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Abstract Multidimensional landscapes of regulatory genes in neuronal phenotypes at whole-
brain levels in the vertebrate remain elusive. We generated single-cell transcriptomes of ~67,000 
region- and neurotransmitter/neuromodulator-identifiable cells from larval zebrafish brains. Hierar-
chical clustering based on effector gene profiles (‘terminal features’) distinguished major brain cell 
types. Sister clusters at hierarchical termini displayed similar terminal features. It was further verified 
by a population-level statistical method. Intriguingly, glutamatergic/GABAergic sister clusters mostly 
expressed distinct transcription factor (TF) profiles (‘convergent pattern’), whereas neuromodulator-
type sister clusters predominantly expressed the same TF profiles (‘matched pattern’). Interestingly, 
glutamatergic/GABAergic clusters with similar TF profiles could also display different terminal 
features (‘divergent pattern’). It led us to identify a library of RNA-binding proteins that differentially 
marked divergent pair clusters, suggesting the post-transcriptional regulation of neuron diversifica-
tion. Thus, our findings reveal multidimensional landscapes of transcriptional and post-transcriptional 
regulators in whole-brain neuronal phenotypes in the zebrafish brain.

Introduction
The vertebrate brain harbors highly diverse neuronal types that are specifically interconnected to form 
functional circuits (Kepecs and Fishell, 2014; Armañanzas and Ascoli, 2015; Moffitt et al., 2018). 
The brain comprises conserved major cell types (neurons, progenitors, glia, endothelial cells, etc.) 
(Marques et al., 2016; Saunders et al., 2018; Hodge et al., 2019). Previous studies have indicated 
that neuronal types could be well characterized by their features, including electrophysiological prop-
erties, neurotransmitter/modulator identity, synaptic connectivity, brain region identity, and cellular 
morphology (Zeisel et  al., 2015; Pandey et  al., 2018; Zeisel et  al., 2018). How these neuronal 
features are molecularly encoded at the whole-brain level is an important issue in neuroscience.

With the advent of single-cell RNA-sequencing (scRNA-seq) technology, recent studies have begun 
to characterize neuronal diversity by analyzing single-cell transcriptomes of large populations in the 
whole brain or specific brain regions of mice and humans (Darmanis et al., 2015; Lake et al., 2016; 
Poulin et al., 2016; Tasic et al., 2016; Chen et al., 2017; Tasic et al., 2018). These studies have 
provided compelling evidence that individual neuronal types could be well characterized by their 
transcriptomes (Poulin et al., 2016; Tasic et al., 2018; Sugino et al., 2019). For instance, scRNA-seq 
analyses of half a million cells from the mouse brain showed that neurons could be classified by genes 
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related to neuronal connectivity, synaptic transmission, and membrane conductance (Zeisel et al., 
2018). Besides, the scRNA-seq analysis of nearly 200 genetically marked mouse neuronal populations 
also showed that neurons could be classified by the expression level of various transcription factors 
(TFs), ion channels, synaptic proteins, and cell adhesion molecules (Sugino et al., 2019). These studies 
provided extensive information on the molecules that could be used to define neuronal types.

Generally, these molecules could be sub-divided into two primary categories: regulatory genes 
and effector genes. Regulatory genes encode proteins involved in gene transcription and translation 
(e.g., TFs and post-transcriptional regulators), while effector genes encode proteins serving specific 
neuronal terminal features (e.g., synaptic proteins, ion channels, transporters, and receptors) (Krat-
sios et al., 2015; Zeisel et al., 2015; Paul et al., 2017, Zeisel et al., 2018; Reilly et al., 2020). Regu-
latory genes are critical for establishing and maintaining effector gene profiles that resulted in diverse 
neuronal types. Interestingly, distinct TFs can determine neuronal types with similar neurotransmitter 
identities in the Caenorhabditis elegans, arguing for phenotypic convergence (Serrano-Saiz et al., 
2013; Gendrel et al., 2016; Hobert and Kratsios, 2019). Remarkably, this phenotypic convergence 
has also been reported in the Drosophila’s optic lobe (Konstantinides et al., 2018). However, the 
multidimensional landscapes of regulatory genes in vertebrate whole-brain neuronal phenotypes 
remain elusive.

The larval zebrafish brain comprises only about 100,000 cells, thus providing an outstanding verte-
brate model for studying cell diversity within the entire brain, using single-cell transcriptome anal-
ysis with full cell coverage by the 10× Genomics Platform. Previous scRNA analysis of the zebrafish 
nervous system has elegantly demonstrated the temporal dynamics of brain cell development (Raj 
et al., 2018; Raj et al., 2020). In this study, we generated the multidimensional landscape of regulator 
genes in effector gene-based neuronal phenotypes (terminal features) at the whole-brain level by 
combining single-cell transcriptome data obtained from the whole brain, specific brain regions, as well 
as neurotransmitter- and neuromodulator-defined neuronal populations. We found that, at the tran-
scriptional and post-transcriptional levels, glutamatergic/GABAergic neurons with the same terminal 
features could express different TF profiles, while those with different terminal features could express 
the same TF but different RNA-binding protein (RBP) profiles. In contrast, neuromodulator-type 

eLife digest The brain harbors an astounding diversity of interconnected cells. Each cell contains 
the same basic set of genetic instructions, but only a fraction of the genome is used in each cell to 
assemble proteins. This selective gene expression gives rise to each cell’s characteristic properties, 
such as their shape and location, or whether they can activate or inhibit neighbouring cells.

How these defining features are encoded on a genetic level and selectively activated in cells to 
produce such diversity in the brain is not fully understood. One way to study gene expression in 
single cells involves profiling the transcriptome, the full range of intermediary RNA molecules a cell 
produces from its genes to make proteins.

Zhang et al. used transcriptome profiling to better understand how thousands of regulatory genes 
encoding regulatory proteins called transcription factors create different types of neurons in the 
zebrafish brain, which is similar to but much simpler than the human brain. To do so, they analysed 
transcriptome data extracted from cell populations located in specific brain regions and displaying 
different properties.

Zhang et al. identified distinct clusters of neurons in the larval zebrafish brain. Mathematical models 
then analysed the transcriptome profiles of these neuronal clusters with characteristic features. They 
revealed that neurons with similar characteristics did not necessarily share the same transcription 
factors. In other words, distinct sets of transcription factors gave rise to the same types of cells. 
Zhang et al. described this observation as a ‘convergent’ pattern. On the contrary, some neurons with 
dissimilar features expressed the same sorts of transcription factors, suggesting a ‘divergent’ devel-
opmental pattern also exists.

In summary, this work sheds light on variable gene expression patterns akin to design principles 
that shape neuronal diversity in the brain. It gives a new appreciation of how neuronal subtypes result 
from a complex set of regulatory factors controlling gene expression.

https://doi.org/10.7554/eLife.68224
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neurons that display particular terminal features expressed unique TF profiles. Thus, our findings 
reveal multidimensional landscapes of transcriptional and post-transcriptional regulators in the whole 
zebrafish brain.

Results
Molecular classification of whole-brain cells in zebrafish
To uncover the transcriptomic profiles of diverse cell types with regional identity in the larval zebrafish 
whole brain at single-cell resolution, we dissected and dissociated cells from the whole brain (n = 4), 
four specific brain regions (n = 2 each), including the forebrain (Fore), optic tectum (OT), hindbrain 
(Hind), and the region underneath the optic tectum (sub-OT) in the 8  days post fertilization (dpf) 
zebrafish (Figure 1—figure supplement 1A). We performed scRNA-seq of these cells using the 10× 
Genomics Chromium 3’ v2 platform. The libraries were sequenced to a mean depth of 126,651 reads 
per library, with a median of 1891 UMI and 866 genes per cell (Figure 1—source data 1). Repro-
ducibility of transcription analysis was shown by the finding that replicates of whole-brain samples 
and individual brain regions were primarily overlapped in the t-distributed stochastic neighbor 
embedding (t-SNE) plots (Figure 1—figure supplement 1B-C). We obtained the transcriptomes of 
65,253 cells and selected 45,746 cells for further analysis after filtering out low-quality data (Materials 
and methods). Then aggregated all cells into 68 clusters using high-variance genes (n = 1402) in t-SNE 
plot (Figure 1A). The Jaccard index-based analysis showed that most clusters had a high Jaccard 
index greater than 0.6, indicating the robustness of these clusters (details in Materials and methods) 
(Tang et al., 2020) except for a few neuronal clusters from sub-OT (Clusters 52, 66), and non-neuronal 
clusters (neuroprogenitors: Clusters 37, 56; radial astrocytes: 65, Figure 1—figure supplement 1E).

Each cluster was annotated according to cell-type-specific marker genes from the literature or 
ZFIN (Zebrafish Information Network) database (Figure 1—source data 2). To assign the brain region 
identity for each cluster, cells from each of the four specific regions (Fore, OT, sub-OT, Hind) were 
found to cover multiple but non-overlapping clusters and all 68 clusters could be assigned with their 
brain region origins (Figure 1—figure supplement 2A-B, and Figure 1—source data 3). Further-
more, to identify potential brain region-specific markers that exist in all cell types, we identified all 
genes that were differentially expressed in each region for all major cell types (vglut+, glutamatergic 
neurons; gad+, inhibitory neurons; pcna+, neuroprogenitors; cx43+, radial astrocytes). The differentially 
expressed genes shared by all cell types were considered to represent the targeted region-specific 
markers (Figure 1C). We indeed identified a small set of genes specific to each brain region indepen-
dent of cell type. For instance, foxg1a, en2a, and hoxb3a were explicitly expressed in all cell types 
of the Fore, OT, and Hind, respectively (Figure 1D). Interestingly, these brain region-specific genes 
also exhibited a conserved region-specific expression pattern in the mouse brain (Hanks et al., 1995, 
Manzanares et al., 2001, Kumamoto and Hanashima, 2017). We found no specific gene for the sub-
OT, probably due to the diverse brain structures in this region. These region-specific genes, which may 
be involved in forming regional identity during brain development, could be used to study region-
specific neuronal connectivity and function.

To assign the neurotransmitter/modulator identity for each cluster, we used the marker genes 
that were specific to primary neurotransmitter/modulator phenotypes, including slc17a6b (glutama-
tergic), gad1b (GABAergic), slc6a5 (glycinergic), th (dopaminergic [DA]), tph2 (serotonergic [5-HT]), 
and chata (cholinergic [ChAT]) (Figure 1—figure supplement 2C, Figure 1—source data 3). The ratio 
of glutamatergic to GABAergic neurons was the highest in the forebrain and lowest in the hindbrain, 
indicating that glutamatergic neurons predominantly belonged to the forebrain, whereas glycinergic 
neurons mainly resided in the hindbrain (Figure 1—figure supplement 2D). These regional patterns 
of neurons expressing different neurotransmitter types were validated using the transgenic fishlines: 
Tg (vglut2a:loxp-DsRed-loxp-GFP), Tg (gad1b:EGFP), and Tg (glyT2:GFP), each exhibiting distinct 
labeling of glutamatergic, GABAergic, and glycinergic neurons, respectively (Figure  1—figure 
supplement 2E).

Moreover, the Lawson-Hanson algorithm for non-negative least squares (NNLS) analysis using 
cluster-specific marker genes (top 20, Figure 1—source data 4) showed that these 68 clusters exhib-
ited a high overlap with their counterparts in the juvenile zebrafish brain recently reported (Raj et al., 
2018). Meanwhile, clusters with different regional origins or cell types also exhibited a high correlation 

https://doi.org/10.7554/eLife.68224
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Figure 1. Molecular classification of whole-brain cells in larval zebrafish. (A) The t-distributed stochastic neighbor embedding (t-SNE) plot of 45,746 
single-cell transcriptomes pooled from whole brains (n = 4) and four different individual brain regions (n = 2 each). The pooled cells were aggregated 
into 68 clusters, marked by a number. Each color-coded the major cell type as F. (B) The schematic showing different samples separately examined 
by single-cell RNA-sequencing on 10× Genomics Drop-seq platform: whole brain (n = 4), forebrain (Fore, n = 2), optic tectum (OT, n = 2), hindbrain 
(Hind, n = 2), and the region underneath the optic tectum (sub-OT, n = 2). OB: olfactory bulb; Tel: telencephalon; OT: optic tectum; Th: thalamus; 
H: hypothalamus; Pit: pituitary; Ce: cerebellum; MO: medulla oblongata. (C) Venn plots showing the differentially expressed genes in four major cell 
types identified by cell-type marker genes (vglut+, glutamatergic neurons, Glu; gad1b+, GABAergic neurons, Gaba; pcna+, neuroprogenitors, P; cx43+, 
radial astrocytes, R) in three brain regions (Fore, Hind, and OT). Commonly expressed genes in all cell types for a given brain region were identified as 
region-specific genes: six for forebrain (Fore), one for optic tectum (OT), and one for hindbrain (Hind), with genes listed below. (D) Dot plot showing 
the expression levels of region-specific marker genes in four major cell types (colored circles as C) in three brain regions. The gray level represents 
the average expression; dot size represents the percentage of cells expressing the marker genes. (E) Lawson-Hanson algorithm for non-negative least 
squares (NNLS) analysis showed cell clusters of Fore, OT, and Hind exhibited a high correlation with their counterparts of the juvenile zebrafish. Degree 
of correlation in marker genes is coded by the gray level and size of circle. (F) The dendrogram for the taxonomy of 68 identified clusters based on 
effector gene profiles (n = 1099). Main branches of neuronal and non-neuronal cells were classified into six branches (red dashed line) that include: I, 
cerebellum and habenula (hb); IIa, glutamatergic neurons (Glu); IIb, inhibitory neurons (Gaba); III, neuroprogenitors (P); IV, radial astrocytes (R); V, others, 
including microglia, endothelial cells, and oligodendrocytes. The colored dots and squares below indicate their regional origins and neurotransmitter-
type, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Bioinformatics processing of raw reads of single-cell samples.

Source data 2. The annotation of 68 clusters of whole-brain sample.

Source data 3. The regional origins and neurotransmitter-type annotation of each whole-brain cluster with well-known markers.

Source data 4. Top 20 marker genes of whole-brain larval zebrafish 68 clusters.

Source data 5. Marker genes of major six cell type in whole brain.

Figure supplement 1. Molecular classification of whole-brain cells in larval zebrafish brain.

Figure supplement 2. Molecular classification of whole-brain cells in larval zebrafish brain.

https://doi.org/10.7554/eLife.68224
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with their counterparts in the juvenile zebrafish (Figure 1E and Figure 1—figure supplement 2F). 
Thus, our analysis indicated that the brain at 8 dpf mostly represented cellular diversity in the juvenile 
brain.

Furthermore, Gene Ontology (GO) analysis of 1402 variable genes used for the classification of 
all 68 clusters showed that the majority of these genes (78.4%, n = 1099) were effector genes, which 
could be classified as neuropeptides, receptors, transporters, ion channels, synaptic proteins, and 
cell adhesion molecules (Figure 1—figure supplement 2G). This result suggests the importance of 
effector gene profiles in brain cell classification, which has also been appreciated by previous studies 
in different species (Paul et al., 2017, Hodge et al., 2019).

We thus generated the hierarchical classification of all 68 cell clusters using the profiles of these 
1099 effector genes. All 68 clusters were first segregated into two groups, neuronal cells (48 clusters, 
37,880 cells) and non-neuronal cells (20 clusters, 7866 cells) (Figure 1F). Among non-neuronal cells, 
oligodendrocytes (Clusters 40, 42; olig2+, sox10+), microglia (Cluster 55; apoeb+, mpeg1.1+), endothe-
lial cells (Clusters 48, 57; fxyd1+, rbp4+), erythrocytes (Cluster 67; hbbe1.2+, hbae5+), radial astrocytes 
(Clusters 21, 46, 65; cx43+, glua+), and neuroprogenitors (Clusters 8, 14, 18, 28, 29, 33, 34, 37, 53, 
56; pcna+, cdk1+) were identified according to putative marker genes (Figure 1—source data 5). On 
the other hand, among neuronal cells, the first segregation defined three classes of neurons (branch I, 
cerebellum and habenula; branch IIa, glutamatergic neurons, branch IIb, inhibitory neurons). Branch I 
consisted of granule cells (Clusters 19), torus longitudinals (Cluster 45), cranial ganglions (Clusters 19, 
50, 63), dorsal and ventral habenula neurons (Clusters 35 and 59). Branch IIa included 22 subclasses 
of excitatory glutamatergic neurons (vgluta2a+-gad1b--glyt2-), whereas Branch IIb inhibitory neurons 

Figure 2. Molecular classification of neuromodulator-type neurons. (A) The schematic showing the procedure of 
collecting single-cell transcriptomes of neuromodulator neurons with fluorescence-activated cell sorting (FACS). 
Using Tg (ETvmat2:GFP) fishline, we could isolate dopaminergic (DA), serotonergic (5-HT), and norepinephrinergic 
(NE) neurons. (B) The t-distributed stochastic neighbor embedding (t-SNE) plot of 5368 cells obtained from 
Tg (ETvmat2:GFP) fishline expressing monoaminergic neuromodulators, showing 22 clusters, each marked 
by a number, color-coding brain regions and cell type of each cluster. (C) Dot plot showing the expression of 
glutamatergic marker (vglut2a/vglut2b/vglu1/vglu3) and GABAergic marker (gad1b/gad2) in each of the 22 vmat2+ 
clusters in B. The neurotransmitter phenotypes were color-coded. Empty squares depict the ones with undefined 
neurotransmitter phenotypes. The average expression levels of these genes for all cells in each cluster were coded 
by the gray level. The percentage of cells expressing each gene within each cluster was coded by dot size.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. The annotation of neuromodulator-type neuronal types with well-known markers.

Figure supplement 1. Molecular classification of neuromodulator neurons.

https://doi.org/10.7554/eLife.68224
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included 17 subclasses of GABAergic neurons (vgluta2a-/gad1b+) and 1 subclass of glycinergic neurons 
(vgluta2a--gad1b+-glyt2+, Cluster17, Figure 1—source data 5).

Molecular classification of neuromodulator-type neurons
To further examine the expression of neuromodulators at the whole-brain level, we performed the 
scRNA-seq analysis of neuromodulator neurons sorted from the whole brain of Tg (ETvmat2:GFP) 
transgenic fish (Figure  2A). Using this fishline, we could examine transcriptomes of DA neurons, 
5-hydroxytryptamine (5-HT) neurons, and norepinephrinergic (NE) neurons (Wen et al., 2008). After 
the filtering procedures described above, we obtained a total of 5368 vmat2-expressing cells (Mate-
rials and methods). The analysis aggregated these cells into 22 clusters in t-SNE plots (Figure 2B), 
more than those found using whole-brain samples (two DA, one 5-HT, and three ChAT; Figure 1—
source data 2). To further validate the stability of clusters, we used the Jaccard index, which showed 
that the majority of clusters (20/22) were stable using mean/median Jaccard index  >0.6 as cutoff 
(Figure 2—figure supplement 1A).

According to region-specific marker genes identified above and known marker genes for neuro-
modulator neurons, we assigned seven clusters (Fore: Clusters 18–19; sub-OT: Clusters 16, 20; OT: 
Cluster 22; and Clusters 17, 21 without specific regional identity) as DA neurons, 14 clusters (Hind: 
Cluster 10; sub-OT: Clusters 1, 2, 6, 7; and Clusters 3–5, 8–9, 11–14 without regional identity) as 5-HT 
neurons, one cluster (Hind: Cluster 15) as NE neurons (Figure 2—figure supplement 1C-D, Figure 
2—source data 1).

Further examination of these neuromodulator clusters for their expression of specific neurotrans-
mitters showed that the majority of 5-HT (8/14) and DA clusters (5/7) expressed GABAergic markers 
gad1b/gad2 (Figure 2C). This result was further validated by Tg (ETvmat2:GFP::gad1b:gal4::uas:m-
Cherry) (Figure 2—figure supplement 1E). Only three 5-HT clusters (Clusters 11–13) expressed gluta-
matergic marker vglut3, two DA clusters (Clusters 16, 17), and one NE cluster (Cluster 15) expressed 
glutamatergic markers, vglut2a and vglut2b (Figure 2C). These results are consistent with previous 
studies (Filippi et al., 2014). Besides, we also found three clusters (Clusters 24, 41, and 64) in whole 
brain showed choline and glutamate preferential co-expression (Figure 1—source data 2). Thus, our 
analysis provided a whole-brain characterization of the co-expression patterns of neurotransmitters 
and neuromodulators. In sum, DA and 5-HT neurons preferentially expressed GABAergic markers, 
whereas NE and ChAT neurons mostly expressed glutamatergic markers.

The TF regulatory landscape of whole-brain glutamatergic/GABAergic 
neuron clusters
In the hierarchical classification based on effector gene profiles (Figure 1F), glutamatergic/GABAergic 
clusters (n = 39) at the terminus pairs represented the ones with the most similar terminal features, 
termed ‘sister clusters’. In addition, the certainty of this hierarchical classification was verified by the 
bootstrap re-sampling analysis using pvclust v.2.0 (Figure  3—figure supplement 1A; Suzuki and 
Shimodaira, 2006). We identified 11 pairs of sister clusters, neurons in each pair exhibited the same 
neurotransmitter types (Figure 3—figure supplement 2A). To our surprise, neurons of each sister 
clusters could be from either the same (n = 6) or different (n = 5) brain regions (Figure 3—figure 
supplement 2A), which did not reflect the strong brain region preference.

To further examine the TF profiles of these effector gene-based sister clusters, we classified gluta-
matergic (IIa) and inhibitory (IIb) neurotransmitter-type neurons using TF profiles. Notably, TF-based 
and effector gene-based trees were distinct in terms of matching node (only one matching node: Clus-
ters 9/61) and tree distances (tree distance = 0.71, Figure 3—figure supplement 1B), suggesting that 
the effector gene-based sister clusters (Figure 3—figure supplement 2A) might express different TF 
profiles.

We found out of 11 effector genes-based sister clusters, only one pairs could be found in TF-based 
sister clusters (Clusters 9/61, ‘matched pattern’, Figure 3—figure supplement 2B). And other 10 
effector gene-based sister clusters were separated in TF-based classification, suggesting that neurons 
with similar terminal features mostly expressed different TF profiles (‘convergent pattern’; Figure 3—
figure supplement 2C). Also, neurons in each of these 10 sister clusters could come from either the 
same (n = 5) or different (n = 5) brain regions, exhibiting no brain region preference (Figure 3—figure 
supplement 2C).

https://doi.org/10.7554/eLife.68224
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Alternatively, we performed the population-level statistical analysis to compare the landscape of 
TF and effector gene expression accounting for the full spectrum of cell types rather than just the 
most similar sister clusters. For all glutamatergic/GABAergic neuronal clusters (n = 39), we calculated 
the distances between every two clusters (‍C

2
39‍) based on either effector gene profiles or TF profiles, 

and then defined the pairs, which had the lowest 10% distances after ranking, as similar pair clus-
ters (Figure 3A). Then, we defined paired clusters that were similar in both TF and effector gene 
profiles as ‘matched pattern’, those paired clusters that were similar in effector gene profiles but not 
in TF profiles as ‘convergent pattern’ (Figure 3B). The population-level analysis identified 19 pairs 
of effector gene-based similar pair clusters, 5 with matched pattern and 14 with convergent pattern 

Figure 3. The transcription factor (TF) regulatory landscape in whole-brain neuronal clusters. (A) Schematic 
showing the strategies to assess the cluster similarity based on effector gene and TF profiles. We focused on 
clusters of whole-brain glutamatergic/GABAergic neurons and neuromodulator neurons. Similar pair clusters 
were identified by two strategies: the first strategy was based on hierarchical sister clusters. The second strategy 
was based on population-level statistical analysis, in which we calculated and ranked the distances of every two 
clusters from 39 neurotransmitter-type clusters (‍C

2
39‍) and chose the ones with the lowest 10% distance as similar 

pair clusters. (B) Left: schematic showing the criteria of three patterns: pair clusters that were similar in both TF 
and effector gene profiles as ‘matched pattern’, those pair clusters that were similar in effector gene profiles but 
not in TF profiles as ‘convergent pattern’, and those pair clusters that were similar in TF profiles but not in effector 
gene profiles as ‘divergent pattern’. Right: the plot showing the number of each pattern using two strategies 
in A. The red dashed circle showing the number of cluster pairs with given pattern based on hierarchical sister 
cluster analysis; the black solid circle showing the number of cluster pairs with given pattern based on population-
level statistical analysis. (C–D) Violin plots showing the expression of TFs (yellow) or effector genes (black) in 
glutamatergic and GABAergic similar pair clusters of convergent pattern. (E) The bar plot showing the proportions 
of different patterns for neuronal clusters with neurotransmitter or neuromodulator types. The numbers of each 
pattern were indicated. Fisher′s exact test was used to test the significant association of different patterns, p = 
0.02564, *p < 0.05. (F–G) Violin plots showing the expression of TF profiles (yellow) or effector gene profiles (black) 
in neuronal clusters of divergent pattern.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Hierarchical clustering analysis of whole-brain glutamatergic/GABAegric neurotransmitter-
type neurons based on effector gene and transcription factor (TF) profiles.

Figure supplement 2. The transcription factor (TF) regulatory landscape in whole-brain glutamatergic/GABAergic 
neuronal clusters.

Figure supplement 3. Similar pair clusters of neuromodulator-type neurons.

Figure supplement 4. Divergent pattern of glutamatergic/GABAergic neurotransmitter-type neuronal clusters.

https://doi.org/10.7554/eLife.68224
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(Figure 3—figure supplement 2D-G). Overall, similar pair clusters with either matched or conver-
gent pattern identified by the population-level analysis showed an overlapping but distinct pattern 
with those identified by the hierarchical sister cluster analysis (Figure 3B). This discrepancy was likely 
due to the following facts: (1) In the population-level statistical analysis, we arbitrarily set the lowest 
threshold as a criterion to identify similar pair clusters. Thus, the levels of this threshold could influence 
the production of similar pair clusters. (2) In population-level statistical analysis, each cluster could use 
for multiple times, whereas in hierarchical sister cluster analysis, once a cluster was selected as a pair 
with another cluster, it could not be re-used again. To overcome this discrepancy, we intersected the 
results from hierarchical sister cluster analysis and population-level statistical analysis, and identified 
eight pairs of effector gene-based glutamatergic/GABAergic similar pair clusters, one with matched 
pattern and seven with convergent pattern (Figure 3B).

We further validated these patterns of paired neuronal clusters by subsampling of genes (80% of 
total either TFs or effector genes) and average statistics over 20 times to re-identify similar paired 
clusters based on either TFs or effector genes (Materials and methods). Notably, re-identified paired 
clusters of different patterns completely recapitulated those pairs identified using the population-
level statistical analysis above (Figure 3—figure supplement 2L), indicating the robustness of these 
patterns.

By combining sister cluster analysis and the population-level statistical analysis, we identified one 
paired clusters of ‘matched pattern’, seven paired clusters of ‘convergent pattern’ (Figure 3B). Here 
were some representative cases with the convergent pattern. The first case was a glutamatergic 
pair cluster from different brain regions: tectal glutamatergic Cluster 1 and hindbrain glutamatergic 
Cluster 31 shared effector gene profiles including camk2n1a/stmn4/cbln2b/olfm3a/cd63, but differ-
entially expressed TF profiles, atf5b/bhlhe41/lhx1a and ddit3/cebpb/lef1, respectively (Figure 3C). 
The second case was GABAergic pair cluster from different brain regions: GABAergic clusters in 
the forebrain (Cluster 36) and the sub-OT (Cluster 16) shared effector gene profiles mcl1a/cbln1/
tspan18a/dusp5/ncaldb, but differentially expressed TF profiles, tbr1b/foxg1a/barhl2 and otpa/otp-
b/six6a, respectively (Figure 3D). Consistently, each of the above TF profiles has previously been char-
acterized to participate in the specification of either glutamatergic or GABAergic neurons (Li et al., 
2007; Kala et al., 2009; Talbot et al., 2010; Waite et al., 2011; Achim et al., 2013).

The TF regulatory landscape of neuromodulatory neuron clusters
We further examined neuromodulator-type sister clusters based on either TF or effector gene profiles 
(Figure 3—figure supplement 3A). Using hierarchical sister cluster analysis, 5/8 of neuromodulator-
type sister clusters matched with those defined by TF profiles (‘matched pattern’), 3/8 sister cluster 
were found to be separated in TF-based classification (‘convergent pattern’, Figure 3—figure supple-
ment 3D-G).

Then, we also performed the population-level statistical analysis using all genes or 80% genes 
(subsampling) to compare the landscape of TF and effector gene expression. We found eight pairs 
with matched pattern and one pair with convergent pattern (Figure 3—figure supplement 3H-I). 
Thus, we intersected hierarchical sister cluster analysis and population-level statistical analysis, and 
identified six pairs of similar neuromodulator pair clusters, five with matched pattern, and one with 
convergent pattern (Figure 3—figure supplement 3J-L).

Together with the above results of neuromodulator-type and neurotransmitter types, our analysis 
showed that neuromodulator pairs with similar effector gene profiles predominantly were ‘matched’ 
pattern, whereas neurotransmitter pairs with similar effector gene profiles mainly were ‘conver-
gent’ pattern (Figure 3E). Moreover, we performed global tree measurement using the R package 
‘TreeDist’, and found that the distance between TF-based and effector-based hierarchical tree of 
neuromodulator neurons (Tree distance = 0.38, Figure 3—figure supplement 3A-B) was lower than 
that of glutamatergic/GABAergic neurons (tree distance = 0.71, Figure 3—figure supplement 1B), 
suggesting distinct TF regulatory logic of effector-based phenotypes between neurotransmitter-
type and neuromodulator-type at the global level. The smaller distance for neuromodulator neurons 
was consistent with our conclusion that neuromodulator-type clusters predominantly expressed the 
same TF profiles (‘matched’). The ‘matched’ pattern suggested the generation of similar neuromod-
ulator pairs shared specific TF programs (‘stereotyped programming’), and the ‘convergent’ pattern 
suggested the generation of similar neurotransmitter pairs could be generated by different TF 
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programs (‘flexible programming’). These different strategies may account for the fact that across 
species, neuromodulator types are more conserved, whereas neurotransmitter types are much diverse 
and variable (La Manno et al., 2016; Saunders et al., 2018; Tiklová et al., 2019; Poulin et al., 2020).

Different neuronal clusters exhibit similar TF profiles
On the other hand, in glutamatergic/GABAergic neuronal classification, we surprisingly found that 13 
pairs of sister clusters with similar TF profiles were separated in the effector gene-based classification. 
In other words, different from matched and convergent pairs mentioned above (Figure 3B–D), these 
13 glutamatergic/GABAergic clusters exhibited different effector gene profiles but similar TF profiles, 
here terms as ‘divergent’ pattern (Figure 3—figure supplement 4A). Also, the population-level statis-
tical analysis identified divergent pairs (n = 15, Figure 3—figure supplement 4B) that were largely 
overlapped with those identified by hierarchical sister analysis (n = 10, Figure 3B).

Neurons in each of these 10 divergent paired clusters could be from the same (n = 6) or different 
(n = 4) brain regions (Figure 3—figure supplement 4A). More strikingly, two pairs of neuronal clus-
ters with divergent pattern expressed different neurotransmitters. For examples, sub-tectal glutama-
tergic neurons (cluster 24) and hindbrain GABAergic neurons (cluster 17) shared similar TF profiles 
id2a/pax2a/zfhx4/meis1b, but expressed different effector gene profiles, cpne4a/c1ql4b/slc5a7a and 
gad1b/slc6a1b/slc6a5, respectively (Figure  3F); forebrain glutamatergic neurons (Cluster 30) and 
tectal GABAergic neurons (Cluster 11) shared TF profiles, bhlhe41/bcl11ba/mef2cb, but had differen-
tially expressed effector gene profiles, adcyap1b/syt5b/rprml/gadd45bb, and kcnip1b/cxcl4/plxdc1, 
respectively (Figure 3G). This result illustrated that neurons with different terminal features could also 
express the same TF profiles. Together, our analysis demonstrated the landscape of TFs in whole-
brain-wide neuronal phenotypes in the larval zebrafish brain.

Combinatorial TFs in marking tectal morphological subclasses
Neuronal morphology and effector gene profile are two critical criteria of neuron diversity classifica-
tion (Sugino et al., 2019; Peng et al., 2021). Also, many previous studies have provided the apparent 
links between effector genes and neuron morphology (Whitford et al., 2002, Marcette et al., 2014; 
Delandre et al., 2016; Noblett et al., 2019; Peng et al., 2021). Thus, after we found three patterns 
(‘matched’, ‘convergent’, and ‘divergent’), we wondered if similar patterns present between morpho-
logical subclasses and TFs.

To experimentally verify the relationship between TFs and neuronal phenotypes, we focused on 
morphological subtypes of tectal glutamatergic neurons. Higher-coverage transcriptomes of tectal 
glutamatergic neurons were further achieved by scRNA-seq of sorted tectal glutamatergic neurons in 8 
dpf using Tg (vglut2a:loxp-DsRed-loxp-GFP) fishline (Figure 4A). Canonical correlation analysis (CCA) 
of cells from two independent experiments indicated the reproducibility of the analysis (Figure 4—
figure supplement 1A). Analysis of 3, 883 sorted tectal glutamatergic neurons yielded 11 clusters (n 
= 11, Figure 4A), more than those identified from the whole-brain samples (n = 5, Figure 4—figure 
supplement 1B). The majority of clusters (10/11) were stable using mean/median Jaccard index >0.6 
as cutoff (Figure 4—figure supplement 1D). Each cluster of tectal glutamatergic neurons was identi-
fied by TF marker genes (Figure 4—figure supplement 1E-F, Figure 4—source data 1).

We developed a labeling strategy using three different plasmids to analyze morphological subclasses 
of tectal glutamatergic neurons expressing identified TFs. First, we placed Gal4FF cassette at the 
start-codon of each TF by bacterial artificial chromosome (BAC) recombination technique (Suster 
et al., 2011) and constructed the Gal4FF plasmids for 15 marker TF genes (Figure 4B, Materials and 
methods). Second, we generated vglut2a:CRE BAC plasmid using a similar method. Third, plasmid 
uas:loxp-stop-loxp-tdTomatocaax was used with the first two plasmids to intersectionally label single 
tectal glutamatergic neurons, each expressing one specific TF (Figure 4C). These labeled neurons 
were then used for morphological analysis. We labeled and defined morphological subclasses of tectal 
neurons by injecting all three plasmids into zebrafish embryos at 4–16 cells stage. We observed the 
enormous variability in the morphology of tectal glutamatergic neurons in their more refined struc-
tures. By the limited number of neurons analyzed (n = 574), we were unlikely to define morphological 
subclasses using a global morphological description. Instead, we used the criterion based on major 
morphological features, including stratification, soma position, and projection patterns, to define the 
morphological subclasses in the current study. In addition, similar morphological classification has also 
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been used previously for tectal neurons (Nevin et al., 2010, Robles et al., 2011; DeMarco et al., 
2020). We selected six TF marker genes (en2b, foxb1a, zic1, bhlhe22, zbtb18, and irx1a) for further 
analysis based on two criteria: (1) These TFs are highly expressed and specific to individual tectal 
glutamatergic clusters based on scRNA-seq analysis. (2) Their BAC plasmids could reliably mark partic-
ular morphological subclasses (at least in four animals).

Furthermore, using confocal imaging, we reconstructed a total of 574 tectal neurons (from 263 
zebrafish, Figure 4—source data 2) that expressed one of these six TFs (Figure 4—figure supple-
ment 1G). These neurons were categorized into seven morphological subclasses: bi-stratified (I, n = 
36), mono-stratified (II, n = 71), non-stratified (III, n = 318), necklace-like (IV, n = 76), cross-hemispheric 
(V, n = 15), ascending (VI, n = 18), and descending (VII, n = 40) (Figure 4D).

Whether a specific TF could serve as a marker for a particular morphological subclass was deter-
mined by the criterion that the TF appeared in a given subclass at least four times (from at least four 
fish). Remarkably, all six TFs marked multiple morphological subclasses in a combinatorial manner, 

Figure 4. Combinatorial transcription factors (TFs) in marking tectal morphological subclasses. (A) Left: the schematic showing the procedure of 
collecting single-cell transcriptomes of tectal glutamatergic neurons with fluorescence-activated cell sorting (FACS) using Tg (vglut2a:loxp-DsRed-
loxp-GFP) fishline. Right: the t-distributed stochastic neighbor embedding (t-SNE) plot of 3, 883 cells obtained from Tg (vglut2a:loxp-DsRed-loxp-GFP) 
fishline labelling glutamatergic neurons in the optic tectum showing 11 clusters, each color-coded and marked by a number. (B) Schematic showing 
the designing of the Gal4FF BAC plasmids for six TF marker genes, covering all 11 clusters of tectal glutamatergic neurons shown in A. (C) Schematic 
showing the method for single TF-based labeling of tectal glutamatergic neurons. CRE expressed in glutamatergic neurons was used to excise loxp and 
drive fluorescent tdTomatocaax expression. (D) Representative images of seven subclasses of tectal glutamatergic neurons with distinct morphological 
subclasses using the method described in (B–C). The number of neurons collected for each subclass was shown. Insets depicted the morphological 
characteristics. Neurons with ascending and descending projections were those projecting to the forebrain and hindbrain, respectively. Solid lines 
marked the boundaries between brain regions. Dashed lines marked the boundary of the tectal neuropile. Scale bars: 20 μm. (E) The matrix showing the 
expressions of six TFs in each of seven morphological subclasses. The black squares represented TFs could label particular morphological subclasses, 
and no expression was indicated by white squares.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. The annotation of transcription factors (TFs) expression in each tectal glutamatergic clusters.

Source data 2. Gene labeled morphological analysis of tectal glutamatergic neurons.

Figure supplement 1. Combinatorial transcription factors (TFs) in marking tectal morphological subclasses.

https://doi.org/10.7554/eLife.68224
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while each of seven morphological subclasses was marked by numerous TFs (Figure 4E). For example, 
zic1 highly marked non-stratified and bi-stratified subclasses, and all six TFs marked the non-stratified 
subclass.

In summary, we found that single TF could mark multiple morphological subtypes in the optic 
tectum, and multiple TFs could mark a single morphological subtype. This observation could be 
inferred from ‘convergent pattern’ (same TFs were expressed in different effector-based subtypes) 
and ‘divergent pattern’ (different TFs were expressed in similar effector-based subtypes), respectively. 
However, we could not exclude unknown indirect regulations of morphological subtypes by TFs.

The landscape of post-transcriptional regulators in neuronal clusters 
with different terminal features but similar TF profiles
The above finding that neuronal clusters with different terminal features expressed similar TF profiles 
were likely resulted from non-TF determinants (Figure 3F–G). We then performed GO analysis of 
differentially expressed genes between sister clusters of 10 pairs with different terminal features but 
similar TF profiles (‘divergent pattern’). We surprisingly found that many differentially expressed genes 

Figure 5. The post-transcriptional regulatory landscape in neurons with different terminal features but similar transcription factor (TF) profiles. (A) Dot 
plot showing Gene Ontology (GO) analysis of differentially expressed genes between each pair clusters with divergent pattern. Red highlighted the 
category of post-transcriptional regulators. The number of genes in each category was coded by dot size, p.adjust of each category was color-coded. 
(B) Violin plots showing the expression of genes encoding TFs (yellow), RNA-binding proteins (RBPs) (blue), and effector genes (black) in two pairs of 
neuronal clusters with divergent pattern (7/38 were glutamatergic neurons, 12/16 were GABAergic neurons). (C) 3D pie plot showing the functional 
annotation of differentially expressed RBP genes identified in A. (D) Bar plot showing the number of pattern-specific RBPs per pair in different patterns. 
Each pattern was color-coded. (E) Bar plot showing the effector binding target proportion of pattern-specific RBPs. Each pattern was color-coded. (F) 
Bar plot showing the percentage of one RBP used as differentially expressed genes between pair clusters with different patterns.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Differentially gene expression between sister pair clusters with matched, convergent, and divergent patterns.

Source data 2. The p-value of differential gene expression between sister pair clusters.

Source data 3. Annotation the function of RNA-binding proteins (RBPs).

Source data 4. The binding sites of pattern specific RNA-binding proteins (RBPs).

Source data 5. The combinatorial usage of RNA-binding proteins (RBPs).

Figure supplement 1. The post-transcriptional regulatory landscape in neurons with different terminal features but similar transcription factor (TF) 
profiles.

https://doi.org/10.7554/eLife.68224
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encoded RBPs (Figure  5A). We thus yielded a library of RBP-encoded genes that could differen-
tially mark neurons with different terminal features (Figure 5—source data 1). Here were two exam-
ples: two forebrain glutamatergic neuronal clusters (Clusters 7 and 38) shared the similar expression 
pattern of TF profiles eomesa/neurod1/tbr1b/foxg1a, but had different effector gene profiles and 
RBPs, rprma/stxbp1b/egfl6/khdrbs2/msi2b/rbm5 and nrgna/susp5/fam43b/qkia/larp6a, respectively; 
GABAergic neurons in hindbrain (Cluster 12) and sub-tectal (Cluster 16) shared TF profiles, otpa/bhl-
he41/id2a, but differentially expressed effector genes and RBPs, kctd4/rgs5b/cpne2/eif5a2/celf3a 
and slc6a1b/cplx2l /ndrg2/msi2b/rbfox1/msi2a, respectively (Figure 5B). These RBP-encoded genes 
exhibited wide RNA functions, including capping, splicing, polyadenylation, transport, stability, and 
translation (Figure 5C, Figure 5—source data 3).

Besides, our analysis also yielded a comprehensive list of genes encoding RBPs marking other 
patterns (Figure  5—figure supplement 1A-D, Figure 5—source data 1, Figure 5—source data 
2). We found that some RBPs exhibited differential expression between paired clusters specific to 
one of the above three patterns (Figure 5—figure supplement 1). Also, we found that the number 
of RBPs that were specific to divergent pattern (n = 52 from 10 pairs) was much more than those 
specific to either matched pattern (n = 7 from one pair) or convergent pattern (n = 10 from seven 
pairs, Figure 5—figure supplement 1E-F). Thus, in terms of the number of pattern-specific RBPs 
per pair, RBPs showed the preferential expressions in divergent pairs compared to convergent ones 
(Figure 5D). Note that since there was only one pair of matched pattern, we did not include it in this 
analysis. These pattern-specific RBPs were known to be involved in a wide range of RNA functions, 
including capping, splicing, polyadenylation, transport, stability, and translation (Figure  5—figure 
supplement 1F, Figure 5—source data 3). Thus, in addition to TFs, post-transcriptional regulatory 
factors also play significant roles in determining transcriptome profiles of neuronal classification.

Furthermore, we examined effector gene that were targeted by pattern-specific RBPs using the 
oRNAment database (http://rnabiology.ircm.qc.ca/oRNAment/) to explore a potential causality 
between the divergence of RBPs and the divergence of effector genes (Benoit Bouvrette et  al., 
2020). GO analysis showed that pattern-specific RBPs targeted various molecular categories including 
effector genes, TFs, mRNA processing, metabolism (Figure  5—figure supplement 1H-J, Figure 
5—source data 4). More importantly, divergent pattern-specific RBPs targeted significantly higher 
proportions of effector genes than matched and convergent pattern-specific RBPs (Figure 5E). These 
results suggested the potential causality between RBPs and effector gene profiles in divergent pairs.

Figure 6. Organization of transcriptional and post-transcriptional regulators in the specification of brain-wide 
neuronal clusters. (A) Graphic summary describes the general organization of transcription factors (TFs) and post-
transcriptional regulators in the specification of neuronal clusters at the whole-brain level. Effector genes describe 
the terminal features of whole-brain neuronal classification. Neuronal clusters with similar terminal features (named 
‘sister clusters’) can share TF profiles (‘matched’, left), or exhibit distinct TF profiles (‘convergent’, middle). Besides, 
neuronal clusters with distinct effector gene profiles (terminal features) can share TFs profiles (‘divergent’, right), 
and in each pairs, two neuronal clusters are differentially marked by the expression of RNA-binding proteins 
(RBPs) at the post-transcriptional levels. Moreover, sister clusters with ‘convergent’ and ‘divergent’ patterns are 
glutamatergic/GABAergic neurons, whereas sister clusters with ‘matched’ pattern are neuromodulator-type 
neurons.

https://doi.org/10.7554/eLife.68224
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Interestingly, genes encoding well-known sequence-specific RBP Rbfox1-encoded gene was differ-
entially expressed in multiple neuronal clusters, like 23/25, 27/54, 11/30, 13/24, 12/16, 2/3, and 7/38 
(Figure 5—source data 5). Rbfox1 specifically recognizes UGCAUG motifs, which are often found 
at 5′- and 3′-regions of introns (Yui Jin, 2003; Vuong et al., 2018). Previous studies have elegantly 
revealed the importance of activity-dependent splicing regulator Rbfox1 in the transition from neuro-
progenitors to neurons as well as in the interneuron subtype-specific splicing in the mouse cortex 
(Zhang et al., 2016). Moreover, we calculated the frequency of individual RBPs in marking all sister 
pair clusters with each of three patterns and found that single RBPs were frequently present in multiple 
pair clusters (42.5%, 51/120, Figure 5F), indicating that clusters mostly used RBPs in a combinatorial 
manner.

Thus, our analysis revealed the importance of RBP-encoded genes in specifying diverse neuronal 
phenotypes, and the identification of a comprehensive list of RBP-encoded genes in our study provides 
a valuable resource for future investigation.

Discussion
This study analyzed  ~65,000 single cells from the whole-brain, specific brain regions, neurotrans-
mitter/neuromodulator-defined neuronal populations of the 8 dpf larval zebrafish (Figures 1A, 2B , 
and 4A). Notably, our transcriptome analysis offered a close-to-full coverage of all cells (~100,000) in 
the zebrafish brain, providing multidimensional landscapes of TFs and post-transcriptional regulators 
in vertebrate whole-brain neuron classification (Figure 6).

A significant focus of our analysis is the analysis of sister clusters at the termini of effector gene-
based hierarchical classification (Figure 3A). These sister pair clusters represent the finest molecularly 
defined neuronal subclasses based on effector gene profiles. Because sister clusters of the terminus 
pair with highly similar terminal features, it offers us an opportunity to study the determinants of 
their terminal feature similarity and factors that lead to their slight diversification. Our analysis of the 
expression profiles of regulatory genes in sister clusters including TFs and post-transcriptional regu-
lators (Figure 6) may thus help to elucidate the molecular logic underlying neuronal diversification.

Specifically, our analysis identified three patterns of TFs in specifying neuronal phenotypes, 
‘matched pattern’, ‘convergent pattern’, and ‘divergent pattern’ (Figures 3B and 6A). Glutamatergic/
GABAergic sister clusters with similar terminal features mostly expressed distinct TF profiles (‘conver-
gent pattern’), whereas neuromodulator-type sister clusters largely expressed the same TF profiles 
(‘matched pattern’, Figure 3E). The results indicated that the ‘matched’ pattern supports the notion 
that the same set of TFs plays a crucial role in determining a given profile of neuromodulator-type 
terminal features, whereas the ‘convergent’ pattern suggests that even though TFs are important 
for subclass determination, different TFs could still converge onto the same transcriptome pheno-
type. Combined with earlier findings of extensive phenotypic convergence of distinct neuron types in 
worms and flies (Gendrel et al., 2016; Konstantinides et al., 2018; Hobert and Kratsios, 2019), our 
findings in zebrafish strongly suggest that phenotypic convergence is highly conserved from inverte-
brates to vertebrates.

More interestingly, we identified 10 terminus clusters exhibiting different transcriptome patterns 
but similar TF profiles (‘divergent pattern’). Thus, these clusters are likely determined by factors 
other than TFs (Figure 3F–G). Our further analyses revealed the potential importance of the expres-
sion pattern of post-transcriptional regulators, particularly RBPs, in marking these neuron clusters 
(Figure 5A). For instance, upf3a (the marker distinguishing subclasses of the pairs 23/25, 12/16, and 
60/62, Figure 5—source data 5) is known to regulate mRNA stability via nonsense-mediated RNA 
decay (Shum et al., 2016), rbfox1/rbfox3a (the marker distinguishing subclasses of the pair 27/54, 
13/24, 11/30, 23/25, 12/16, 2/3, and 7/38, Figure 5—source data 5) could mediate cell-type-specific 
splicing in cortical interneurons, assembly of axon initial segment, and synaptic transmission (Jacko 
et al., 2018; Vuong et al., 2018; Wamsley et al., 2018). In addition to post-transcriptional regulators, 
other factors could also be expected to involve neuron diversification, such as epigenetic regulators, 
translational regulators, protein stability, which are interesting to explore in future studies. Together, 
our findings suggest that combinatorial TFs and post-transcriptional regulators could work in concert 
to determine neuronal types in the larval zebrafish brain (Figure 6).

Regional identity is an essential factor for classifying brain cells. In the larval zebrafish brain, 
our results showed that neurons, qRG, and neuronal progenitors exhibited prominent regional 
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characteristics (Figure 1C). In the hierarchical clustering and population-level statistical analysis, similar 
pair clusters from the same region or different regions occur in nearly equal probabilities (Figure 3—
figure supplement 2A). Considering the fact that neuronal phenotypes from the same region could 
exhibit common regional identities, it was surprising to observe that such a higher proportion of 
sister subclasses with similar transcriptomic phenotypes could arise from two different brain regions. 
Putting this finding into the context of neuron-type evolution, it raises the possibility that different 
brain regions independently give rise to similar neurotransmitter phenotypes through different TF 
programs. Alternatively, as brain regions are functionally diversified during the evolution, these highly 
similar neuronal clusters of different brain regions possibly derive from ancient building blocks, which 
become divergent through the evolutionary acquisition of different combinatorial TF codes.

scRNA-seq resolves the transcriptomes of brain cells at a given time point (Erhard et al., 2019). 
On the other hand, gene expression is highly dynamic and sensitive to spontaneous or stimulus-
evoked neuronal activities (West et al., 2002; Kim et al., 2010; Yap and Greenberg, 2018), circadian 
rhythm (Panda et al., 2002, Takahashi, 2017), as well as other extrinsic and intrinsic factors. Thus, 
gene profiles of individual neuron subclasses could represent dynamic cellular states at a given time 
rather than a static subclass (Wu et al., 2016, Ofengeim et al., 2017). This issue could be resolved 
by comparing transcriptome profiles of cell samples from different animals or from different develop-
mental stages. In this study, the 68 cell subclasses that we have identified for the larval zebrafish (8 dpf) 
were confirmed in another fish brain of the same age and were largely recapitulated by cell subclasses 
identified from the juvenile zebrafish (23–25 dpf, Figure 1E and Figure 1—figure supplement 2F; 
Raj et  al., 2018). Thus, transcriptome-defined subclasses in our study indeed largely represent 
stable neuronal subclasses. An alternative demonstration of stable neuronal subclasses is to perform 
genetic labeling of the brain using promoters of marker genes for transcriptome-defined subclasses. 
Reproducible labeling of the same morphological subclasses, as demonstrated in our morphological 
studies of tectal neurons expressing specific TFs, also supports that we have identified stable neuronal 
subclasses (Figure 4D–E). Identification of neuronal subclasses in the present study paves the way 
for understanding neuronal diversity. Future studies of temporal changes of single-cell transcriptome 
profiles in the whole brain could provide important insights into the dynamic changes of the brain.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers  � Additional information

Strain, strain 
background (Danio 
rerio) Wild type Dr William AB

Strain, strain 
background (Danio 
rerio) gad1b:EGFP Wang et al., 2020 ZDB-TGCONSTRCT-210507–9 Tg (gad1b:EGFP)

Strain, strain 
background (Danio 
rerio) vglut2a:loxp-DsRed:loxp-GFP Satou et al., 2012 ZDB-FISH-150901–9050 Tg (vglut2a:loxp-DsRed:loxp-GFP)

Strain, strain 
background (Danio 
rerio) glyT2:GFP McLean et al., 2007 ZDB-ALT-070514–1 Tg (glyT2:GFP)

Strain, strain 
background (Danio 
rerio) vmat2:GFP Wen et al., 2008 ZDB-PUB-080102–11 Tg (ETvmat2:GFP)

Strain, strain 
background (Danio 
rerio) elavl3: H2B-GCaMP6s Freeman et al., 2014 ZDB-TGCONSTRCT-190827–1 Tg (elavl3: H2B-GCaMP6s)

Recombinant DNA 
reagent

pTol2-10xUAS:loxp-stop-loxp-
tdtomato This paper

We made this plasmid by ligated 
three PCR fragments: loxp-stop-
loxp, tdTomatocaax and 10× uas 
backbone
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Reagent type 
(species) or resource Designation Source or reference Identifiers  � Additional information

Recombinant DNA 
reagent vglut2a:cre This paper

BAC plasmid use BAC (CH211-
111D5)

Recombinant DNA 
reagent zic1:gal4FF This paper

BAC plasmid use BAC (CH211-
95F4)

Recombinant DNA 
reagent bhlhe22:gal4FF This paper

BAC plasmid use BAC (CH211-
277b21)

Recombinant DNA 
reagent en2b:gal4FF This paper

BAC plasmid use BAC (DKEY-
265A7)

Recombinant DNA 
reagent foxb1a:gal4FF This paper

BAC plasmid use BAC (CH211-
2C17R)

Recombinant DNA 
reagent zbtb18:gal4FF This paper

BAC plasmid use BAC (CH211-
221N23)

Recombinant DNA 
reagent irx1a:gal4FF This paper

BAC plasmid use BAC (CH73-
211K12)

Commercial assay 
or kit

Single Cell 3' Library and Gel 
Bead kit v2 Chip kit 10× Genomics 120237 scRNA-seq

Commercial assay 
or kit

dsDNA High Sensitivity Assay 
Kit AATI DNF-474–0500 scRNA-seq

Commercial assay 
or kit

ClonExpressMultiS One Step 
Cloning Kit Vazyme Cat#C112-01/02 Prepare recombinant plasmid

Chemical compound, 
drug papain

Worthington Biochemical 
Corporation LS003126

Prepare papain solution to 
dissociation cells

Chemical compound, 
drug DNase I Sigma Cat#DN25

Prepare papain solution to 
dissociate cells

Chemical compound, 
drug L-cysteine Sigma Cat#C6852

Prepare papain solution to 
dissociate cells

Chemical compound, 
drug DMEM/F12 Invitrogen Cat#11330032

Prepare papain solution to 
dissociate cells

Chemical compound, 
drug 45% glucose Gibco Cat#04196545SB

Prepare wash buffer during 
dissociation

Chemical compound, 
drug HEPES Sigma Cat#H4034

Prepare wash buffer during 
dissociation

Chemical compound, 
drug FBS Gibco Cat#10270106

Prepare wash buffer during 
dissociation

Chemical compound, 
drug DPBS Invitrogen Cat#14190–144

Prepare wash buffer during 
dissociation

Chemical compound, 
drug MS222 Sigma Cat#A5040 Anaesthesia

Chemical compound, 
drug Low melting agarose Sigma Cat#A0701 Embedded fish

Software, algorithm R 3.5.1 R-project https://www.r-project.org/ Data analysis

Software, algorithm
Cell Ranger Single Cell 
Software Suite (v2.1.0) 10× Genomics

https://support.10xgenomics.​
com scRNA-seq data analysis

Software, algorithm Seurat
https://satijalab.org/​
seurat/ http://satijalab.org/seurat/ scRNA-seq data analysis

Software, algorithm bioDist
https://www.bioconductor.​
org

https://www.bioconductor.org/​
packages/release/bioc/html/​
bioDist.html

 Continued on next page
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Reagent type 
(species) or resource Designation Source or reference Identifiers  � Additional information

Software, algorithm scclusteval R-package, Jaccard index

https://​github.​com/​
crazyhottommy/​scclusteval; 
Tang et al., 2020

Jaccard index could be used to 
evaluate the robustness of clusters

Software, algorithm TreeDist
R-package, calculate two 
tree similarity

https://​github.​com/​ms609/​
TreeDist; Smith, 2021 

Calculate tree distance

Software, algorithm FIJI PMID:22743772 http://fiji.sc/ Analysis image

Software, algorithm GraphPad Prism GraphPad Software https://www.graphpad.com Data analysis

Software, algorithm FV10-ASW 4.0 Viewer Olympus
https://www.olympus-global.​
com Analysis image

Software, algorithm clusterProfiler R-package

https://bioconductor.org/​
packages/release/bioc/html/​
clusterProfiler.html GO analysis

Software, algorithm NNLS

R-package, non-negative 
least squares solver from 
Lawson and Hanson

https://​github.​com/​rdeits/​
NNLS.​jl; Deits, 2021 Compare correlation of clusters

 Continued

Animal maintenance and transgenic lines
For all experiments in this study, zebrafish were maintained, mated, and raised at 28°C according 
to standard protocols. Animals were staged according to dpf. Animal procedures performed in this 
study were approved by the Animal Use Committee of Institute of Neuroscience, Chinese Academy 
of Sciences (NA-045–2019).

Transgenic lines used in this study include: Tg (glyT2:GFP) (McLean et al., 2007), Tg (vglut2a: loxp-
DsRed-loxp-GFP) (Satou et al., 2012), Tg (Etvmat2:GFP) (Wen et al., 2008), Tg (gad1b:EGFP) (Wang 
et al., 2020).

Single-cell sample preparation
Whole-brain and brain region identified cell populations
Wild-type fish were processed for 10× Genomics single-cell transcriptome sequencing. Whole brains 
or different brain regions (Fore, OT, Hind, and sub-OT) were dissected as anatomical structures 
(Figure 1B, Figure 1—figure supplement 1A). Tissues were dissociated with 300 μL papain (28 units/
mL, Worthington) in papain solution (1% DNase, 12 mg/mL L-cysteine in DMEM/F12), incubated at 
37°C for 15 min with proper mix methods (Yu and He, 2019). Dissociated cells were washed twice 
with washing buffer (100 mL: 650 μL 45% glucose, 500 μL 1 M HEPES and 5 mL FBS into 93.85 mL 1× 
DPBS, sterilized with a 0.22 μm pore size filter), and sterilized with 40 μm cell strainers (BD Falcon) into 
300–400 μL washing buffer.

Whole-brain neuromodulator or tectal glutamatergic neurons
For the transgenic fishlines, brains were dissected and dissociated as above; the cell suspension was 
used to sort cells with high fluorescence intensity with flow cytometry (Moflo XDP, Beckman Coulter). 
The interesting cells were transferred to washing buffer. In this paper, we used Tg (ETvmat2:GFP) 
transgenic fishlines to acquire neuromodulator-defined cell populations; Tg (vglut2a: loxp-DsRed-
loxp-GFP) was used to collect glutamatergic neurons. Tg (ETvmat2:GFP) could label most monoami-
nergic neurons, including DA neurons, 5-HT neurons, and NE neurons (Figure 2A, Figure 2—figure 
supplement 1B; Wen et al., 2008).

scRNA-seq on 10× Genomics Chromium Platform
All sampling was carried out with 10× Genomics Chromium Single Cell Kit (Version 2): suspensions 
prepared as described above were diluted to concentrations 300–1000 cells/mL with washing buffer, 
then added 10× Chromium RT mix to achieve loading target cell numbers 13,000. Downstream cDNA 

https://doi.org/10.7554/eLife.68224
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https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
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synthesis (14 PCR cycles), library preparation, and sequencing were carried out according to manufac-
turer’s instructions (https://www.10xgenomics.com/solutions/single-cell/).

Data analysis of scRNA-seq
Bioinformatics processing of raw reads
Sequencing data (FASTQ files) were converted to matrices of expression counts using the Cell 
Ranger software (Version 2.0.1) provided by 10× Genomics. Transcriptome libraries were mapped to 
a zebrafish reference built from a custom GTF file and the zebrafish GRCz11 (Ensemble release-96) 
genome assembly. For each sample, cells with less than 600 detected molecules (UMIs), or less than 
1.2-fold molecule to gene ratio, and genes detected in fewer than 20 cells or more than 60% of all 
cells were excluded for the following analysis.

Cell clustering analysis of cells from the whole brain
After filtering, the combined gene expression matrix of whole brain and four major brain region 
samples were combined (using Cellranger aggr pipeline) and loaded into Seurat package (Version 
2.3.4) in R (Version 3.4.3) for the following analysis as described in tutorials (http://satijalab.org/​
seurat/). In brief, digital gene expression matrices were column-normalized and log-transformed. Cells 
with fewer than 500 expressed genes, greater than 5% mitochondrial content, very high numbers of 
UMIs and gene counts that were outliers of a normal distribution (likely doublets/multiplets) were 
removed from further analysis. Combined all samples together, we got 45,746 cells, which included 
four whole-brain samples, four specific brain regions (n = 2 each) including the Fore, OT, Hind, and 
the sub-OT; 1402 variable genes were selected for principal component analysis (PCA) by binning the 
average expression of all genes into 300 evenly sized groups, and calculating the median dispersion in 
each bin (parameters for MeanVarPlot function: ​x.​low.​cutoff = 0.0125, ​x.​high.​cutoff = 8, y.cutoff = 0.5). 
The top 100 principal components (PCs) were used for the first round of clustering with the Louvain 
modularity algorithm (FindClusters function, resolution = 2.5), which generated 68 distinct clusters 
(Figure 1A). Marker genes for each cluster were calculated using FindAllMarkers function in Seurat 
(parameters: ​min.​pct = 0.1, ​min.​diff.​pct = 0.25).

Clustering analysis of neuromodulator-defined cell populations
After filtering as above and selected all cells with neuromodulators marker gene expression (vmat2+ 
monoaminergic neurons: th+/tph2+/th2+/dbh+, Figure  2—figure supplement 1C, and Figure 2—
source data 1), variable genes (n = 2,120) were selected for PCA. The top 46 PCs were used for the 
first round of clustering with the Louvain modularity algorithm (FindClusters function, resolution = 
0.6). In total, 5398 cells obtained from Tg (ETvmat2:GFP) fishline expressed monoaminergic neuro-
modulators, showing 22 clusters (Figure 2B). Marker genes for each cluster were calculated using 
FindAllMarkers function in Seurat (parameters: ​min.​pct = 0.1, ​min.​diff.​pct = 0.25).

Clustering analysis of glutamatergic neurotransmitter-type cell populations
After filtering as above and selected all cells with tectal glutamatergic marker gene expression 
(vglut2a, mab21l2, tubb5, and tfap2a, Figure 4—figure supplement 1C), we obtained 3883 cells 
from optic tectum with Tg (vglut2a:loxp-DsRed-loxp-GFP) fishline expression tectal glutamatergic 
neurons, showing 11 clusters using 1276 variable genes and 37 PCs (Figure 4A). Marker genes for 
each cluster were calculated using FindAllMarkers function in Seurat (parameters: ​min.​pct = 0.1, ​min.​
diff.​pct = 0.25).

Jaccard similarity index
To evaluate the stability of each cluster, we performed R package ‘scclusteval’, in which we re-sam-
pled a subset of the cells (80%) from the population and repeated clustering, and then used the 
Jaccard index to evaluate cluster similarity before and after re-clustering. If a cluster is robust and 
stable, random subsampling and re-clustering will keep the cell identities within the same cluster. 
After repeating the re-clustering 20 times, we used the mean/median of the Jaccard index as the 
metric to evaluate the stability of the clusters (Tang et al., 2020). The distribution of the Jaccard index 
across subsamples measures the robustness of the cluster. Clusters with a mean/median stability score 

https://doi.org/10.7554/eLife.68224
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less than 0.6 should be considered unstable (Zumel, 2014). Here, we used JaccardRainCloudPlot to 
visualize the Jaccard index and found most clusters of whole brain (Figure 1—figure supplement 1E), 
vmat2+ neuromodulator (Figure  2—figure supplement 1A), and tectal glutamatergic (Figure  4—
figure supplement 1D) were stable.

Identification of brain region markers
To identify potential brain region-specific markers that exist in all cell types, clusters were assigned 
when most of the cells in a cluster intermingle with cells from one particular brain region (Figure 1—
figure supplement 2B). Then, we defined differentially expressed genes shared by all cell types 
(vglut+, glutamatergic neurons; gad+, GABAergic neurons; pcna+, neuroprogenitors; cx43+, radial 
astrocytes) to represent the targeted brain region-specific markers. We separated each cell type in 
four different brain regions as individual samples, FindAllMarkers function in Seurat was used to iden-
tify the differentially expressed markers of a given cell type. We listed these brain-region specific 
markers in Figure 1C, and these genes exhibited specific expression pattern in all cell types of partic-
ular brain region (Figure 1D). Furthermore, these brain region-specific genes were used to identify the 
regional origins of each cell clusters. Only clusters with over 5% of cells expressing the marker genes 
or with averaged UMI of genes-expressing cells over 2 were assigned regional identities (Figure 1—
source data 3).

The regional distribution of whole-brain neurotransmitter-type neurons
According to the marker genes that are specific to primary neurotransmitter phenotypes, including 
slc17a6b (glutamatergic neurons), gad1b (GABAergic neurons), and slc6a5 (glycinergic neurons), we 
identified subsets of neurons with different neurotransmitter type as clusters with over 5% of cells 
expressing the marker genes or with averaged UMI of genes-expressing cells over 2 (Figure 1—
source data 3). We found that the forebrain was predominantly populated by glutamatergic neurons, 
whereas glycinergic neurons mainly resided in the hindbrain (Figure 1—figure supplement 2C-D). 
Live image with fishline Tg (glyT2:GFP), Tg (vglut2a: loxp-DsRed-loxp-GFP), and Tg (gad1b:EGFP) 
support the results above (Figure 1—figure supplement 2E).

Annotation of each cluster in neuromodulator-type neurons
To assign brain region identity for each neuromodulator-type neurons, we used markers dlx5a, 
otpa, dlx2a, barhl2 for sub-OT, en2a for OT, mab21l2 for midbrain and hindbrain, and phox2bb, 
hoxb3a, mafba, and efnb2a for hindbrain (Figure 2—figure supplement 1D). As for the subtype of 
neuromodulator-type neurons, we used markers th for DA neurons, tph2 for 5-HT neurons, dbh for 
NE neurons, and slc5a7a, chata, slc18a3a as markers of ChAT neurons (Figure 2—figure supplement 
1C). And defined clusters with over 5% of cells expressing the marker genes or with averaged UMI of 
genes-expressing cells over 2 as a threshold for neurons with their identities (Figure 2—source data 
1). In addition, we used markers gad1b, gad2 for GABAergic and vglut1, vglut2a, vglut2b, vglut3 for 
glutamatergic (Figure 2C) as a method to assign co-expression pattern of neurotransmitter for each 
neuromodulator-type neurons.

Comparison of the single-cell transcriptome between larval and juvenile 
zebrafish
The NNLS was applied to compare our data (8 dpf) with juvenile zebrafish (23–25 dpf, GSE105010). 
Top 20 (listed in Figure 1—source data 4) marker genes defined in our data that are also highly vari-
able genes in juvenile data were used for decomposition. Decomposition was performed on mean 
expression values by averaging our dataset or by averaging other single-cell datasets using cluster 
assignments provided by the authors. NNLS was implemented using the ‘nnls’ package in R (Version 
3.4.3). The 68 clusters we identified exhibited a high overlap with their counterparts in the juvenile 
zebrafish brain. Meanwhile, we also found clusters with specific regional origins and cell types exhib-
ited high correlation with their juvenile counterparts (Figure 1E and Figure 1—figure supplement 
2F).

https://doi.org/10.7554/eLife.68224
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Hierarchical clustering analysis based on effector gene and TF profiles
The effector genes (n = 1099) in highly variable genes (n = 1402) were selected for the clustering 
analysis of whole-brain clusters, and mean expression value of each gene was calculated for each 
cluster. The distance matrix was defined as (1 − Pearson correlation coefficient between clusters)/2. 
Hclust function (clustering method: ward.D) implemented in R (Version 3.4.3) was applied for the 
hierarchically clustering. Six major brain cell types were identified using height = 0.42 as cutoff (shown 
with different color in Figure 1A and F). For each cell type, pan-enriched genes were identified using 
FindAllMarkers function in Seurat (parameter: ​min.​pct = 0.1, ​min.​diff.​pct = 0.25). We identified these 
six major cell type as: branch Ⅰ (cerebellum cells and habenula cells), branch Ⅱa (glutamatergic 
neurons), branch Ⅱb (inhibitory neurons), branch Ⅲ (neuroprogenitors), branch Ⅳ (radial astrocytes), 
and branch Ⅴ (others: oligodendrocytes, microglia, and endothelia cells) according to marker genes 
of each branch (Figure 1—source data 5, Figure 1F).

Besides, we also selected 283 TFs in variable genes (n = 1402) to do hierarchical clustering analysis 
as above (Figure 3—figure supplements 1B and 2A). Meanwhile, we performed hierarchical analysis 
for vmat2+ neuromodulator neurons based on effectors (n = 1783) and TFs (n = 319) in variable genes 
(Figure 3—figure supplement 3A-B).

Moreover, R package ‘pvclust’ were used to assess the uncertainty in hierarchical clustering by 
performing bootstrap analysis of clustering (Figure  3—figure supplement 1A). Groups strongly 
supported with AU (approximately unbiased) p-value > 0.9 were highlighted.

Identification the similarity of pair clusters using two strategies
Hierarchical sister clusters analysis
Before analysis, we compare the similarity of tree based on effector gene and TF profiles with R package 
‘TreeDist’. In glutamatergic/GABAergic neurons, these two tree shown different organization, with 
only one matching node (node 13, Clusters 9 and 61, tree distance = 0.7127991, Figure 3—figure 
supplement 1B); while in neuromodulator neurons, these two tree shown much similar organization, 
with eight matching nodes (tree distance = 0.3766735, Figure 3—figure supplement 3A-B).

Sister clusters in the terminus of tree indicate pair cluster with most similar gene expression, we 
focus on 39 glutamatergic (IIa) and inhibitory (IIb) neurons and identified 11 pairs of sister clusters 
that exhibited high similarity in effector gene profiles and 14 sister clusters with similar TF expres-
sion (Figure  3—figure supplement 2A). And for vmat2+ neuromodulator neurons, we identified 
eight sister clusters in the terminus branches of both effector-based hierarchy tree and TF-based tree 
(Figure 3—figure supplement 3C).

Population-level statistical analysis
To compare the landscape of TF and effector gene expression accounting for the full spectrum of cell 
types rather than just the most similar sister clusters, we also performed population-level statistical 
analysis. First, we calculate any distance of two clusters that were randomly picked from 39 gluta-
matergic/GABAergic neuronal clusters (‍C

2
39‍). If the distance is within the lowest 10% population of 

all distances containing either of two randomly selected clusters, we defined it a similar pair cluster; 
while the distance is within the top 80% population of all distances containing either of two randomly 
selected clusters, we defined it as a dissimilar pair (Figure 3A). Then we performed these analyses on 
both effector gene profiles and TFs, and defined those pair clusters similar in both effector-based and 
TF-based tree as ‘matched pattern’; those pair clusters similar in effector-gene profiles but not TFs 
as ‘convergent pattern’, and those pair clusters similar in TF profiles but not effector-gene profiles as 
‘divergent pattern’ (Figure 3B). In matched pattern, the distance of pair cluster was the lowest distance 
in both effector gene-based (white) and TFs-based (gray) distances (Figure 3—figure supplement 
2D). In convergent pattern, the distance of pair cluster was the lowest distance in effector gene-based 
(white) distances, but not the lowest distance in TFs-based (gray) distances (Figure 3—figure supple-
ment 2F). In divergent pattern, the distance of pair cluster was the lowest distance in TFs-based 
(gray) distance, but not the lowest distance in effector gene-based (white) distances (Figure 3—figure 
supplement 4B).

Moreover, we performed population-level statistical analysis with vmat2+ neuromodulator neurons, 
and found nine pairs with matched pattern which showing the lowest distance in both TF and effector 

https://doi.org/10.7554/eLife.68224
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gene-based distances; two pairs with convergent pattern which showing the lowest distance in 
effector gene-based distance, but not in TF-based distance (Figure 3—figure supplement 3H).

However, this analysis is subject to the intrinsic statistics of TF and effector gene expression, as 
well as the sensitivity of scRNA-seq method. Thus, we intersected the results from hierarchical sister 
cluster and population-level statistical analysis to identify pairs with each patterns (Figure 3B and 
Figure 3—figure supplement 3J).

Subsampling of genes in population-level statistical analysis
To test the robustness of three patterns based on distance measures, we subsampling 80% gene 
inputs in population-level statistical analysis. First, we random subsampled 80% effector genes/TFs, 
calculated their distance defined as (1 − Pearson correlation coefficient between clusters)/2. Then 
average statistics over 20 times subsampling calculations and performed population-level statis-
tical analysis as above. These re-identified pairs completely recapitulated those identified using the 
population-level statistical analysis based on total genes, suggesting the robustness of three patterns 
in glutamatergic/GABAergic neurons (Figure 3—figure supplement 2H-K). All pairs re-identified are 
consistent with pairs with all genes (Figure 3—figure supplement 2L). Besides, 8 out of 12 re-iden-
tified neuromodulator-type pairs with matched pattern, 1 out of 3 re-identified pairs with convergent 
pattern were consistent with those identified using the population-level statistical analysis based on 
total genes (Figure 3—figure supplement 3I).

Moreover, we quantified the distance of two similar trees that was exemplified by TF-based or 
effector gene-based clusters with or without subsampling of 80% genes, and the result showed that 
the tree distances of TF-based or effector gene-based clusters before and after subsampling were only 
0.20 (TF-based) and 0.14 (effector gene-based), respectively (Figure 3—figure supplement 2H-K). 
These distances are smaller than the distance between TF and effector-gene profiles (0.7127991, 
Figure 3—figure supplement 1B). All above results indicated the overall distinction of the landscape 
of TF-based and effector gene-based clusters.

Comparison of two rounds of tectal glutamatergic transcriptome data
CCA in Seurat was used to test the reproducibility of two rounds of tectal glutamatergic transcriptome 
data. Two rounds of transcriptome data were intermingled with each other in tSNE plot showing a 
better performance of two parallel transcriptome data (Figure 4—figure supplement 1A).

Sorted tectal glutamatergic transcriptome data yielded more clusters
The NNLS was applied to compare the transcriptome data from sorted tectal glutamatergic neurons 
and the subset of these neurons from whole brain. The top 20 marker genes defined in sorted sample 
which shared in whole-brain sample were used for decomposition. Decomposition was performed on 
mean expression values by averaging our dataset. NNLS was implemented using the ‘nnls’ package 
in R (Version 3.4.3). Sorted samples yield more clusters than whole-brain samples. Besides, sorted 
sample clusters exhibited diversity with their counterparts in the whole-brain sample (Figure  4—
figure supplement 1B).

Differentiation expression of genes encoding RBP between paired clusters
For each paired clusters, differential expression genes were identified using FindMarkers function 
in Seurat (Parameter: ​min.​pct = 0.1, ​min.​diff.​pct = 0.25). Then we mapped the expression of genes 
encoding RBP within each paired clusters in different patterns (matched, convergent, and divergent 
patterns, Figure 5—source data 1, Figure 5—figure supplement 1B-D). Comparing the RBPs used 
in each pattern, we identified pattern-specific RBPs (Figure 1—figure supplement 1E-F).

Searching the binding sites of pattern-specific RBPs
We take advantage of the oRNAment database (Benoit Bouvrette et al., 2020) to search the puta-
tive target sites of RBPs. We only found three matched pattern-specific RBPs (celf1, nova1, pum1), 
three convergent pattern-specific RBPs (msi2a, taf15, tia1), 18 divergent pattern-specific RBPs (eif4a2, 
elavl1, hnrnpa1b, igf2bp3, hnrnpl2, mbnl2, mbnl3, pcbp4, raly, rbm25b, rbm28, sart3, sf3b4, sfpq, 
snrnp70, snrpa1, taf13, u2af2b) in the database. Then, we searched the putative binding sites of these 
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RBPs use score > 0.5 as a cutoff (matched: 2987 binding sites; convergent: 2755 binding sites; diver-
gent: 2856 binding sites, Figure 5—source data 4).

Gene ontology
R package ‘clusterProfiler’ was used to analyze and visualize function profile of gene and gene clusters 
(Yu et al., 2012). Bioconductor annotation packages ​org.​Dr.​eg.​db were imported for genome-wide 
annotation of mapping Entrez gene identifiers or ORF identifiers for zebrafish. We performed GO 
analysis on 1402 variable genes of whole-brain and 2120 variable genes of vmat2+ neuromodulator-
type neurons, and found most genes belong to effector genes, including receptors, neuropeptide, ion 
channel, and so on (Figure 1—figure supplement 2G).

We performed GO analysis on differential expression genes between sister pair clusters with 
different patterns (convergent and divergent), and found these genes belong to TFs, effectors, and 
genes encoding RBP (Figure 5A, Figure 5—figure supplement 1A).

Besides, we performed GO analysis of binding target sites of pattern-specific RBPs, showing the 
TFs, effectors, mRNA processing are the major targets in these RBPs (Figure 5—figure supplement 
1H-J). And found the percentage of effectors in all binding sites of divergent pattern were higher 
than matched and convergent pattern (matched: 5%; convergent: 3.8%, divergent 7.6%, Figure 5E).

Morphologies analysis of tectal glutamatergic neurons
Plasmids
To trace the morphology of tectal glutamatergic neurons, we designed three plasmids (Figure 4B–C). 
In the first plasmid, the Gal4FF cassette was placed at the start-codon site using a BAC recombination 
technique (Suster et al., 2011). Using this method, we created the Gal4FF BAC plasmids for 15 TF 
marker genes covering all 11 clusters of tectal glutamatergic neurons. Considering the promoter and 
other regulatory elements of higher expression genes may not be powerful to drive BAC plasmid 
expression, we selected six of them for their better performance in labeling tectal glutamatergic 
neuron morphologies based on two criterions: (1) These TFs are highly expressed and specific to 
individual tectal glutamatergic clusters based on scRNA-seq analysis. (2) Their BAC plasmids could 
reliably mark particular morphological subclasses (at least in four animals). The second BAC plasmid 
vglut2a:CRE was constructed using similar method with BAC (CH211-111D5). The CRE cassette 
was placed at the start-codon site of vglut2a (CH211-111D5) using BAC recombination technique. 
The third plasmid uas:loxp-stop-loxp-tdTomatocaax was constructed with the ClonExpressMultiS 
One Step Cloning Kit (Vazyme, C112-01/02) according to the standard protocol. We ligated three 
PCR fragments: loxp-stop-loxp, tdTomatocaax, and 10× uas backbone (Figure 4C). With these tree 
plasmids, vglut2a promoter-driven Cre-mediated excision, uas-Gal4 system activate tdTomatocaax 
expression as Figure 4D shown.

Imaging
Embryos at 8 dpf were used for imaging. The fish were anesthetized with 0.04%  MS222 (Sigma, 
A5040) and embedded in 1% agarose (Sigma, A0701) on imaging dish. Imaging were performed 
on Olympus FV1200 confocal using 30× oil-immersion objectives (Olympus, NA = 1.2). The image 
data were analysis with Image J (https://imagej.net/Simple_Neurite_Tracer). In total, we collected 574 
single neuronal morphologies from 263 distinct fish (Figure 4—source data 1 and Figure 4—figure 
supplement 1G). All neurons were categorized into seven morphological subclasses: bi-stratified 
(I, n = 36), mono-stratified (II, n = 71), non-stratified (III, n = 318), necklace-like (IV, n = 76), cross-
hemispheric (V, n = 15), ascending (VI, n = 18), and descending (VII, n = 40) (Figure 4D).

The analysis of TFs and tectal morphological subclasses
To calculate the expression of six TFs (en2b, irx1a, zbtb18, foxb1a, bhlhe22, and zic1) with respect to 
11 tectal glutamatergic clusters, we created a binary expression matrix consisting of the gene expres-
sion (ON: with expression; OFF: without expression) and cluster identity (Li et al., 2017). We marked 
TFs that have expression in each of 11 clusters with cutoff of 5% cells or have averaged UMI of each 
TF-expressed cell UMI = 2 as ON, shown with black box. The rests were marked as OFF, shown with 
white box (Figure 4—source data 1 and Figure 4—figure supplement 1E-F). All six TFs marked 
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multiple transcriptome-based subclasses in a combinatorial manner (Figure 4—figure supplement 
1F).

To calculate the expression of six TFs with respect to seven tectal glutamatergic morphological 
subclasses, we also created a binary expression matrix consisting of the gene expression (ON: with 
expression; OFF: without expression) and morphological identity. We marked genes labeling one 
morphological subclass at least four times in individual four fish as ON, shown with black box. The 
rests were marked as OFF, shown with white box. All six TFs marked multiple morphological subclasses 
in a combinatorial manner (Figure 4E).

These two binary matrices were used to test the correlation between transcriptome-based clusters 
and morphological subclasses of tectal glutamatergic neurons with NNLS. In total, 6 out of 11 tran-
scriptomic clusters exhibited strong correlation with at least one morphological subclass (Figure 4—
figure supplement 1H).

Data availability
scRNA-seq data has been deposited on BIG (CRA002361): https://ngdc.cncb.ac.cn/gsa/browse/​
CRA002361.

Code availability
All the code for the data analysis is available.
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