
Mingon Kang is an assistant professor in the Department of Computer Science at the University of Nevada, Las Vegas. His research interests include
machine learning, deep learning, and bioinformatics.
Euiseong Ko is a PhD candidate in the Department of Computer Science at the University of Nevada, Las Vegas. His research interests include deep learning
in bioinformatics.
Tesfaye B. Mersha is an associate professor at the Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati. His
research combines quantitative, bioinformatics, ancestry and functional genomics to unravel genetic and non-genetic contributions to complex diseases
and racial disparities in human populations, particularly asthma and asthma-related allergic disorders.
Submitted: 27 July 2021; Received (in revised form): 30 September 2021

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

1

Briefings in Bioinformatics, 23(1), 2022, 1–16

https://doi.org/10.1093/bib/bbab454
Review

A roadmap for multi-omics data integration using
deep learning

Mingon Kang , Euiseong Ko and Tesfaye B. Mersha
Corresponding author: Tesfaye B. Mersha, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati,
OH, USA. E-mail: tesfaye.mersha@cchmc.org

Abstract

High-throughput next-generation sequencing now makes it possible to generate a vast amount of multi-omics data for
various applications. These data have revolutionized biomedical research by providing a more comprehensive
understanding of the biological systems and molecular mechanisms of disease development. Recently, deep learning (DL)
algorithms have become one of the most promising methods in multi-omics data analysis, due to their predictive
performance and capability of capturing nonlinear and hierarchical features. While integrating and translating multi-omics
data into useful functional insights remain the biggest bottleneck, there is a clear trend towards incorporating multi-omics
analysis in biomedical research to help explain the complex relationships between molecular layers. Multi-omics data have
a role to improve prevention, early detection and prediction; monitor progression; interpret patterns and endotyping; and
design personalized treatments. In this review, we outline a roadmap of multi-omics integration using DL and offer a
practical perspective into the advantages, challenges and barriers to the implementation of DL in multi-omics data.
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Introduction
Technological advances of high-throughput assays allow for
hundreds of thousands of experimental samples to be processed
simultaneously generating millions and billions of data points
in various fields, including biology. The pathogenesis of com-
plex diseases involves several cascades of events at various
levels of omics, including the transcriptomics of gene expression
and epigenomics of gene regulation, as well as proteomics and
metabolomics, which may have direct effects on disease endo-
types. To date, however, these different types of data have been
analyzed independently and account for only a fraction of the
estimated disease heritability. In addition, despite considerable
effort towards the statistical integration of these data types [1,
2], most multi-omics analyses are based on conventional statis-
tical approaches, such as logistic regression and support vector
machine methods [1–5], and few studies have addressed the
role of multi-omics resources to investigate complex diseases
(Figure 1).

The amount of available biological data has increased expo-
nentially since the emergence of high-throughput technolo-
gies, such as microarrays and next-generation sequencing [6].
The generation of such large amounts of data in biomedicine
requires the application of advanced informatics techniques in
order to extract new insights and expand current knowledge
about diseases, as well as to improve diagnosis and design
personalized treatments. In this context, DL algorithms have
become one of the most promising methods in the area [7].

Most statistical integrative analyses of large-scale biological
data are either meta-analyses of the same type of data from
different sources or analyses of different types of data from
the same source, with consecutive pipelines that analyze each
type of omics data independently (or in a cascading manner),
to identify significant factors and then combine them for the
final analysis [8]. These often fail to capture any nonlinearly
associated multi-omics factors or interaction effects among
multi-omics data. Advanced machine learning-based multi-
omics approaches, on the other hand, exploit the synergism
in multi-omics data by (1) identifying the complex interaction
of multi-omics data using network analysis; (2) predicting
clinical outcomes with high accuracy; (3) inferring the high-level
biological representations of canonical variables of multi-omics
using matrix factorization, partial least squares and canonical
correlation analysis and (4) discovering disease subtypes using
clustering and classification methods.

Recently, advances in machine learning algorithms have led
deep learning (DL) [also called deep neural network, or artifi-
cial neural network (ANN)]. DL is a subset of machine learn-
ing, in which multi-layered neural networks learn from vast
amount of data. DL algorithms not only analyze each omics type
separately but also have the opportunity to integrate different
omics layers, including data from clinical or health records,
with great sensitivity, specificity and efficiency [9]. DL is a self-
teaching artificial intelligence method, which does not rely on
fixed mathematical formulas or programming IF statements
to predict. DL uses larger numbers of hidden layers, whereas
traditional ANNs can normally only afford one or two hidden
layers. The deeper the layer, the more it can learn complex
patterns and be accurate in making predictions. DL can encode
and learn from heterogeneous and complex data, in both super-
vised and unsupervised settings. In recent years, DL has been
the method of choice in various machine learning communities,
such as image analysis, speech recognition and natural language
processing.

In the context of biomedical research, there has been increas-
ing interest in DL applications in omics data analysis. Omics data
analysis is frequently impeded by low signal to noise ratios, as
well as datasets with large number of variables and relatively
small number of samples or large analytical variance. In this
context, DL techniques have already outperformed previous sta-
tistical and non-DL methods in terms of sensitivity, specificity
and efficiency [9]. In addition, DL algorithms not only have
the capacity to analyze each data type separately but also to
integrate different omics types, or even other sources of infor-
mation, such as medical images and clinical health records. DL
algorithms implement various integration strategies by allowing
one to design network architectures in a flexible and explicit
manner. This big data analysis and integration is fueling the
implementation of personalized medicine approaches, allowing
for the early detection and classification of diseases, or person-
alized therapies for each patient depending on their biochemical
backgrounds.

There are several features that make the DL method a poten-
tial approach for multi-omics data analysis, and DL has already
been shown to improve predictive performance in several super-
vised and unsupervised learning problems, including feature
selection/reduction, clinical outcome prediction, survival anal-
ysis and disease subtyping. The capability of DL to capture
nonlinear features without kernel tricks, along with interaction
effects and hierarchical representations through multi-layered
neural network architectures, are some of DL’s main benefits
prevalently observed in biological systems [10–12]. In this review,
we introduce multi-omics data types, as well as integration
analyses with in-depth biological understanding, and recent
advances in multi-omics integration, using DL models on multi-
omics data, as well as discuss future research directions. The
remainder of this review is structured as follows: (1) a brief
overview of multi-omics data is introduced in Multi-omics Data;
(2) several integrative DL models are explored in Multi-omics
Data Integrative Analysis Using Deep Learning; (3) the challenges
and opportunities of DL in a multi-omics data framework are
addressed in Challenges and Opportunities and (4) finally, we
outline DL methods to omics data analysis, with a focus on the
types of analyses, as well as challenges and opportunities in
precision medicine.

Multi-omics data
Multi-omics data include genome, transcriptome, epigenome,
proteome, exposome and microbiome (Box 1 and Figure 2).
Genomics is the study of the complete set of genes of an organ-
ism. The focus of genomics is to identify the genetic variants
associated with a disease at the genome scale. Transcriptomics
involves the study of RNA expression from specific tissues,
developmental stages or diseases. This offers insight into cell-
and tissue-specific gene expression. Epigenomes focus on the
genome-wide characterization of DNA methylation (DNAm)
or post-translational modifications of histones, along with
chromatin conformation, and the non-coding RNAs, capable
of imposing stable and heritable changes in a gene without a
change in the DNA sequence. Metabolomics provides a snapshot
of the metabolic state of an organism or tissue, which together
with gene and protein abundance constitutes its molecular
phenome. Proteomics is the qualitative and quantitative study of
the proteome, and it connects the genes with their functionally
diverse protein products. The exposomes are the non-genetic
drivers of health and disease and represent the totality of
environmental exposure over the life course, with exposure
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Figure 1. Application of machine learning in multi-omics analysis. Machine learning algorithms mainly consist of supervised learning and unsupervised learning,

based on the availability of labeling on data. Linear and nonlinear patterns of multi-omics data can be captured in various machine learning algorithms.

timings ranging from prenatal to postnatal periods. Microbiomes
are the microorganisms, including bacteria, viruses and fungi,
that colonize the human skin, mucosal surfaces and gut. Small
microbial molecules and metabolites affect the physiology of an
individual.

Multi-omics data integrative analysis using DL
Multi-omics integration is the process of combining the infor-
mation of multiple omics layers to get more insight into the
disease process. Each omics data type typically provides a list
of differential factors potentially associated with the disease.

These data can be useful as disease markers, while providing
insight as to which biological pathways or processes are different
between the disease and control groups. However, analysis of
only one omics data type is limited to correlations and provides
only a partial view of the biological system. Integrating different
omics data types could help to elucidate the potential causative
changes that lead to disease or can be used to identify potential
therapeutic targets for further molecular studies. A large number
of publicly available tools have been developed for omics data
integration [13].

The outstanding predictive performance of DL is mainly
achieved by its capability to automatically capture nonlinear
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Figure 2. Overview of multi-omics data. Multi-omics data include genome, transcriptome, epigenome, proteome, exposome and microbiome.

and hierarchical representative features through multi-layered
neural network architectures. DL consists of multiple layers that
involve nonlinear activation functions (e.g. sigmoid, tanh and
rectifier linear units) of a linear regression form:

al
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(
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where al
j and bl

j are neuron value and a bias in the jth neuron of
the lth layer, respectively; wl

ji is a weight from the ith neuron in
the (l − 1)th layer to the jth neuron in the lth layer and f is an
activation function. An activation, al

j, produces a new variable
that represents a nonlinear association, which is optimized to
reproduce output values. The process can be considered as
feature extraction without an explicitly predefined nonlinear
function, such as a kernel [12].

It is worthy to note that most conventional machine learning
methods use a kernel trick for nonlinear patterns. However,
the kernel trick needs to specify a kernel function that may
represent the nonlinearity, which is heuristically chosen. In DL,
the optimization processes of feature extraction, with multiple
activations, are hierarchically performed:
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where oj is an output value in the jth neuron of the output layer.
Such a hierarchical feature extraction process can capture

complex nonlinear associations in a multi-layered manner.
For instance, in face recognition from facial images, the input
layer contains pixel values of facial images; the following layer
describes primitive patterns, such as circles and lines; the deeper
layer may capture facial components, e.g. nose and eyes, which
are combinations of the primitive patterns; and the next layer

may recognize larger facial components. In this manner, DL
with biological data can potentially represent the hierarchical
processes of multilayered biological systems, where a strand of
DNA, for instance, is copied into messenger RNA (mRNA), and
mRNA is translated into protein.

Taking advantage of outperformance in prediction, most DL-
based approaches in biomedical research have handled classifi-
cation and association problems, such as protein structure pre-
diction, gene expression regulations, protein classification and
genome-wide association studies. Most breakthrough DL models
are with large-scale data [7, 14, 15]. For instance, SpliceAI pre-
dicts RNA alternative splicing by computing predicted scores for
acceptor or donor, neither with pre-mRNA nucleotide sequences
[16]. SpliceAI trains the DL model using large genomic databases
in Genotype-Tissue Expression (GTEx) and GENCODE. DeepEC
classifies enzyme commission numbers from protein sequence
data [17]. DeepEC trains the model using the supervised data
from Swiss-Prot and TrEMBL databases, which includes millions
of samples.

On the other hand, multi-omics data analyses involve
multiple types of extremely high-dimensional biological data
but relatively smaller data sizes, which cause a severe overfitting
issue when training models. Moreover, other challenges are
developing effective analytic data integration approach for high-
dimensional multi-omics data that can capture interaction
effects, as well as biological interpretation.

This research introduces recent DL-based data integration
studies using multi-omics data in the following categories,
where most related research belongs: (1) feature selection/re-
duction, (2) clinical outcome prediction, (3) survival analysis
and (4) clustering for subtype discovery. To summarize, most DL
models for multi-omics data analyses follow a common pipeline
(Figure 3): (1) complete or incomplete multi-omics data are
cleaned by preprocessing; (2) feature selection or dimensionality
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reduction is applied to reduce the number of multi-omics
variables using conventional feature selection techniques or
feature reduction methods [e.g. principal component analysis
(PCA), autoencoder); (3) multi-omics variables are concatenated
into a large dataset for data integration; (4) further feature
selection or reduction techniques are applied and (5) finally,
the integrated data are analyzed for desired tasks, such as
classification, regression and clustering. Current state-of-the art
DL-based methods are introduced in the following subsections.

Feature selection and dimensionality reduction

One of the challenges in multi-omics data analyses is high-
dimensional, low sample size (HDLSS) data. Multi-omics data
are composed of several types of high-dimensional omics data,
each of which is challenging to analyze, due to large feature size.
Data concatenation of multi-omics data into a large input matrix
is one of the conventional approaches to integrate multi-omics
data, and it makes the data dimensionality much larger. DL
models with higher-dimensional data involve an exponentially
increasing number of model parameters, and training the non-
linear models with a relatively smaller number of samples than
the parameters often causes severe overfitting problems. There-
fore, reducing data dimensionality by using feature selection,
or dimensionality reduction methods, helps to train robust DL
models with HDLSS data and, consequently, improves DL models
with high predictive performance for bioinformatics problems
[18].

The preprocessing of feature selection and dimensionality
reduction are conventional approaches to reduce the dimen-
sionality of input data, as well as identify a set of meaningful
features. Feature selection is used to identify a subset of relevant
features for use in model construction or improving a task’s
performance, whereas dimensionality reduction is used to trans-
form features into a lower dimension. Although many traditional
feature selection (e.g. univariate/multivariate) and dimension-
ality reduction (e.g. PCA, subsampled randomized Hadamard
transform (SRHT) [19], count-min sketch [20], canonical correla-
tion analysis [21–23]) techniques can be used in DL, such tech-
niques are linear-based and mainly consider the main effects
of variables, which may not fully take advantage of DL models.
Although there are nonlinear-based feature selection methods
[24], nonlinearity has various forms and patterns, which are
not easy to define, unlike linearity. Thus, the identification of
nonlinear features by different types of nonlinear-based feature
selection may not help to improve performance in DL.

DL-based feature selection approaches have a strong capa-
bility to identify sets of features for nonlinear and interactive
relationships. DL-based feature selection methods can be cate-
gorized into supervised/unsupervised approaches, depending on
the availability of labels on samples, as in conventional feature
selection. Deep feature selection (DFS) selects a discriminative
feature subset in a DL model [25]. Although DFS is not the
optimal solution with low-sample size data, DFS has shown that
DL can detect a subset of informative and discriminative fea-
tures of nonlinearity effects through multiple layers with high-
dimensional data. Then, Deep Neural Pursuit (DNP) improves
the solution of feature selection in DL, taking the HDLSS data
problem into account [26]. DNP iteratively augments features in
the input layer by performing multiple training with dropouts.
The multiple dropouts grant the ability to train one small-sized
subnetwork at a time and to compute gradients with low vari-
ance to alleviate the overfitting problem. A CancelOut layer has
been suggested, in which each neuron in the input layer is solely

connected to a neuron in the CancelOut layer to select important
features with the corresponding weights in neural networks [27].

On the other hand, few unsupervised feature selections
have been studied for DL models. Deep-FS proposed a feature
selection strategy to remove irrelevant features for deep Boltz-
mann machines in the unsupervised setting [28]. However, most
unsupervised DL studies (e.g. clustering and data representation)
have applied conventional unsupervised feature selection
approaches (e.g. correlation or variance-based), which are linear-
and univariate-based feature selection. Thus, novel DL-based
unsupervised feature selections are desirable to investigate
further, as future studies.

Several DL-based analyses with multi-omics data have trans-
formed the high-dimensionality of multi-omics data into low-
ranked latent variables using autoencoder to tackle the HDLSS
problem. Low-ranked latent variables are extracted from a bot-
tleneck layer of autoencoder as new features. Autoencoder is a
nonlinear factorization technique with multi-layer neural net-
work structures to learn data representation by reducing dimen-
sionality in an unsupervised manner. Autoencoder consists of
neural network layers for the encoder and decoder, where the
encoder learns the latent variables of the input data, whereas
the decoder reconstructs the input data from the latent vari-
ables. The bottleneck is the layer in the middle, between encoder
and decoder in autoencoder, and contains the latent variables
of the input data. The latent variables from autoencoder can
take advantage of neural networks that can capture nonlinear
features, as well as reduce dimensionality.

Following feature selection and dimensionality reduction,
clustering, clinical outcome predictions and functional anal-
yses can be conducted with the low-ranked latent variables
from autoencoder. In survival analysis studies [29, 30], low-
ranked latent variables were constructed by autoencoder from
a large single matrix of concatenated multi-omics data. The
latent variables were introduced to a univariate Cox-PH model,
as a conventional survival analysis had done. Then, survival-
associated features were identified by performing univariate
cox-PH models [31, 32]. The feature set was clustered to iden-
tify cancer subtypes by K-means clustering. Functional anal-
yses were performed with well-known biomarkers (e.g. TP53
mutation in hepatocellular carcinoma) to assess the discovered
subtypes. Differential expression analysis and enriched pathway
analysis were also performed to identify differentially expressed
genes between the subtype groups [32]. However, these post-
analyses, after feature selection and dimensionality reduction,
were performed directly with the nonlinearly associated multi-
omics variables of the subtype groups.

Incorporation of prior biological knowledge can improve fea-
ture selection performance by imposing well-known biological
components. Prior knowledge of biological interaction networks
was incorporated as interaction network regularization on low-
rank nonlinear features learned by autoencoder [33]. In the
study, autoencoder tackled the limitation of lower representa-
tion power that simple matrix factorization models of shallow
linear structure produce. Furthermore, latent variables of time-
series types of multi-omics data were proposed. Typically, time-
series data are useful to identify causality between variables.
Latent variables of temporal multi-omics data were extracted
from long short-term memory-based Variational AutoEncoder
[34], which showed the potential of feature extraction for tem-
poral multi-omics data.

Multi-omics datasets possess high dimensionality, which
is difficult to handle. High predictive powers have often
been reported with high-level representations in reducing
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Figure 3. Pipeline of multi-omics data integration analyses: (1) complete or incomplete multi-omics data are cleaned by preprocessing; feature selection or

dimensionality reduction is applied to reduce numbers of multi-omics variables; (3) autoencoder is a DL model that extracts low-ranked latent variables of the input

data in a bottleneck layer; (4) multi-omics variables are concatenated into a large dataset for data integration; (5) further feature selection or reduction techniques are

applied; (6) the integrated data are analyzed for desired tasks, such as classification, regression and clustering and (7) finally, subtypes discovered by clustering analysis

re evaluated with the Kaplan-Meier analysis.

dimensionality by autoencoder with multi-layered neural
network architectures. However, there are pros and cons to
this effort. The advantages of dimension reduction include
the ability to estimate probabilities in high-dimensional data
without losing its inference; a dramatic reduction in data size,
which allows faster processing and computational time; smaller

storage; and removal or redundant features. The disadvantages
of dimensional reduction are that it may lead to some amount
of data loss or lack of biological interpretation. The low-ranked
representations, obtained from the bottleneck layer of autoen-
coder, are transformed from the input layer of multi-omics
data, so the low-ranked representations are combinations of all
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multi-omics features through multiple fully connected encoding
layers. The low-ranked representations from autoencoder do
not explicitly reflect biological components or processes. After
feature section and dimensionality reduction, one can perform a
multi-omics significance test and conduct functional analyses.
However, these analyses may fail to find statistically significant
differences for nonlinear multi-omics associations. This is
because these analyses are based on linear models or pairwise
analyses.

Prediction of clinical outcomes

DL models have shown outperformance mainly in supervised
learning problems, including classification and regression tasks.
In supervised learning, DL learns a hierarchically multilayered
neural network based on the labeled data of input–output pairs.
DL fully enjoys the flexibility of designing a neural network
architecture, which can be applied for both classification and
regression problems by modifying the output layer. For classi-
fication problems, the output layer of a neural network includes
as many neurons as the number of classes (or labels) to classify,
where, typically, each neuron shows a posterior probability that
the given data belong to the corresponding class. For binary
classification problems, the output layer can have only one
neuron, which computes a posterior probability of a positive
class. The loss function of cross entropy sums the cross-entropy
between the ground truth and model prediction of each class. For
multi-class classification, a softmax function, which normalizes
the posterior probabilities of all classes, is typically be considered
as the last activation function, whereas a logistic function is used
to compute posterior probability independently for each class
in multi-label classification. For regression problems, the output
layer consists of one neuron, which directly produces continuous
values to predict, with linear activation in the last layer and loss
functions, such as mean square error and mean absolute error,
for regressions.

Several supervised learning studies with multi-omics data
have been conducted with DL models for cancer-type classi-
fication, drug response prediction and gene expression pre-
diction. A DL model with multi-omics data of gene expres-
sion, micro RNA (miRNA) expression and DNAm classified can-
cer types among breast cancer, glioblastoma multiforme (GBM)
and ovarian cancer [35] and showed better predictive perfor-
mance than using single omics data. Low-ranked representation
was first constructed on each single omics data by Stacked
Autoencoder, and the three representations were combined;
then further representations were constructed by autoencoder
again. The final representations were taken into a deep flexible
neural forest (DFNForest), which can automatically select the
model structure of higher depth for multi-omics data analysis. A
superlayered neural network (SNN) was proposed to extract any
cross-correlations present in the multi-omics data [36], where
the separate neural networks of each omics data shared cross-
connections between multi-omics data. SNN provided biological
insights to identify the most relevant genes and the interaction
between multi-omics.

Drug response predictive models have been developed based
on DL with multi-omics data. A multi-omics late integration
(MOLI) DL model takes somatic mutation, copy number variation
(CNV) and gene expression data as input and integrates them
for drug response prediction [37]. Each omics involves separate
subnetwork layers, and the low-ranked representation features
are combined to introduce final classification layers. MOLI opti-
mizes the model with the triplet loss function to impose simi-
larity among responders, as well as classification loss. The Deep

Neural Network Synergy model with autoencoders (AuDNNsyn-
ergy) predicted the synergy of pairwise drug combinations by
integrating multi-omics data of gene expression, copy number
and genetic mutation data [38]; autoencoders were trained with
each single omics data separately, and the physicochemical
features (e.g. solubility and passive permeability) of individual
drugs, as well as the encoded omics data of individual cancer cell
lines, were combined as input features of a deep neural network
to predict the synergy score of given pairwise drug combinations
against the specific cancer cell line.

There have been attempts to integrate multi-omics data
by transforming them into image formatted data for use in
convolutional neural networks (CNNs). Gene-based multi-omics
data are combined as multi-channel vector images [39]. For
instance, gene expression and gene-based CNV are combined
into a matrix of 2 × the number of genes for each sample. Then,
the multi-channel vector images are introduced to a CNN to
classify cancer subtypes. However, since CNNs capture spatial
patterns of images by a kernel, the order of genes in the input
data is critical when applying a CNN. To tackle the issue, a gene
similarity network is considered to transform multi-omics data
into images. A DL-based model transforms multi-omics data
into a gene similarity network, via self-organizing maps (iSOM-
GSN) [40]; each type of omics data is transformed into a two-
dimensional image, which is a self-organized map, where genes
are organized based on a gene similarity network. Multi-omics
data produce multi-channel images, which are introduced to a
CNN to predict tumor stages. Multi-Omics gRaph cOnvolutional
NETworks (MORONET) constructed a weighted patient similarity
network for each type of omics data and took each similarity
network into graph convolutional networks (GCNs) [41]. The
GCNs of each type of omics data generate prediction scores
of class labels, and then the prediction scores of multi-omics
data are combined as cross-omics discovery tensor data, which
reflect the cross-omics label correlation. The cross-omics
discovery tensor data are trained by View Correlation Discovery
Network for the final label prediction.

For regression problems, deep denoising auto-encoder
(DDAE) has been proposed to estimate gene expression (i.e.
RNA-seq) from DNAm and CNVs [42]. The concatenated data
of DNAm and CNV are introduced to DDAE to generate low-rank
representation features. Then, a multi-layered perceptron model
predicts RNA-seq from the features.

Survival analysis using multi-omics data

Survival analysis estimates the survival distribution of a
particular population, as well as investigating the associations
between covariates and survival time. Survival analysis is
basically for supervised regression problems, but it focuses
on time-to-event outcomes, handling censored observations,
in which an event was not observed during follow-up. Thus,
survival analysis includes two clinical outcomes of survival
time and survival status [43, 44]. One of the most conventional
methods in survival analysis is the Cox proportional hazards
(Cox-PH) model. Cox-PH is a semi-parametric model that
consists of a baseline hazard function (h0(t)) and an exponential

function of covariate effects (exp
(
b1x1 + · · · + bpxp

)
:

h (t|x) = h0(t) exp
(
b1x1 + · · · + bpxp

)

where h0(t) describes the risk of event over time at baseline
levels of covariates, and b1x1 + · · · + bpxp describes the effect
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of the predictors on the overall hazard. Conventional statistical
survival analysis assumes the independence of variables, as well
as linearity with the log of the hazard ratio. For high-dimensional
data, feature selection techniques or Cox-PH with LASSO/elastic-
net regularization [45] have often been considered to reduce
covariate size.

In DL-based survival analyses, the linear combination of
covariates in the exponential function has often been replaced
with neural networks to take the interaction effects, as well as
the nonlinearity of covariates, into account. DL-based survival
models, such as Cox-nnet [46], SurvivalNet [47] and Cox-PASNet
[48, 49], take covariates into the input layer of a neural net-
work and produce a prognostic index in the output layer, with
the cost function of partial log-likelihood for survival analysis
with censored data. The prognostic index is computed by a
linear combination of low-ranked high-level representations,
which are nodes in the last hidden layers, without activation
functions. Thus, the nodes of the last hidden layers in survival
neural networks can be considered as new representations of the
input covariates. For model interpretation and prognostic factor
identification, the importance of each node in survival neural
networks is computed by partial derivatives of risk, with respect
to each input variable:

∂R
∂x

= bH ×
H∏

h=1

Jh

where Jh is the Jacobian matrix of the hth hidden layer with
respect to its input variable, bH is the weights between the final
hidden layer and the output layer and R is the risk cost function.

As the most typical DL approach for survival analysis
with multi-omics data, Survival Analysis Learning with Multi-
Omics Neural Networks (SALMON) reduce the dimensionality
of multi-omics data using an eigengene matrix through gene
co-expression analysis on each type of omics data separately,
and the combined eigengene matrix, as well as copy number
burden, tumor mutation burden and demographical/clinical
variables (e.g. age, ER status, and PR status), is introduced
to a neural network that integrates Cox-PH [50]. A DL-based
survival analysis has proposed a cross-modality autoencoder
(CrossAE) to integrate multi-omics by performing similar cross-
modality reconstruction [51]. The element-wise average low-
rank representations in the bottleneck layer of CrossAE are
input into a neural network with Cox-PH. Similarly, the low-rank
representations of each type of omics data from autoencoder are
combined with consensus constrains (using cosine similarity)
to generate modality-invariant representations, followed by
the output layer for survival analysis [52]. To improve the
predictive performance with robust models, an ensemble-
based DL model, DeepProg, has been proposed [53]. DeepProg
iteratively builds DL models with a subset of features, followed
by feature transformation, and a univariate Cox-PH model for
further feature selection. The results of multiple DL models are
combined for the final prediction.

Multi-omics data have been integrated based on a gene in
DL models, by incorporating biological knowledge. Multi-omics
features of the same gene were grouped by gene annotation,
so that either interaction or group effects were mainly consid-
ered. Multi-omics features of RNA-seq, CNV, RPPA and somatic
mutation were grouped by a gene, and a DL model, Group lasso
regularized DL for cancer Prognosis (GDP), was trained with
group lasso regularization in the objective function of the partial
log-likelihood of a CPH model [54]. The group regularization for

the gene-based multi-modal features, by the incorporation of
the biological knowledge, reduced the number of parameters to
train, which tackled overfitting issues. A gene- and pathway-
based deep neural network (MiNet) grouped multi-omics fea-
tures by genes, taking their interaction effects, and produced
representations of canonical gene expression [55]. The canonical
gene expression were grouped by biological pathways and intro-
duced to a sparse neural network to predict a cancer patient’s
survival. The neural network architecture of MiNet reflects the
biological processes of the interaction effects of multi-omics
data and pathways, as well as the hierarchical interactions of
pathways, which enables biological model interpretation.

Clustering for subtype discovery

Identification of subtypes plays a critical role in improving treat-
ment modalities and clinical outcomes in several diseases [56].
The cellular origin of cancer subtypes can be comprehensively
characterized by the pathological morphologies and molecular
profiles of multi-omics data [57]. For instance, the four molecular
subtypes of (1) luminal A, (2) luminal B, (3) human epidermal
growth factor receptor 2 (HER2)-enriched (HER2-positive) and
(4) basal-like breast cancer are well-known subtypes in breast
cancer, showing significant differences in responses to treat-
ment, as well as disease progression and survival [58]. The
discovery of unknown cancer subtypes has been done compu-
tationally by grouping or stratifying patient populations based
on multilayered biological profiles, including genome, proteome,
transcriptome, metabolome and epigenome [59–61].

Most DL-based clustering methods have focused on captur-
ing nonlinearly associated multi-omics features by autoencoder
and pairwise feature selection coupled with clustering algo-
rithms. Subtypes have been evaluated with the Kaplan–Meier
analysis. Each omics data of miRNA, mRNA, DNAm, somatic
mutation, CNV and RPPA were compressed by autoencoder, and
statistically significant features among the transformed features
were further identified by a univariate Cox-PH [62]. The selected
features were grouped by K-means clustering to identify sub-
types. Similarly, all multi-omics data were concatenated into a
large input matrix and transformed into low-ranked represen-
tations by autoencoder [63]. A significance test was performed
on the transformed features by univariate Cox-PH and LASSO
regression, followed by K-means clustering.

Prior knowledge of well-known biological pathway databases
has been incorporated in cancer subtyping. PathME proposed
a multi-modal sparse denoising autoencoder framework with
sparse non-negative matrix factorization (sNMF) for robust
integrative clustering [64]. PathME computed a score per
pathway from multi-omics data by mapping each type of omics
data into a pathway via a sparse autoencoder with group
lasso regularization, in which multi-omics data grouped by
their gene annotations were transformed to a pathway score.
Finally, the patient data of pathway scores were clustered by
consensus sNMF. The study interpreted the model based on
pathways.

Challenges and opportunities
While DL methods highlight the potential of omics-based data
integration to drive innovative in biomedical research, DL-based
approaches have the following challenges to take into consider-
ation: (1) training with high-dimensional, low sample size data;
(2) missing value imputation; (3) model interpretation and (4)
integrating clinical and environmental exposure data.
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High-dimensionality and small sample size

DL’s capability to automatically identify nonlinear and hierarchi-
cal features requires a large amount of training data, as well as
validation data, to find a generalized model. Nonlinear patterns
are typically infeasible to formulate in high-dimensional data,
in contrast with linear patterns, which often cause overfitting
issues. Multi-omics data intrinsically involve the large features,
small samples’ problem, and multi-omics HDLSS data make it
even more challenging to training DL models that consist of a
huge number of parameters, avoiding overfitting and bias. For
instance, a simple fully connected neural network, which is com-
posed of an input layer of 1000 nodes, a hidden layer of 100 nodes
and an output layer of 2 nodes, requires training 100,302 param-
eters. However, there are only a few biological databases that
include more than 100,000 samples, and multi-omics databases
have many fewer samples available. Particularly, backpropaga-
tion gradients in neural networks are of high variance on HDLSS
data, which, consequently, cause model overfit [26].

In order to tackle the HDLSS problem in training DL models,
a leave-one-out approach can be used to avoid the overfitting
problem in the backpropagation phase [65]. The risk of overfit-
ting can be examined with validation data by the leave-one-out
approach, and training can be terminated early when overfitting
occurs. While tracing the overfitting risk with validation, a small
learning rate, as well as high dropout regularization with higher
epoch size, is often encouraged in HDLSS, which reduces the
backpropagation gradients of high variance on HDLSS data. As
an alternative solution, an attempt to reduce the dimensionality
of the input space to a feasible size has been made, by adding
a random project layer in front of the network [66]. Dimension
reduction techniques, such as SRHT and count sketch-base con-
struction, were utilized to reduce the dimensional size of the
input data. Then, the data projected into the lower space were
introduced to a neural network for training.

However, the optimization of generalized DL models with
HDLSS data is still extremely challenging. Potential solutions
may include incorporating prior biomedical knowledge and
sparse learning. Prior biomedical knowledge can reduce model
complexity with constraints to a model’s architecture although
such intervention to a model is against the fundamental
concept of DL, which automatically identifies useful patterns
without predefinition. Constraints obtained from prior domain
knowledge can prevent the model from exploring unnecessary
hypothesis spaces, which may not be matched to the domain’s
knowledge. For instance, candidate genes of objective traits
are prioritized by a CNN by integrating multiple biological
databases, such as genomic data, transcriptome data and
quantitative trait-associated gene/nucleotide data [67]. The gene
prioritization can reduce false positives by imposing well-known
biological knowledge into the model. As another example,
PASNet incorporates biological pathway databases to design a
neural network architecture [68], where the network between
the gene layer and the pathway layer explicitly models the
relationships of genes and pathways with sparse connections.
The sparse network dramatically reduces the number of
parameters; PASNet contains only 0.01% connections of the
fully connected layers. Sparse coding finds a parsimonious
neural network architecture with sparse connections but may
preserve or maximize its predictive performance. Sparse coding
can reduce the number of parameters to train, while increasing
model interpretability.

The limited sample sizes of most multi-omics datasets
are still one of the biggest obstacles to consider DL-based

integration, compared to conventional integration methods (e.g.
sparsity-regularized integration). However, the advantages of
DL’s capabilities, which identify the nonlinear/interactive pat-
terns of multiple features, have attracted DL-based integration.
Advanced optimization strategies (e.g. dropout, regularization
and bootstrapping) with HDLSS make applying DL for multi-
omics data analysis promising. Furthermore, the rapid advances
of sequencing technologies and their dramatic price decrease
will provide more samples to train robust DL in the near future.

Missing data and data heterogeneity

In multi-omics data, it is common for some individuals to be
represented by some omics data only, but not all, which is prob-
lematic since most statistical and machine learning analyses
require complete datasets. There are two types of missing val-
ues in multi-omics data: omics-wise and sample-wise missing
values. Omics-wise missing values refer different sample sizes
of omics data. Some samples include more available omics data,
but others have less. For instance, there are 434 available samples
of DNAm, whereas 578 samples of CNV are available in the GBM
of The Cancer Genome Atlas (TCGA) project. This indicates that
at least 141 samples do not have features of DNAm. Sample-wise
missing values refer to conventional missing values occasionally
observed in a sample, due to technical limitations and various
experimental constraints.

Data cleaning, missing value imputation and harmonization
across data sets are conventional preprocessing techniques to
handle sample-wise missing values. In data cleaning, omics
features (or samples) with missing values (features) of more
than a certain percentage have been excluded in many multi-
omics data analyses (Figure 4; Supplementary Table 1 available
online at http://bib.oxfordjournals.org/). Outliers with the lowest
variance and means can be further removed. Conventional miss-
ing value imputation techniques, such as K-nearest neighbors
and mean value imputation, have been widely used to handle
missing values.

Although most imputation techniques have been optimally
developed for each type of single omics data separately,
there are several integrative imputation methods for multi-
omics data, which are mainly categorized 3-fold: (1) machine
learning-based regression strategy, (2) transfer learning-based
and (3) multi-view matrix factorization-based imputation [69].
Expressional missing values are imputed by their relationship
with other omics data. Regression models have often been used
to find correlations between multi-omics datasets to impute
missing values [70–72]; for instance, gene expression data are
inferred from SNPs or epigenomics data. Transfer learning
leverages information from reference databases to the query
dataset to impute data [73, 74]. The reference annotations and
databases include GTEx, the Roadmap Epigenomics Project, the
CommonMind Consortium and TCGA. The transfer learning-
based approach provides a global inference for missing values
without bias to given local datasets. Additionally, multi-view
matrix factorization-based imputation is a robust, unsuper-
vised approach that reconstructs incomplete datasets. As an
extended version of matrix factorization techniques, with single
view data for missing value imputation [75], the multi-view
approach handles at least two modality datasets, where it finds
low-dimensional common factors for all datasets [76, 77].

In other ways, NEighborhood-based Multi-Omics clustering
(NEMO) integrates multi-omics data based on inter-patient
similarity, where it completes similarity for incomplete data
without missing imputation by using an average of observed
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Figure 4. Overview of DL methods for multi-omics data analysis. The methods are groups based on their applications and colored as their pipeline components

of dimensionality reduction, using DL (e.g. autoencoder), feature selection and domain knowledge incorporation (e.g. pathway databases). MOLI, multi-omics late

integration; iSOM-GSN, self-organizing maps with gene similarity network; MORONET, multi-omics graph convolutional networks; MINet, a gene- and pathway-based

deep neural network.

values [60]. A study considered common and uncommon data sets,
where the common dataset referred to samples including all
multi-omics data types, and the uncommon dataset lacked a
certain type of multi-omics data [62]; the common data were
used to optimize the model, with autoencoder and feature
selection with a univariate Cox-PH, while the uncommon
dataset was used as validation for the final task.

Although most multi-omics integrative methods assume that
multi-omics data are structured and obtained from the same
sources (e.g. mRNA and CNV from a same individual), there are
often unstructured multi-omics data types (e.g. DNA sequence,
protein sequence) and samples obtained from multiple sources
(e.g. mRNA from one group, but CNV from another group). Fea-
ture extraction and data encoding can convert unstructured data
into structured data. For instance, structured radiomics features
were extracted from unstructured medical imaging data [78, 79].
Amino acid sequence data were analyzed by recurrent neural
networks [80] and converted into image looking data by one-hot
encoding followed by CNN [17]. For the multi-omics data that
do not share data sources, obtaining high-level representation
(e.g. by using autoencoder) of single omics independently, as well
as their integration, may be a potential solution. However, this
approach may not characterize the interactive effects among
multi-omics data, which may not fully take advantage of multi-
omics integration.

Model interpretability

Biomedical research often stresses model interpretation
to understand biological mechanisms (e.g. by performing
biomarker identification and correlation/causality/regulatory
relationship inferences between biological components) rather
than simply predicting biological or clinical outcomes (e.g.

survival rate, disease status and risk score). Although DL
has the strength of outstanding predictive performance by
capturing nonlinear and hierarchical representations through
multi-layered neural network architectures, the most common
structure of fully connected neural networks lacks in inter-
preting what the hierarchical representation features describe
biologically, since the high-level representations are products
involving all features.

There are two strategies for model interpretation in DL: (1)
intrinsic model interpretation and (2) post hoc interpretation [81,
82]. Intrinsic model interpretation is interpreting directly from
the model’s construction, as well as the optimal parameters of
DL models, to understand relationships between the biological
components from the data. Neural networks, whose hierarchical
multi-layered architectures are intrinsically inspired from bio-
logical neural systems, may be able to explicitly model biological
systems of interest, and a model component of the neural
network (e.g. a neuron in neural networks) may be associated
to a biological component or a biological process. For instance,
sparsely connected neural networks have shown the potential
capability of intrinsic model interpretation, identifying hierar-
chical relationships among a subset of biological components
in multi-layered biological processes by incorporating biological
pathway databases into their models [55, 68]. Biological path-
ways are explicitly embedded into the pathway layer, with given
sparse connections between the gene layer and the pathway
layer, where the sparse connections refer to the membership
of genes in a pathway. Important sets of biological pathways
and genes could be identified directly from the models by
ranking nodes in the pathway layer and the gene layer by partial
derivatives. Data representation of pathway-associated gene
sets has produced a latent value of pathway expression [64].
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A sparse autoencoder transformed pathway-associated genes
for each pathway, and the latent values of the pathways were
analyzed to rank pathways for cancer subtyping.

Post hoc interpretation is extracting various forms of infor-
mation after training a model. Post hoc interpretation often falls
into two categories: (1) global and (2) local interpretation [82].
Global interpretation demonstrates the averaged behaviors of
a model, which are often shown as expected values based on
the distribution of the entire samples. Global interpretation is
useful for learning general relationships associated to target
outcomes. One of the traditional global interpretation methods
is feature importance [83], which is useful to find potential
biomarkers. On the other hand, local interpretation focuses on
how a model predicts individual outcomes. Local interpreta-
tion provides insights into predictive mechanisms shown in
subgroups of interest, instead of the overall mechanisms of
the entire population. The most popular local interpretation
approaches include Local Interpretable Model-agnostic Explana-
tions (LIME) [84] and SHapley Additive exPlanations (SHAP) [85].
LIME and SHAP are model-agnostic methods, which generate
a unified interpretation model that can be mapped from any
machine learning models for interpretation. LIME reconstructs
input data and trains an interpretation model by capturing the
patterns of neighbors [84]. SHAP transfers any machine learning
models to a linear-based interpretation model for characterizing
the contribution of each variable to an outcome [85]. A variable’s
contribution to the prediction is called its SHAP values, and the
sum of SHAP values corresponds to the predication score.

Integrating multi-omics and non-omics data to improve
predictive performance

Although multi-omics data have proved to be a powerful pre-
dictor of various traits and diseases, there are other factors,
such as clinical and environmental factors, that can play an
important part [86, 87]. In addition, with the growing digital
healthcare industry, clinical and electronic health record (EHR)
data are expected to become more widely available. In par-
ticular, the integration between multi-omics data and patho-
logical images is promising. Pathological images are consid-
ered as clinical gold standards for diagnosis. Association stud-
ies between multi-omics data and pathological image data can
help researchers to understand how multilayered biological pro-
cesses (represented by multi-omics data) cause morphological
differences in pathological images. Pathological images have
been used to predict the RNA-seq expression of tumors [88], as
well as DNAm [89]. The performance of survival analysis and
risk prediction has been improved by integrating pathological
images on genomic data or multi-omics data [90–94]. Challenges
in integration with pathological images includes: (1) the large
sizes of pathological images and (2) small sample sizes. Patho-
logical images are gigapixel images, which makes it difficult to
introduce a whole-slide image into a model. Patch-wise analyses
are conventional for pathological images. Thus, a whole slide
image consists of a number of patch images, whereas multi-
omics data are well-structured data, which create a challenge
for integration. Pathological images of gigapixel size increase
the dimensionality of the data to analyze. Besides, various types
of imaging data have been integrated with multi-omics data.
Structured radiomics features, obtained from magnetic reso-
nance imaging data, have been integrated with multi-omics data
for phenotype prediction [78, 79]. Similarly, radiomics features
have been extracted from positron emission tomography, by
the Image Biomarker Standardization Initiative’s protocol, and
analyzed with multi-omics data for actuarial outcome prediction
[95].

However, available sample numbers are still limited. In addi-
tion, integration of EHR data on multi-omics data is also promis-
ing for clinical diagnosis and decision support systems in pre-
cision medicine. Although EHR data have, to date, been solely
analyzed to make clinical decisions, its integration with multi-
omics data could provide thoroughly personalized solutions to
predict the most appropriate action for patients with complex
diseases like cancer [96, 97]. However, most EHR data are time-
series data (but unevenly distributed over time), and the data
source is very heterogenous, which is extremely challenging to
integrate with multi-omics data. Nevertheless, the importance
of integration with non-omics data, such as clinical and environ-
mental exposure data, is understood, and an increasing number
of multi-source databases and projects, e.g. All of Us (https://a
llofus.nih.gov), are shedding light on more active research on
integration.

MOVING FORWARD IN THE ERA
OF PRECISION MEDICINE
With high-resolution data from next generation sequencing,
differences at the genomic level, and their consequences, are
becoming better understood, leading to a new medical paradigm:
precision medicine. Precision medicine is a patient-specific tai-
lored approach and goes beyond traditional medicine’s ‘one size
fits all’ approach. The power of the multi-omics approaches
in predictive medicine for complex diseases has recently been
emphasized [98, 99]. Omics technologies in precision medicine
can help identify new disease biomarkers, for diagnosis, progno-
sis and patient stratification, along with drug development and
repurposing, including the existential threat of COVID-19. For
instance, a recent study applied a DL approach to synergistically
identify drug combinations for treating COVID-19. The study
showed that in contrast to previous conventional data science
approaches using drug–target interaction as fixed descriptors,
a DL model learns to predict drug–target interaction and drug–
drug combination from molecular structures and identify the
right synergistic drug combinations for the rapidly spreading
SARS-CoV-2 [100]. However, although omics-level studies have
been very useful in understanding disease mechanisms, there
have not been sufficient data nor attempts to integrate different
omics data, and most omics-level data refer only to genomics
and transcriptomics. Genes identified from genomic (GWAS),
epigenomic and proteomic studies can be used to build disease-
associated networks from each omics level, and a network-level
overlap can be calculated. Integrating multi-omics data, such
as microbiome, proteome, transcriptome, epigenome, exposome
and genome, is largely lacking. Publicly accessible databases can
serve as powerful resources of omics-level data to unravel new
biological insights into the etiologies of complex diseases, as well
as to confirm previously reported disease-associated genes and
pathways [101].

There is a clear trend towards incorporating multi-omics
analysis in biomedical research to help explain the complex
relationships between the molecular layers. However, the
integration of these diverse datasets remains challenging. DL
approaches have become popular for disease risk stratification
[102–105]. DL approaches are useful to generate hypothesis to
understand patient stratification and diseases progression and
for learning the biological mechanism and its contribution to
disease risk in multi-omics data [106]. Advanced computational
methods, such as DL, help to model risk prediction, diagnosis
and therapeutic response in diverse populations. For instance,
DeepProg is an example of such a program that uses DL to

https://allofus.nih.gov
https://allofus.nih.gov
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integrate multi-omics phenotypes, such as survival in predicting
cancer prognosis [53]. Integrating multi-omics data with deep
phenotyping of the cohort, using a DL approach, offers a path to
deeper functional insights and precision diagnoses in complex
diseases.

The availability of omics data and integrative omics
approaches has created unique opportunities to unravel the
molecular underpinnings of target endotypes to develop person-
alized risk stratifications and therapies. Additionally, statistical
methods to integrate multi-omics data are emerging to provide
important insights into the disease pathophysiology of allergic
diseases [107]. As research moves forward, accounting for an
individual’s unique race-specific lifestyle, medical imaging and
environmental exposure, along with clinical and multi-omics-
based data-driven DL frameworks and integration, will be crucial
for discovering and designing therapeutic strategies for specific
allergic endotypes. Such an approach will help develop precision
treatment options tailored to distinct endotypes in allergic
diseases [108, 109].

CONCLUSION
DL is an effective approach to decipher multilayered complex
biological systems by capturing complex nonlinear effects and
hierarchical features and their interactions in multi-omics data.
The power of the multi-omics approach in personalized and pre-
dictive medicine for complex diseases has recently been empha-
sized by several authors [99, 110]. In particular, big data-driven
and unbiased DL approaches can now gather detailed molecular
information to deconvolute and identify patterns from the data
and provide further insights into the biology of diseases, along
with the health states of individual patients [111, 112]. However,
in critically evaluating the existing literature, compared with
emerging high-throughput technology, the integration of multi-
omics data has been limited, and there are even fewer reports
describing the multi-omics integration approach with clinical
environmental data, standards or ground truth to evaluate the
performance metrics of multi-omics integration methods to elu-
cidate their role in health and disease.

However, recent progress in DL methods to integrate multi-
omics data is emerging to provide important insights into the
pathophysiology of complex diseases [107]. Such an increase in
focus on DL method development can be expected to prompt
efforts to harness the power of multi-omics data as an approach
to improve patient prediction, prevention intervention, diagno-
sis and personalized therapy [107]. As the research moves for-
ward, accounting for race-specific lifestyle and environmental
exposure, along with a clinical and multi-omics-based data-
driven DL framework with integration, will be crucial for discov-
ering patterns, as well as risk detection and prediction strategies
for specific clinical outcomes. Therefore, approaches that are
fast and robust towards missing data and heterogeneity, as well
as offering a balanced trade-off between performance and model
interpretability (or complexity), are critical. Such approaches will
help to develop precision treatment options tailored to distinct
endotypes in complex diseases [108, 113].

Finally, the availability of multi-omics data and integrative
DL approaches has created unique opportunities to unravel
the molecular signature underpinnings of disease outcome
to develop personalized risk stratification and therapies. A
combined multi-omics dataset can provide synergism and
molecular insight, beyond the sum of individual omics. As the
research moves move forward, since interpretability is more

important than accuracy in DL modeling, there are several
questions to answer, including How can we select features
that are interpretable? What features contribute to a certain
prediction and how? and How to make biological or clinical sense
of a black-box model? A comprehensive disease risk assessment
and precision medicine tools using a multi-omics and non-omics
data integration approach will be prevalent.

Key Points
• This paper provides a comprehensive review of cur-

rent cutting-edge deep learning-based multi-omics
integration analysis methods.

• Deep learning methods in both unsupervised and
supervised learning are reviewed with several biomed-
ical applications, including risk prevention/detec-
tion/prediction, disease progression and clinical endo-
typing.

• We demonstrate novel viewpoints of deep learning to
apply in multi-omics analysis, including harmonizing
multi-omics data that offer practical perspectives into
the implementation of deep learning.

• We outline insights on current applications, chal-
lenges and future directions in deep learning-based
analyses with multi-omics data.

• Multi-omics data integration and study design should
ensure a diversity of cohorts, harmonize and stan-
dardize multi-omics data and methods, and develop
benchmarking in analytical tools and multi-omics
integration.
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