend). Novel splice junctions are depicted 
by dashed lines and known junctions by solid lines. See also fig. S1 and file S1. (B) LR-seq isoforms detected in individual breast cancer or normal samples are colored by 
categories from (A), show per tissue subtype and origin. See also file S2. (C) Hierarchical clustering of samples profiled by LR-seq based on the Jaccard pairwise similarity 
coefficient. (D) Classification of LR-seq isoforms from merged tumor and normal samples from (B). The percent and number of distinct isoforms in each category from (A) 
are indicated. See also figs. S2 and S3. (E) Percent of LR-seq isoforms detected by RNA-seq in 29 breast cancer and normal samples, plotted per category from (A). 
(F) Percent of LR-seq isoform transcription start sites supported by CAGE (FANTOM5) or ATAC-seq (TCGA breast) peaks, transcription termination sites supported by the 
presence of a poly(A) motif (SQANTI2), or 3′-seq peaks from the polyA site database, plotted per category from (A). The diagram at the top exemplifies isoforms with first 
exons (5′ ends) validated by CAGE or ATAC-seq peaks, and terminal exons (3′ end) supported by 3′-seq peaks or poly(A) motifs. (G and H) Structure of CYTIP (G) or DHRS3 
(H) previously unidentified LR-seq isoforms compared to GENCODE isoforms, along with CAGE or ATAC-seq support for unknown transcription start site (G) and 3′-seq 
peaks supporting the previously unknown transcription termination site (H). Novel regions are highlighted.
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(GENCODE v.30) using SQANTI. Known isoforms are classified as 
full-splice match (FSM), while novel isoforms include both transcripts 
that harbor a combination of known splice donors or acceptors that 
have not been previously cataloged in the same transcript [novel in 
catalog (NIC)] and isoforms containing at least one splice site not 
present in GENCODE v.30 [novel not in catalog (NNC)] (Fig. 1A). 
Overall, novel isoforms account for 17 to 55% of sequenced tran-
scripts in the individual samples (average = 37%; Fig. 1B). We per-
formed sample clustering based on the Jaccard pairwise similarity 
coefficient, which measured the degree of overlap in isoforms de-
tected among samples profiled by LR-seq (Fig. 1C). Overall, tumors 
clustered separately from normal breast, with the exception of 
HS578BST, a nontransformed cell line that clustered with its paired 
tumor-derived cell line from the same patient (HS578T). In addi-
tion, tumor samples clustered mostly by origin rather than breast 
cancer subtype, with tumors derived from PDX and primary tissues 
sharing a higher degree of similarity when compared to those of cell 
line origin (Fig. 1C). Thus, tumors derived from clinical samples 
expressed isoforms that cannot be captured in cell lines. The pro-
portion of NIC and NNC isoforms is ~2-fold higher in all tumor 
subtypes versus normal samples (fig. S2A). Last, we constructed an 
LR-seq breast cancer transcriptome by merging the 30 individual 
samples and removing redundant isoforms.

Our comprehensive LR-seq breast cancer transcriptome con-
tains 142,514 unique FL transcript isoforms (Fig. 1D) spanning 
16,772 annotated genes and 905 unknown loci, with a mean isoform 
length of 2.6 kb (fig. S2B). Only a small fraction (2%) of poly(A)–
sequenced transcripts were previously undetected antisense tran-
scripts or mapped to intergenic regions (Fig. 1C). Two-thirds of the 
breast cancer LR-seq isoforms were novel (NIC or NNC) (Fig. 1D), 
and the majority of novel tumor isoforms (81%) originated from 
patient samples, thus denoting their relevance for studying primary 
breast cancer (fig. S2C). Also, novel isoforms occurred at a higher 
frequency in tumors derived from primary tissues (NIC  =  37%, 
NNC = 31%) when compared to tumors originated from cell lines 
and PDXs (NIC = 26%, NNC = 16%; table S1). Within these NIC and 
NNC isoforms, LR-seq identified 67,727 unique splice junctions 
across 14,490 genes that were not previously annotated in GENCODE 
(fig. S2D). The guanine-cytosine (GC) content adjacent to previously 
unidentified splice sites was higher than the known junction re-
gions, suggesting that junctions in GC-rich regions may be under-
represented when using traditional sequencing platforms (fig. S2E). 
There was a positive correlation between the number of exons and 
number of novel LR-seq isoforms (fig. S3), denoting that genes with 
higher exon complexity tend to generate a higher isoform repertoire. 
Last, a large fraction of NIC (58%) and NNC (73%) isoforms were 
detected in only a single sample (fig. S2F), while 19% of FSM iso-
forms are sample specific. This may indicate that novel isoforms 
arise because of tumor heterogeneity and lack of coverage satura-
tion in individual samples. Overall, breast cancer LR-seq identifies 
thousands of spliced isoforms that are not represented in current 
transcript databases.

Breast cancer LR-seq isoforms are supported by  
orthogonal -omics data
To assess the support for LR-seq isoforms by short-read sequencing, 
we performed RNA-seq and quantified isoform expression in 29 of 
our 30 LR-seq profiled breast samples. Briefly, 76–base pair long 
paired-end RNA-seq libraries were sequenced at an average depth 

of 46 million reads per sample and mapped to our LR-seq breast 
cancer transcriptome using hisat2 and quantified using StringTie. 
While 89% of the annotated isoforms (FSM) were detected by 
RNA-seq [FPKM (fragments per kilobase per million mapped reads) 
> 0.5], NIC and NNC isoforms have average detection rates of 
62 and 41%, respectively (Fig. 1E).

In addition to RNA-seq, we used multiple orthogonal datasets 
to assess the reliability of previously unidentified breast cancer 
LR-seq isoforms, including CAGE (cap analysis gene expression), 
ATAC-seq (assay for transposase-accessible chromatin using se-
quencing), and 3′-seq. Previously unidentified 5′ isoform regions 
substantially overlapped with CAGE-validated transcription start 
sites (FANTOM5 CAGE) and open chromatin regions detected by 
ATAC-seq in The Cancer Genome Atlas (TCGA) breast cancer 
tumors (Fig. 1F) (24). Similarly, 3′ ends of novel LR-seq isoforms 
were supported by poly(A) motifs detected by SQANTI2 and bona 
fide transcription termination sites mapped using 3′-seq assays 
obtained from the poly(A) site database (Fig. 1F). For example, our 
LR-seq breast cancer transcriptome identified a novel CYTIP iso-
form originating from an alternative transcription start site sup-
ported by proximal CAGE and ATAC-seq peaks (Fig. 1G). We also 
found a DHRS3 isoform with a novel termination site supported by 
3′-seq (Fig. 1H).

Altogether, the integration of LR-seq with orthogonal data reveals 
that ~80% of our previously unidentified (NIC and NNC) breast 
cancer isoforms are validated by genomics (ATAC-seq) and/or 
transcriptomics (CAGE, 3′-seq) across independent samples.

Breast cancer oncogenes and pathways are enriched 
in previously unidentified spliced isoforms
To assess the importance of novel isoforms from our LR-seq breast 
cancer transcriptome, we first examined the expression levels and 
gene pathways associated with these transcripts. Genes were binned 
into three groups based on our RNA-seq expression levels: low, 
average, and high based on FPKM cutoffs (Fig. 2A). Novel isoforms 
(NIC + NNC) were detected at similar rates for genes expressed at 
average and high levels (Fig. 2A) and at a lower rate for the lowest 
expressed genes, similar to FSM isoforms from GENCODE v.30. 
These data indicate that LR-seq detected transcripts even for lowly 
expressed genes and that NIC and NNC isoforms from our LR-seq 
data are expressed at appreciable levels.

Next, we rank-ordered genes based on their ratio of isoform 
number gain when compared with GENCODE v.30 (#NIC + NNC 
isoforms/#GENCODE) and selected genes with >2-fold increase for 
pathway enrichment analysis. We performed this analysis for all 
combined breast tumor isoforms and for isoforms in individual 
breast cancer subtypes to identify pathways that are common or 
specific to breast cancer subtypes (fig. S2A). When combining all 
tumors by subtype, spliced genes with novel isoforms are strongly 
associated with key breast cancer pathways, including estrogen, 
androgen, and interferon gamma response, mTORC1 (mammalian 
target of rapamycin complex 1) signaling, and mitotic spindle regu-
lation (Fig. 2B and fig. S4A). Other cancer relevant pathways are also 
overrepresented such as metabolism (glycolysis, hypoxia, and fatty 
acid metabolism), replication (mitotic spindle and G2M checkpoint 
pathways), and development (myogenesis and EMT). Some cancer-
related pathways were found to be enriched in a specific subtype 
such as glycolysis and mTORC1 signaling in HER2+ tumors, while 
others were shared. Myc targets were enriched in both HER2+ and 
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TNBC tumors, while estrogen response was common to ER+/PR+ and 
TNBC. Notably, oncogenes are significantly overrepresented when 
isoforms from all tumors are combined (Fig. 2C), while tumor sup-
pressors are underrepresented in this gene set (Fig. 2C).

We next examined individual genes that had a high gain of novel 
splice isoforms in our LR-seq breast cancer transcriptome. In total, 
24 oncogenes including the human epidermal growth factor 

receptor 2 (ERBB2) exhibit a twofold increase in NIC + NNC iso-
forms compared to GENCODE v.30 (Fig. 2D). ERBB2 is often over-
expressed in breast cancer due to gene amplification, and at least 
three spliced isoforms with clinical relevance have been identified 
(25, 26). In addition to the nine isoforms in GENCODE v.30, we 
detected 36 NIC and 38 NNC distinct spliced isoforms, revealing the 
complexity of ERBB2 splicing regulation in breast tumors (Fig. 2E). 

Fig. 2. Previously unidentified LR-seq isoforms detected in breast tumors are enriched in cancer-associated pathways and oncogenes. (A) Correlation between gene 
expression levels from RNA-seq and number of transcript isoforms detected by LR-seq. Genes are binned on the basis of quartile expression: low (first quartile), average 
(second and third quartiles), and high (fourth quartile); where n is the mean log2 FPKM expression. Distribution of isoform numbers for each gene bin; where n is the mean 
absolute number of isoforms in the category. (B) Pathways significantly enriched [MSigDB, false discovery rate (FDR) < 0.05)] for genes with novel isoforms detected by 
LR-seq in all breast tumors or specific subtypes (HER2+, ER+/PR+, and TNBC). Bubble size denotes the number of genes with novel isoforms in each pathway, and color denotes 
significance. See also fig. S4A. (C) Enrichment analysis of oncogenes and tumor suppressors in genes with unannotated isoforms detected by LR-seq (hypergeometric test, 
P < 0.05, cutoff indicated by a red dotted line). Oncogenes and tumor suppressor gene lists are obtained from MSigDB and TSGene databases, respectively. (D) Number 
of novel LR-seq isoforms compared to annotated GENCODE isoforms for selected oncogenes (left). Barplots (right) indicate the tumor subtypes (colored as in Fig. 1B) 
where novel isoforms were detected. (E) Structure of LR-seq ERBB2 isoforms detected in breast tumors, grouped by isoform structural category from Fig. 1A. Included 
exons or introns are represented by solid boxes, spliced introns or exons by a line. The localization of ERBB2 protein domains is indicated.
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Many of the ERBB2 novel isoforms alter splicing of exons encoding 
known protein domains. We also found multiple novel spliced 
isoforms of genes significantly mutated in breast cancer, includ-
ing NCOR1, GATA3, SPEN, and PTEN (fig. S4B), as well as genes 
known to be alternatively spliced in cancer such as CASP8, ENAH, 
BCL2L1, and STAT3 (fig. S4C). In summary, LR-seq profiling of breast 
tumors identifies novel spliced isoforms in genes previously associated 
with key cancer pathways and in known breast cancer oncogenes.

Novel breast cancer LR-seq isoforms lead to alternative 
protein products
To understand the potential functional consequences of novel iso-
forms from our LR-seq breast cancer transcriptome at the protein 
level, we extracted open reading frames (ORFs; i.e., coding sequences) 
and predicted domains, transmembrane regions, and subcellular 
localization using our ORF annotation pipeline (https://brca-
isoforms.jax.org/), which includes Transdecoder for ORF predic-
tions, as well as DeepLoc, TMHMM, and hmmer for localization 
predictions, and in-house scripts for comparative sequence analysis 
and nonsense-mediated mRNA decay (NMD) predictions (Materi-
als and Methods and fig. S1).

Overall, isoforms from all categories had very high coding po-
tential (94 to 97%) based on our ORF prediction, except for anti-
sense and intergenic transcripts for which 74% have a predicted 
ORF (fig. S5A). However, NIC and NNC spliced isoforms are more 
likely to be targeted for mRNA degradation by the NMD pathway, 
because 11% of NIC and 20% of NNC translated ORFs contain 
premature termination codons compared to 3% of FSM ORFs (fig. 
S5B). Similarly, novel ORFs absent from the protein coding database 

UniProt are subject to NMD at equivalent rates (11 and 22% of NIC 
and NNC, respectively) (fig. S5B).

To determine whether LR-seq isoforms encode novel protein se-
quences, we compared the ORF of an LR-seq isoform to its closest 
match in UniProt using global pairwise alignment. The majority 
of annotated FSM (79%) and incomplete splice match (ISM) (85%) 
LR-seq isoforms encode ORFs that are >99% identical to an entry in 
UniProt (Fig. 3A). In contrast, only 23% of NIC or NNC LR-seq 
isoforms are annotated in UniProt (Fig.  3A). Thus, novel LR-seq 
isoforms are potential sources of novel proteomic diversity in breast 
cancer. We then investigated whether AS in our LR-seq breast cancer 
transcriptome leads to novel ORFs harboring changes in annotated 
protein domains, transmembrane regions, or cellular localization. 
We found that ~20 to 30% of the novel ORFs lead to the loss of a 
transmembrane region or domain from the PFAM database (Fig. 3B), 
suggesting major changes in protein function or localization. In 
parallel, we used DeepLoc, a deep neural network–based tool (27), 
to predict the most likely subcellular compartment of LR-seq isoform–
derived ORFs. We predicted that a third of the novel protein iso-
forms (25,714 ORFs) would change their subcellular localization 
compartment compared to their corresponding canonical UniProt 
entry (Fig. 3C). The localization switches are found primarily 
between cytoplasmic and nuclear localized protein isoforms (7580 
ORFs), followed by cytoplasmic and mitochondrial changes (3777 
ORFs) (fig. S5C). As an example, we next applied our isoform anno-
tation pipeline to investigate the predicted functional effects of AS 
in ESR1 (ER), a clinical biomarker of hormone-positive breast 
cancers with several AS isoforms associated with cancer progression 
or treatment (28). In total, we detected 22 protein-coding isoforms 

Fig. 3. Novel LR-seq isoforms detected in breast tumors are predicted to affect protein sequence, domains, or localization. (A) Percent of amino acid sequence 
identity for LR-seq isoform–derived ORFs compared to their closest human protein isoform in UniProt, plotted by isoform structural category from Fig. 1A. Known ORFs 
exhibit >99% identity and unannotated ORFs <99% identity with UniProt. See also fig. S5. (B) Percent of novel LR-seq isoform–derived ORFs predicted to gain or lose a 
conserved PFAM domain or transmembrane region compared to their closest human protein isoform in UniProt. (C) Percent of novel LR-seq isoform–derived ORFs predicted 
by DeepLoc to exhibit a different subcellular localization compared to their closest human protein isoform in UniProt. The absolute number of ORFs in each structural 
category is indicated. See also fig. S5 (C and D). (D) Number of novel LR-seq isoform–derived ORFs validated by MS/MS proteomics, plotted per isoform structural category 
from Fig. 1A. Peptide search was conducted using 275 breast cancer samples (170 patients) from Clinical Proteomic Tumor Analysis Consortium (CPTAC).

https://brca-isoforms.jax.org/
https://brca-isoforms.jax.org/
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in the ESR1 locus, with 18 NIC or NNC isoforms being absent from 
GENCODE v.30 (fig. S5D). Among those, seven novel protein iso-
forms are predicted to lack the DNA binding domain. Eleven ESR1 
isoforms contained with novel regions affected by AS, including 
five protein isoforms with loss of the ligand-independent transac-
tivation domain (AF1) and six protein isoforms with loss of the 
ligand-dependent transactivation domain (AF2) (fig. S5D). A unique 
ESR1 isoform was predicted by TMHMM to contain a transmem-
brane domain and by DeepLoc to be localized to the cell membrane 
(fig. S5D). Therefore, AS in breast cancer often leads to changes in 
protein localization that might affect spliced isoform function.

Beyond transcript annotation, our pipeline leverages existing 
proteomics data for isoform validation (Fig. 3D). To determine the 
rate of isoform detection by tandem mass spectrometry (MS/MS) 
proteomics, we performed in silico peptide identification using our 
LR-seq–derived ORFs. We then intersected our data by spectral match-
ing between theoretical peptides derived from LR-seq ORFs and 
experimentally mapped peptides from 275 publicly available breast 
tumors samples (170 distinct patients) profiled by MS/MS proteomics 
by the Clinical Proteomic Tumor Analysis Consortium (CPTAC), 
including 125 TCGA patients (29) and an additional 45 patient 
cohort (30). The proteomic analysis found isoform-specific pep-
tides supporting 1352 NIC and 1426 NNC LR-seq–derived ORFs 
(Fig. 3D). In addition, we also identified 624 annotated FSM isoforms 
producing novel ORFs not present in UniProt.

To determine whether novel isoforms were actively translated, 
we performed an isoform-specific ribosome profiling analysis using 
Ribo-seq (ribosome profiling) data from breast cancer cell lines (31) 
and applied ORQAS (ORF quantification pipeline for AS) (32) to 
compute signal periodicity (f1) and uniformity (pme) of ribosome 
occupancy across known and novel ORFs. To obtain sample-
specific periodicity and uniformity cutoffs that are indicative of an 
isoform being translated, we selected as positive controls 343 single-
ORF housekeeping genes that are found to be expressed in all 
tissues according to the Human Protein Atlas (fig. S6A). These 
cutoffs were applied to the remaining of our LR-seq transcripts and 
found that on average 53% of known isoforms (FSM) and 36% of 
novel isoforms (NIC and NNC) have evidence of active translation 
from the Ribo-seq data in breast cancer cell lines (fig. S6B). In sum, 
our analytical pipeline reveals that previously unannotated spliced 
LR-seq isoforms detected in breast cancer encode novel protein iso-
forms with changes in functional domains, transmembrane regions, 
and/or cellular localization and that the translation of novel isoforms 
can be confirmed with MS/MS and ribosomal profiling data.

Tumor subpopulations can be clustered by distinct splicing 
signatures
To specifically identify LR-seq isoforms enriched in breast tumors 
versus normal tissues, we analyzed AS events in 1135 human breast 
tumors and 1443 normal tissue samples from TCGA and (Genotype-
Tissue Expression) GTEx. We used SUPPA2 (33) to extract 310,861 
AS events in these 2579 RNA-seq samples (Fig. 4A), using isoforms 
unique to our LR-seq breast cancer transcriptome (NIC and NNC) 
and annotated GENCODE v.30 transcripts as a reference. SUPPA2 
quantifies AS events using percent spliced-in (PSI), which measures 
the ratio of isoforms harboring the AS event across seven types of 
events: skipped exon (SE), mutually exclusive exons (MX), alternative 
5′ splice site (A5SS), alternative 3′ splice site (A3SS), retained intron 
(RI), alternative first exon (AF), and alternative last exon (AL).

Given the heterogeneity of breast cancer, which can be classified 
into different subtypes based on gene expression and AS levels 
(8, 34), we introduced a novel approach for stratifying patients into 
groups based on distinct splicing alterations when compared to 
control samples. Our Gaussian mixture model (GMM) clustering 
approach simultaneously groups tumors and normal samples based 
on AS expression patterns, and then identifies, for each splicing 
event, several clusters (i.e., sample subpopulations) with two major 
features: (i) high frequency of tumor samples and (ii) significant 
differential splicing (PSI) compared to normal tissues (Fig. 4A). 
Overall, our GMM clustering analysis identified 3059 tumor-specific 
AS events in breast cancer with |PSI| ≥ 20% in subpopulations of 
at least 50 patients (Fig. 4A). Of those, 1638 AS events (54%) were 
derived from isoforms present in our LR-seq breast cancer tran-
scriptome and not annotated in GENCODE v.30, which highlights 
the contribution of novel isoforms in tumor-associated splicing 
(Fig. 4A). Therefore, our GMM clustering approach identified re-
current AS events in breast cancer and found that they are often 
restricted to a subpopulation of patients in TCGA.

Discovery of tumor-specific splicing events associated 
with survival
To distinguish isoforms associated with breast cancer prognosis, we 
directly compared the overall survival rates of each of the 3059 tumor-
specific AS events identified by GMM clustering. A total of 35 AS 
events in 30 distinct genes correlated with survival in TCGA (Fig. 4B 
and file S3). The most highly associated AS events with a decrease in 
overall survival are an alternative first exon in CYB561, a skipped 
exon in CEACAM1, and loss of an intron retention event in E2F4. 
Genes containing AS events associated with overall survival are known 
components of cancer-related pathways, including regulation of 
transcription (E2F4, ZNF730, GPBP1, POLR2J, SP2, and CIART), 
cell cycle (E2F4 and GTSE1), or cell-cell adhesion (CEACAM1, 
MMP14, EPS8L2, AP3D1, AFDN, and PAK4) (Fig. 4B).

Ten of the 35 overall survival-associated AS events are enriched 
in specific breast cancer subtypes. For example, events in CYB561 
and CEACAM1 are enriched in HER2+, and E2F4, AP2A2, MGAT4B, 
and DUXAP9 events are enriched in basal-like breast tumors (Fig. 4B). 
Last, 21 of our overall survival-associated AS events (~60%) were 
absent from GENCODE v.30, including the events in CYB561, UBAP2L, 
and DUXAP9. This indicates the importance of LR-seq in develop-
ing reference isoform transcriptomes that can elucidate clinically 
relevant AS events.

Among the AS events associated with survival differences, we 
identified an exon skipping event in the cell adhesion molecule 
CEACAM1 in 114 TCGA breast cancer patients (Figs. 4B and 5, A 
to C) that was previously described in another breast cancer cohort 
(35). This AS event in CEACAM1 affects 14 isoforms (Fig. 5B). The 
GMM clustering identified three tumor subpopulations (S1 to S3) 
with distinct exon 7 inclusion levels, revealing that the exon can be 
variably included or skipped in the TCGA cohort (Fig. 5A). Exon 7 
of CEACAM1 was skipped in one of the breast cancer patient 
subpopulations, CEACAM1-S1, yet was preferentially included in 
normal breast from TCGA, normal breast tissue from GTEx, and in 
several normal tissues such as lung, liver, heart, brain, blood, and 
adipose tissue (Fig. 5B and fig. S7A). The CEACAM1-S1 subpopu-
lation with increased exon 7 skipping had worse overall survival 
when compared to the CEACAM1-S2 subpopulation (Fig. 5C), thus 
linking the SE event to an unfavorable disease outcome.
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Our analysis also identified a breast cancer–specific AF event in-
volving two isoforms of CYB561, including a novel isoform identified 
by LR-seq. The GMM clustering detected two tumor subpopula-
tions with distinct transcriptional start sites, TSS1 (novel) and TSS2 
(known) (Fig. 5, D and E). Patients in the CYB561-S2 subpopula-
tion have a higher utilization of the isoform originating at the TSS2 
start site, in comparison to the CYB561-S1 subpopulation and con-
trol tissues (Fig. 5E and fig. S7B). Moreover, the CYB561-S2 sub-
population exhibited worse overall survival when compared to the 
CYB561-S1 subpopulation (Fig. 5F), thus linking the AF event to an 
unfavorable disease outcome. This AF event involves a isoform not 

annotated in GENCODE v.30, with a start site (TSS1) supported by 
CAGE and ATAC-seq peaks (Figs. 4B and 5E). The detection of 
this AF event was only possible due to the incorporation of this 
novel LR-seq isoform in the disease transcriptome. CYB561 is an 
electron carrier enzyme that was recently identified as a novel prog-
nostic factor in breast cancer (36).

We also identified a loss of intron retention in the breast cancer 
oncogene E2F4 affecting 215 (19%) of TCGA breast tumors (Fig. 4B 
and fig. S8). The GMM clustering identified three subpopulations with 
different splicing of E2F4 isoforms in the TCGA cohort (fig. S8A). In 
the E2F4-S1 subpopulation, E2F4 switches from an intron-containing 

Fig. 4. Patient clustering identifies splicing alterations associated with overall survival in breast cancer. (A) Identification of tumor-specific AS events in TCGA 
breast cancer patient subpopulations using the GMM clustering approach. Seven types of AS events (SE, MX, A5SS, A3SS, RI, AF, and AL) were extracted from both LR-seq 
and GENCODE isoforms (1) and quantified as PSI with SUPPA2 using RNA-seq from 2579 samples including TCGA breast tumors and normal tissues from TCGA and GTEx 
(2). The GMM clustering approach provided for each AS event the optimal number of distinct sample subpopulations (e.g., S1 to S3) that fit the PSI distribution, as well as 
the frequency of tumor and control samples in each subpopulation (3). The GMM clustering identified 3059 tumor-specific AS events in TCGA breast tumors versus normal 
tissues, plotted per AS event type (4). The Kaplan-Meier survival analysis compared survival rates in the identified subpopulations for tumor-specific events and detected 
35 AS events associated with subpopulations with differential survival in TCGA (5). (B) Tumor-enriched AS events associated with overall survival in TCGA breast tumors 
identified by the GMM clustering approach from (A). Only AS events detected in ≥50 patients, with |PSI | ≥ 20%, and with significant survival association are shown, 
ranked by differential survival (log-rank test, adjusted P < 0.01). AS events are labeled with gene name, AS event type, and number of patients and colored based on in-
clusion levels (PSI) in tumors versus normal tissues. Information for each AS event is depicted in heatmaps, including survival prognosis, breast tumor subtype enrich-
ment, tissues PSI values, and source of isoform detection. n.s., not significant; n.d., not detected.
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transcript in normal tissues that is not translated to a protein coding 
isoform in which the intron is spliced out in breast cancer patients 
(fig. S8). The E2F4 loss of intron retention is highly specific to breast 
cancer (Fig. 4B and fig. S8). Increased expression of the E2F4 tran-
scription factor is associated with cancer severity and poorer prog-
nosis in breast cancer (37). In line with these findings, patients with loss 
of E2F4 intron retention (E2F4-S1 subpopulation) have unfavorable 

prognosis when compared with patients where the intron is retained 
(fig. S8). Thus, this retained intron event might represent a regulatory 
mechanism by which splicing leads to up-regulation of the E2F4 
oncogene in breast cancer.

In summary, patient stratification using our novel GMM clus-
tering analysis identified tumor-specific splicing events in breast 
cancer that are confined to patient subpopulations with variable 

Fig. 5. AS events in CEACAM1 and CYB561 are tumor specific and associated with unfavorable prognosis in TCGA. (A) TCGA tumor subpopulations (S1 to S3) de-
tected by GMM clustering exhibit different PSI of exon 7 in CEACAM1. (B) Structure of CEACAM1 isoforms detected by LR-seq in breast tumors or normal tissues, high-
lighting the location of skipped exon 7 (top). Exon 7 PSI is shown in TCGA tumor subpopulations, TCGA normal adjacent breast tissues, and GTEX normal tissues (bottom). 
(C) Overall survival in TCGA breast cancer patients in S1 subpopulation, with CEACAM1 exon 7 skipping, and S2 subpopulation, with higher exon 7 inclusion (log-rank 
test). (D) TCGA subpopulations (S1 and S2) detected by GMM clustering exhibit different PSI values for an alternative first exon in CYB561. (E) Structure of CYB561 isoforms 
detected by LR-seq in breast tumors or normal tissues, highlighting the location of novel (TSS1) or known alternative (TSS2) transcriptional start sites (top). CAGE, ATAC-
seq, and 3′-seq genomic tracks are displayed. PSI of the isoform containing the CYB561 TSS2 in TCGA tumor subpopulations, TCGA normal adjacent breast tissues, and 
GTEX normal tissues (bottom). (F) Overall survival in TCGA breast cancer patients in S1 subpopulation, with lower TSS2 inclusion, and S2 subpopulation, with higher TSS2 
inclusion (log-rank test). (G) t-Distributed stochastic neighbor embedding (t-SNE) representations of the CEACAM1 and CYB561 AS events, showing samples per dataset 
(left) and colored by PSI levels for each tumor subpopulation and controls (right).
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prevalence. These patient subpopulations carry distinctive splice 
alterations compared to tumor adjacent and normal tissues (Fig. 5G 
and fig. S8E), and the differential splicing within these confined 
subpopulations could only be identified after patient stratification. 
We validate several of these previously undetected isoforms in breast 
cancer cell lines (fig. S9). In addition, our analyses implicated genes 
regulated by AS such as CEACAM1, CYB561, and E2F4 as poten-
tially playing a role in disease outcome.

DISCUSSION
We performed LR-seq on 30 breast tumor and normal samples to 
define the FL isoform-level transcriptome of human breast cancers 
and developed an analytical pipeline to predict the functional con-
sequences of cancer-associated splicing changes. We identified 
isoform-level diversity in tumors and developed a thorough LR-seq–
based breast cancer isoform catalog for quantitative and qualitative 
assessment of potential translation and subsequent protein domain 
effects. The data are made available through an interactive web por-
tal (https://brca-isoforms.jax.org) that provides tools for querying, 
visualizing, and downloading data. We integrated LR-seq isoforms 
with orthogonal datasets to demonstrate the reliability of the ap-
proach and proposed an analysis framework to detect the functional 
consequences of spliced isoforms in cancer. Last, we used the resul-
tant long-read breast cancer transcriptome to uncover novel isoforms 
associated with patient survival in TCGA using a GMM clustering 
approach to identify clusters of patients with similar splicing profiles.

Our pipeline uncovers 142,514 isoforms in breast tumors, 66% 
of which are novel when compared with the reference transcrip-
tome, thereby significantly increasing the repertoire of known can-
cer isoforms. Although short-read RNA-seq adequately supports 
FSM isoforms, it is unable to detect our novel NIC and NNC iso-
forms at similar rates, pointing to the necessity of LR-seq to accu-
rately define isoform-level transcriptomes. Many of our novel isoforms 
are supported by orthogonal data, such as CAGE and ATAC-seq for 
transcription start sites, and 3′-seq data for 3′ untranslated regions, 
supporting the validity of our findings. Until now, in breast cancer, 
LR-seq data were available on a small number of cell lines (13–15) 
but not for primary tumors as described here. The proposed analy-
sis likely captures the intertumor heterogeneity of primary tumor 
samples (38), which is absent from cell lines, and provides a more 
clinically relevant repertoire of spliced isoforms. This catalog of iso-
forms provides a more accurate and complete transcriptome enabling 
analyses at the isoform resolution in breast cancer and possibly other 
cancer types. This long-read breast cancer transcriptome will likely 
help the discovery of novel targets for cancer therapeutics.

Although several spliced isoforms for breast cancer genes such 
as ESR1 and ERBB2 have been previously identified (26, 28), cur-
rent annotations widely used for transcriptome analysis, such as 
RefSeq and GENCODE, do not contain the level of complexity re-
vealed by our LR-seq analysis. A subset of the novel spliced isoforms 
contain distinct protein sequences, leading to novel combinations 
of protein domains and changes in cellular localization, and thus 
may play a role in promoting tumorigenesis or escaping drug re-
sponse. For example, we uncovered a novel ESR1 isoform predicted 
to gain a transmembrane domain and swap its localization from the 
nucleus to the cell membrane. Truncated ESR1 isoforms have been 
previously described, including several that lead to cell membrane 
localization (39–43). Furthermore, changes in ESR1 localization have 

been associated with differences in downstream signaling and in re-
sponse to tamoxifen (44). The functional significance of the novel 
isoforms reported here, the predicted changes in localization, and 
their potential role in drug resistance remain to be experimentally 
defined. Although point mutations and ESR1 amplifications have 
been linked with breast cancer metastasis and therapy resistance 
(45), the role of ESR1 splicing in the tumor response to endocrine 
therapies remains to be determined. A systematic characterization 
of isoform-level variation and complexity in tumors as described 
here will help understand how isoforms might contribute to the 
heterogeneity of drug responses.

We identified AS events with prognostic value in TCGA breast 
cancer patients. Of 310,861 AS events detected in our LR-seq tran-
scriptome, we found 3059 cancer-specific AS events from which 35 AS 
events were associated with significant changes in patient survival. 
This analysis reveals that while AS events are frequent in cancer 
transcriptomes, they are mostly restricted to subpopulations of 
patients. However, several AS events are recurrent and affect more 
than half of TCGA patients, affecting UBAP2L, a ubiquitin-associated 
protein up-regulated in breast tumors and implicated in breast cancer 
cell cycle control (46); GPBP1, a GC-rich promoter-binding protein 
previously implicated in resistance to cisplatin and poly(ADP-
ribose) polymerase inhibitors in ovarian cancer (45); and CCDC120, 
an interaction partner of the ADP-ribosylation factor 6 that is asso-
ciated with breast cancer cell invasion (47). The analysis also uncov-
ered a novel regulatory mechanism by which the oncogenic E2F4 
transcription factor is up-regulated in breast tumors (37), linking 
an intron retention event in E2F4 with unfavorable prognosis in 
patients with breast cancer.

In conclusion, LR-seq is particularly well suited for the discovery 
of isoforms containing novel targets for immuno-oncology. These 
include the identification of cell surface isoforms against which spe-
cific monoclonal antibodies can be generated for use as therapeutics 
or as backbones for chimeric antigen receptor (CAR) T cells. Isoforms 
also generate peptides that could be used for vaccination protocols, 
possibly in combination with checkpoint inhibitors.

MATERIALS AND METHODS
Clinical samples
The study was conducted following approval by the Institutional 
Review Board(IRB) of The Jackson Laboratory for Genomic Medi-
cine (IRB nos. 16-NHSR-15, 17-JGM-06, and 2018-039). Normal 
breast samples were acquired from the Maine Cancer Biospecimen 
Portal. Breast cancer tissue sections were contributed by K.P. Exempt 
primary tissues from patients with breast cancer were obtained from 
the Baylor University Medical Center (BUMC) Tissue Bank (IRB 
no. 005-145; otherwise discarded tissues). Consecutive postsurgical 
tumor samples (from patients with in situ, invasive ductal, lobular, 
and/or mucinous carcinoma of the breast) were collected between 
years 2006 and 2013.

The samples used in this research from BUMC were collected 
with appropriate informed consent, and the use of these samples 
was approved by The Jackson Laboratory (JAX) IRB (17-JGM-06). 
The use of deidentified samples from the Maine Cancer Biospecimen 
Portal and BUMC Tissue Bank was reviewed by The Jackson Labo-
ratory (JAX) IRB (16-NHSR-15 and 2018-039) and determined to 
not meet the definition of human subjects research under HHS 
regulation 45 CFR 46.

https://brca-isoforms.jax.org
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PDX tumor samples lines
Snap-frozen PDX tumor samples were obtained from The Jackson 
Laboratory (Sacramento, CA; catalog numbers provided in file S1 as 
tumor identifiers). Upon receipt, frozen PDX tumors were placed in 
cryomolds (VWR #4557), embedded in optimal cutting tempera-
ture (OCT) media (VWR #4583), and stored at −80°C before RNA 
extraction.

Cell lines
Cell lines were purchased from the American Type Culture Collec-
tion (ATCC; Manassas, VA). CAMA-1, T-47D, and BT-549 lines were 
cultured in Dulbecco’s modified Eagle’s medium (Thermo Fisher 
Scientific #11965118) supplemented with 10% fetal bovine serum 
(Gemini Bio #100-500). Hs578t was cultured in Dulbecco’s modified 
Eagle’s medium (Thermo Fisher Scientific #11965118) supplemented 
with 10% fetal bovine serum (Gemini Bio #100-500) and bovine 
insulin (0.01 mg/ml; Sigma-Aldrich #I0516). Hs578Bst was cultured 
with Hybri-Care Medium (ATCC #46-X) and supplemented with 
sodium bicarbonate (1.5 g/liter; Thermo Fisher Scientific #25080094), 
mouse epidermal growth factor (EGF) (30 ng/ml; Thermo Fisher 
Scientific #PMG8043), and 10% fetal bovine serum (Gemini Bio 
#100-500). MCF-7 was cultured in Eagle’s minimum essential 
medium (ATCC #30-2003) supplemented with recombinant human 
insulin (0.01 mg/ml) and 10% fetal bovine serum. MDA-MB-231 
and MDA-MB-468 lines were cultured in Leibovitz’s L-15 medium 
(ATCC #30-2008), supplemented with 10% fetal bovine serum. HCC-
1500 was cultured with RPMI 1640 medium (ATCC #30-2001) 
supplemented with 10% fetal bovine serum (Gemini Bio #100-500). 
MCF-10A was cultured in MEBMTM Mammary Epithelial Cell 
Growth Basal Medium (Lonza) supplemented with cholera toxin 
(100 ng/ml; Sigma-Aldrich #C8052), 2.00 ml of Bovine Pituitary 
Extract (BPE) (Lonza), 0.50 ml of human epidermal growth factor 
(Lonza), 0.50 ml of insulin (Lonza), and 0.50 ml of hydrocortisone 
(Lonza). Cell lines were kept at 37°C with 5% CO2.

RNA extraction
High-quality RNA was extracted from primary tumor tissues or 
cells. Briefly, using a Cryostat, four to five 0.3-m tissue sections 
were cut from OCT-embedded tumors, mixed in 350 l of RLT Lysis 
buffer containing 10% -mercaptoethanol, and either frozen at 
−30°C or sent immediately for RNA extraction. For primary cells, 
cells were pelleted by centrifugation and then lysed with 350 l of 
RLT + 10% -mercaptoethanol. RNA was extracted using the RNeasy 
Mini Prep Kit following the manufacturer’s instructions (Qiagen 
#74106). Samples were treated with deoxyribonuclease I (Qiagen 
#79254) and eluted in 30 to 50 l of ribonuclease-free water. RNA 
quality and quantity were assessed using a Qubit 2.0 fluorometer 
(Thermo Fisher Scientific), and only samples with RNA integrity 
number > 8.0 were selected for sequencing.

Long-read library preparation and sequencing
Following RNA extraction, FL cDNA synthesis from poly-A–
containing transcripts was performed using the Clontech SMARTer 
Polymerase Chain Reaction (PCR) Kit (Takara). The resulting cDNA 
was PCR-amplified to generate 1 to 2 g of cDNA, and PCR products 
were purified using AMPure XP magnetic beads (Beckman Coulter). 
Size selection was performed using the Sage Science BluePippin 
System to remove small cDNA fragments that were preferentially 
sequenced by diffusion loading. Next, SMRTbell adapters were ligated 

to cDNA ends and purified by magnetic beads using the SMRTbell 
Template Prep Kit (Pacific Biosciences), followed by sequencing 
in a PacBio RSII or Sequel instrument. The list of clinical samples, 
PDXs, and cell lines sequenced in this study is provided in the 
file S1. File S2 provides additional information including equip-
ment, size selection, and sequencing metrics for individual li-
brary runs.

Short-read RNA-seq
RNA was extracted using the Qiagen RNeasy Mini Prep kit and 
measured using a Qubit 2.0 fluorometer (Thermo Fisher Scientific). 
RNA underwent quality control testing using a 2100 Bioanalyzer 
(RNA 6000 Pico kit, Agilent) followed by cDNA library preparation 
using the KAPA Stranded mRNA-Seq kit (Roche) according to the 
manufacturer’s instruction. Paired end sequencing was performed 
at 76 base pairs on each side of the DNA fragment on the Illumina 
NextSeq platform. In total, RNA-seq was performed for 29 tumor 
and control samples, with 10.7 to 142.4 million reads sequenced per 
sample (mean = 46.4 million).

PCR validation of AS events associated to survival
One microgram of RNA was reverse-transcribed using the SuperScript 
IV First-Strand Synthesis System with both oligod(T) and random 
hexamer primers per manufacturer instructions (Invitrogen #18091050). 
Touch-down PCR was used to amplify 200 ng of cDNA with Q5 
High-Fidelity DNA Polymerase and the High-GC content buffer 
(New England Biolabs #M0491L), and primers are listed in file S4 
on a Bio-Rad T100 Thermal Cycler (Bio-Rad #1861096). PCR products 
were separated in 2% agarose gel stained with SYBR Safe (Invitrogen) 
and imaged using ChemiDoc MP Imaging System (Bio-Rad).

Long-read data processing
Raw PacBio Iso-seq data (BAM files) were processed using the ToFU 
pipeline (48) obtained from https://github.com/PacificBiosciences/
IsoSeq_SA3nUP/wiki. Briefly, the pipeline generates nonredundant 
FL transcripts in the following steps: (i) classify reads as FL reads 
and non-FL reads based on the presence of adapters and polyA signal, 
(ii) identify isoform clusters for each transcript using FL read(s), 
and (iii) polish isoform sequences by performing error correction 
and obtaining a final consensus transcript using both FL and non-
FL reads. FL transcripts were mapped to human (hg38) and mouse 
(mm10) genomes using gmap (49), and transcripts aligned to mouse 
were discarded from downstream analyses (PDX samples). FL tran-
scripts for all samples were merged using chain_samples.py from the 
cDNA_Cupcake tools (https://github.com/Magdoll/cDNA_Cupcake) 
to create a nonredundant merged transcriptome. In addition to the 
samples sequenced in this study, a publicly available MCF7 cell line 
dataset (50) was reprocessed and included in the merged transcrip-
tome (see file S2).

RNA-seq data processing
Fastq files were aligned to the hg38 genome using hisat2 v. 2.0.4 (51) 
with default options, followed by removal of duplicate reads with 
samtools v. 1.3.1. Bigwig files were generated using bamCoverage 
v.3.3.0 from deeptools2 (52). Xenome v.1.0 (53) was used to filter 
out mouse and ambiguous reads in PDX samples. External RNA-
seq datasets were retrieved from the dbGAP database using the 
following accession numbers: TCGA (phs000178.v11.p8) and GTEx 
(phs000424.v8.p2).

https://github.com/PacificBiosciences/IsoSeq_SA3nUP/wiki
https://github.com/PacificBiosciences/IsoSeq_SA3nUP/wiki
https://github.com/Magdoll/cDNA_Cupcake
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Isoform annotation and quality control
Our isoform annotation pipeline combined several tools for iso-
form transcript and ORF annotation as outlined in fig. S3A. Spliced 
isoforms were annotated with SQANTI (54), using GENCODE 
comprehensive v.30 as reference. We also used SQANTI2 (https://
github.com/Magdoll/SQANTI2) to obtain a comprehensive set of 
quality attributes for sequenced FL reads at both transcript and 
junction levels, which were applied for retaining high-quality tran-
scripts and filtering out potential artifacts as detailed below.
Indel correction
First, SQANTI was used to generated an indel-corrected FASTA/
GTF files by realignment of FL transcripts to the human genome 
hg38 and to classify isoforms based on their splice patterns using 
GENCODE v.30 as reference. SQANTI2 was used to compute junc-
tion coverage in the Intropolis dataset and distance of TSS to CAGE 
peaks. In general, novel isoforms (NIC and NNC) were filtered on 
the basis of 3′ end reliability [no poly(A) intrapriming], noncanon-
ical junctions or reverse-transcriptase switching (RT-switching) 
junctions, and splice junction read support as described below.
RT-switching and noncanonical junction filter
SQANTI was used to flag transcripts with noncanonical junctions 
or junctions possibly derived from RT-switching.
Read coverage filter
We used the SQANTI2 tool and the Intropolis dataset, a large com-
pendium of RNA-seq samples containing ~21,000 human samples 
from the Short Read Archive (55), for obtaining the read support 
of novel splice junctions. The read coverage filter applied to novel 
transcripts was defined as follows: the transcript was kept if all 
splice junctions were covered by at least five short reads (RNA-seq 
from Intropolis dataset) or the transcript was detected in at least 
three Iso-seq samples (i.e., minimum of three FL reads).
Intron retention filter
Gffcompare (51) was used to annotate transcripts with potential in-
tron retention (class codes m, n, i, and y).
Unreliable 3′ end/poly(A) intrapriming filter
In addition, to remove potential poly-A intrapriming during the re-
verse transcriptase reaction, the genomic 3′ end of a transcript was 
considered unreliable if it had all the following properties: (i) It was 
located more than 100 base pairs away from an annotated TTS, 
(ii) the adenine percentage downstream of TTS > 80%, (iii) and no 
overlap with the polyA site database (56), a catalog of high-quality 
and curated poly(A) sites detected by 3′-seq. On the basis of the 
combination of these quality attributes, we devised the following 
filtering strategy for each transcript category: FSM: no filtering (all 
included); ISM: filtering out transcripts with unreliable 3′ ends; 
NIC: filters based on unreliable 3′ ends, minimum read coverage, 
and no intron-retention; NNC: filters based on unreliable 3′ ends, 
minimum read coverage, no intron-retention, no junctions labeled 
as RT-switch, and only canonical splice sites; other (intergenic, 
antisense, fusion of adjacent loci): minimum read coverage, no 
intron-retention, no junctions labeled as RT-switch, and only canon-
ical splice sites. Overall, 95,398 novel isoforms (41%) passed quality 
control and were retained for downstream analyses, in comparison 
to 230,425 novel isoforms originally sequenced across all samples, 
thus demonstrating the parsimony of the isoform selection.

Isoform clustering
Hierarchical clustering of samples profiled by LR-seq was per-
formed in R using the Jaccard pairwise similarity coefficient, which 

was defined as Jac(IA,IB) = intersection(IA,IB)/union(IA,IB), where 
IA and IB are the set of isoforms detected in given samples A and B, 
respectively.

Protein-level functional characterization of long-
read isoforms
We used sequence homology and domain conservation to human 
protein isoforms in UniProt to determine optimal coding sequences 
from FL LR-seq isoforms as described below. First, we assembled a 
comprehensive human proteome reference including both canoni-
cal (SwissProt + TrEmbl) and spliced isoforms (VarSplice) from 
UniProt release 2019-04, which contained 95,915 protein sequences. 
Possible coding sequences (ORFs) from LR-seq isoforms were pre-
dicted using Transdecoder (57), and local alignment using blastp 
(58) was performed against the reference proteome using options 
max_target_seqs = 1 and e-value = 10−5 to identify homologs in 
UniProt. Also, PFAM domains for all extracted ORFs were predicted 
using the hmmscan tool from hmmer v.3.1 (http://hmmer.org) using 
default parameters. Then, a single best ORF for each transcript was 
selected on the basis of significant sequence homology (blastp) and 
domain conservation (hmmer) to human proteins.

Next, we performed extensive annotation of coding sequences 
using multiple tools and custom scripts. Prediction of transmem-
brane helices was carried out using TMHMM, and subcellular 
localization was inferred using DeepLoc. Global alignment of FL 
coding sequences to homologs in UniProt was carried out using the 
Needleman-Wunsch algorithm implemented in the pairwiseAlignment 
function from the Biostrings package in R. Nonsense-mediated mRNA 
decay (NMD) analysis was performed using a custom R script using 
the coding sequence predicted by Transdecoder. Specifically, an FL 
transcript was predicted as NMD sensitive when the stop codon 
occurred before the terminal exon and was located more than 55 
nucleotides upstream of the last splice junction. Scripts for per-
forming global alignment and NMD prediction were implemented 
using mclapply (parallel package v.3.4.1).

Peptide search
Raw MS/MS datasets from TCGA breast cancer patients (230 sam-
ples from 125 tumors) were retrieved from the CPTAC database 
(29). In addition, 45 breast cancer samples from another patient 
cohort (30) were obtained from the ProteomeXchange database, for 
a total of 275 proteomic samples. Peptide identification was per-
formed using MS-GF+ version 2018.10.15 (59) using a sequence 
database that contained 165,477 ORFs derived from long-read iso-
forms, in addition to 95,915 human protein sequences from UniProt, 
and 116 contaminant sequences. The following parameters were 
set for database searching: Carbamidomethyl (C), iTRAQ4plex 
(N-term), and iTRAQ4plex (K) were specified as fixed modifica-
tions. Oxidation (M), Deamidated (NQ), Acetyl (K), and Methyl 
(K) were specified as variable modifications. The precursor mass 
tolerance for protein identification on MS was 20 ppm, and the 
product ion tolerance for MS/MS was 0.05 Da. Partial cleavage by 
trypsin was used, with up to two missed cleavages permitted. mzID 
profiles identified from the search engine were then pooled using 
the R/Bioconductor package MSnbase (60), and peptide-to-spectrum 
matches (PSMs) satisfying both spectra and peptide false discovery 
rate cutoffs < 1% were kept for further analysis. Last, PSMs were 
classified into four types, namely, unique_PacBio (peptides uniquely 
mapped to a single-FL isoform and not mapped to UniProt), 

https://github.com/Magdoll/SQANTI2
https://github.com/Magdoll/SQANTI2
http://hmmer.org
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non_unique_PacBio (peptides mapped to more than one FL isoform 
and not mapped to UniProt), nonunique-PacBio + UniProt (peptides 
mapped to both PacBio and UniProt proteins), and multigene (peptides 
mapped to multiple genes).

Ribosome occupancy analysis
Ribo-seq and RNA-seq for HMEC, MCF-10A, T47D, ZR-75-1, 
SUM159PT, and MDA-MB-231 were obtained from Vaklavas et al. 
(31), accession number GSE126736. Briefly, we used ORQAS (32) 
for aligning the breast cancer Ribo-seq data to our LR-seq tran-
scriptome (n = 142,514 isoforms) and to compute signal periodicity 
(f1) and uniformity (proportion of maximum entropy or pme) of 
ribosome occupancy across all known and novel ORFs. We obtained 
a list of 343 single-ORF housekeeping genes that are found to be 
expressed in all tissues from the Human Protein Atlas and computed 
minimum f1 and pme cutoffs that classified as translated at least 
80% of single-ORF housekeeping genes in each sample. ORFs with 
pme and f1 above the cutoffs and with at Ribo-seq coverage of at 
least 10 reads were considered actively translated in each sample.

Splice event extraction and quantification in TCGA 
and GTEx samples
AS events were extracted and quantified using SUPPA2 (33), based 
on a GTF containing long-read isoforms merged to GENCODE v.30. 
The input transcript expression file containing TPM (transcripts 
per million) abundances of all isoforms for SUPPA2 was computed 
using StringTie v.1.3.0 (51) using the merged GTF as a reference 
for transcript quantification. Alternative first and last exons were 
defined using 250 base pairs overlap threshold (−t 250) for PSI 
calculation. For other types of events (SE, MX, RI, A3, and A5), the 
overlap threshold was set to 10 base pairs.

Gaussian mixture clustering and survival analysis
The GMM clustering was implemented in R using the mclust 
package v. 5.4.1. The clustering approach consisted in fitting a mix-
ture of Gaussian distributions to PSI values from AS events simul-
taneously in cancer and control samples, using the PSI matrix 
obtained from SUPPA2. Model fitting with mclust was performed 
using one to three Gaussian distributions (i.e., minimum of one and 
maximum of three PSI subpopulations), and the optimal fitting was 
determined using the Bayesian information criterion. For each AS 
event, samples were assigned to clusters (subpopulations) with highest 
probability, and the frequency of tumor and controls was computed 
within subpopulations. Subpopulations with high tumor purity 
(>90% breast tumor samples) were further analyzed for differential 
splicing and survival as described below. The Wilcox rank-sum test 
in R was used to determine differential splicing between a tumor-
specific subpopulation and control tissues from TCGA and GTEx. 
Next, survival analysis was done using the pairwise_survdiff func-
tion from the survminer package v. 0.4.6, which performs pairwise 
comparisons between GMM-inferred subpopulations with correc-
tions for multiple testing. Only subpopulations with at least 30 patients 
were included in the Kaplan-Meier analysis. Significant survival 
events were selected on the basis of the global P value and pairwise 
comparisons (adjusted P < 0.01).

t-SNE visualization of AS events
t-Distributed stochastic neighbor embedding (t-SNE) was performed 
using the Rtsne package v. 0.13. The t-SNE representation was 

generated on the basis of the PSI matrix of exon skipping events. 
The PSI matrix was filtered to remove events with more than 80% of 
missing values. Samples with more than 80% of missing values were 
also removed. Missing values occurred for events in which neither the 
inclusion nor skipping forms are detected. Any remaining missing 
values were mean imputed. t-SNE with learning rate of 200 and 
perplexity of 50 was applied for all visualizations.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abg6711

View/request a protocol for this paper from Bio-protocol.
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