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Abstract

The rapid development of machine learning and deep learning algorithms in the recent decade has spurred an outburst of
their applications in many research fields. In the chemistry domain, machine learning has been widely used to aid in drug
screening, drug toxicity prediction, quantitative structure–activity relationship prediction, anti-cancer synergy score
prediction, etc. This review is dedicated to the application of machine learning in drug response prediction. Specifically, we
focus on molecular representations, which is a crucial element to the success of drug response prediction and other
chemistry-related prediction tasks. We introduce three types of commonly used molecular representation methods,
together with their implementation and application examples. This review will serve as a brief introduction of the broad
field of molecular representations.
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Introduction
The emergence of large-scale datasets in drug combination
synergy or monotherapy drug sensitivity data in recent years,
including the DrugComb [1], the Broad Institute Cancer Cell Line
Encyclopedia [2] (CCLE) and the Genomics of Drug Sensitivity
In Cancer [3] (GDSC) datasets, has made it possible to carry out
machine learning research aiming at predicting drug responses,
many of which have shown promising results with growing
prediction accuracy [4–10]. In many application scenarios, a
successful drug response prediction model generally requires
appropriate representations for drug molecules and/or cell line-
specific genomic profiles [11]. This review mainly focuses on
the representation of drug molecules. The field of molecular
representations is growing rapidly, and scientists are proposing
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many new ways of representations every year. Therefore, a
comparison between different types of representations is crucial
to understanding their applications to drug response prediction.
There are general reviews about artificial intelligence and drug
discovery [12–16], whereas in this review the main goal is to
provide readers that have little machine learning background
with a brief introduction of key ideas and differences between
common molecular representation methods for drug response
prediction.

A naive and intuitive way to represent a molecule is through
its name. However, simply naming chemical substances has
been a challenge in history. The major concern of a naming
rule resides in its robustness—one substance should be mapped
to a unique name, regardless of how complicated the chemical
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Table 1. Three major categories of molecular representations

Category Names of molecular representations

(1) Linear notations Simplified molecular-input line-entry
system (SMILES)
International chemical IDENTIFIER
(InChI)

(2) Molecular FPs Structural keys
Circular FPs

(3) Graph notations Graph representations
MPNN-based representations

structure is. Intuitively, why cannot a well-designed naming
scheme, e.g. what is taught in organic chemistry class, serve
as a good molecular representation? Unfortunately, the chem-
ical nomenclature is typically difficult to follow. Meanwhile,
the chemical names themselves do not explicitly capture the
structural and bonding information. Therefore, different ways of
molecular presentations were developed based on simple rules
as well as being able to capture useful information.

We classify the numerous molecular representations into
three broad categories shown in Table 1: (i) the linear notation
category, of which the data structure is a string, (ii) the molec-
ular descriptor category, which uses hash-mapped bit string to
represent the 2D structure of a molecule and (iii) the graph
notation category, which uses a graph to represent the full
connectivity as well as the atomic features of a molecule. Of
note, there is always a trade-off between the complexity and
the description power of representations. While the aim of many
ongoing researchers is to achieve a representation method that
is both cheap in memory and strong in description power, the
reality is such a trade-off is inevitable. Therefore, the following
sections will be roughly following the logic of going from simpler
and weaker representations, to more complicated and powerful
representations.

Although the recent focus of the field has been majorly
devoted to the complicated graph notation category, the other
two types of representations have also shown great performance
in many drug response prediction tasks [15, 17–19]. Therefore, it
is still worth introducing the two earlier types of molecular pre-
sentations. When evaluating a molecular representation, three
basic principles should be considered. First, a representation
should be able to capture structural information of chemical
substances, since chemical or drug properties are heavily depen-
dent on structural information. Second, the generation rule of a
representation should be reasonably simple so that a program
can robustly follow it. Third, a representation should be as simple
as possible in its mathematical form, so that it can be easily
handled by downstream machine learning frameworks. We will
follow these principles throughout this paper.

As the advances of machine learning algorithms and
availability of large-scale datasets in recent years, many com-
putational approaches emerge for predicting drug responses.
Here, we briefly summarize related works in Table 2. There
are mainly two types of input: (i) genomic profiles [e.g. RNA-
seq, copy number variation (CNV), DNA methylation and DNA
mutation] of cell lines or patient samples, and (ii) physico-
chemical properties of drug molecules. In addition, auxiliary
data such as protein–protein interaction networks and drug
targets are sometimes considered to further extract features
from raw data for machine learning models. Although we
primarily focus on molecular presentations in this review,

related studies that only use genomic data as inputs without
drug-based features are also listed in Table 2 for references.
In addition to cell line-based drug responses, we included
other types of studies using PDX (studies 1 and 25), organoids
(study 2) or human clinical trials (studies 4, 5, 13, 16 and 20).
In these studies, the most widely used gold standard label is
IC50, which is defined as the concentration of a drug treatment
that achieves half of its maximal inhibitory effect. Depending
on the data type, other labels were occasionally used. For
example, in the study 5 in Table 2, clinical trial data of breast
cancer patients were used. The patients were classified into
responders and non-responders, which were determined by the
rate of pathological complete response. Another example is the
study 11 in Table 2, where the Connectivity Map (CMap) scores
were used to determine the drug response similarity between
two drugs. The CMap score was obtained by measuring gene
expression changes after drug treatment.

Of note, although we provide the predictive performances
of related studies in Table 2, those results are not directly com-
parable to each other. This is because predictive performance
is closely associated with many factors, including different
datasets, train-validation-test partitions, experimental designs
(e.g. predictions and evaluations across drugs, cell lines or drug-
cell line pairs) and evaluation metrics. Since these factors vary
dramatically across studies in Table 2, we cannot directly draw
conclusions that one model is better than another simply based
on the score numbers. Moreover, without held-out blind testing,
issues of overfitting and information leakage are often observed
in machine learning studies. In recent years, data challenges
emerge and provide a unique opportunity to systematically
and stringently benchmark different methods [20]. In data
challenges, participants used the same training data to build
models and the predictive performance was evaluated using
the same metric on held-out testing data without overfitting
or information leakage. Nevertheless, in Table 2, we include the
performances reported in literature, so that readers can have
an estimation of performances of these studies. Next, we will
introduce the three categories of molecular representations one
by one.

Linear notations
The representations introduced in this section are referred to
as linear notations for two main reasons. First, these molecular
representations are in the format of a 1D string. Second, the
generation rules generally follow a 1D graph traversal algorithm.
While this type of graph traversal algorithm is robust and easy
to follow, its output in nature carries only 1D information.

The IUPAC International Chemical Identifier [56] (InChI) and
the Simplified Molecular-Input Line-Entry System [57] (SMILES)
are two basic linear representations. Both representations are
generated by traversing the molecular connectivity graph based
on a depth-first search algorithm, which always exhausts a
branch of the graph to its leaf atom and returns the 1D traversal
result as a string. Two examples of the SMILES representation,
namely the isopropyl 4-hydroxybenzoate molecule and the 2-
methoxy ethyl formate molecule, are shown in Figure 1. The
arrows in both subfigures illustrate the linear molecule traversal
process that ultimately generates the SMILES representation.
Since the 1D traversal result depends on the starting atom,
there are multiple valid SMILES representations given a molecule
and the mappings between representations and molecules are
not unique. The idea of canonical SMILES has been created
to avoid degeneracy and generate a unique representation for
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Table 2. Studies about drug response and synergy prediction

Feature types Dataset Model Design for model testing Performance

study 1 [19] Morgan FP; individual
genotypes

GDSC, CTRPv2, PDX
samples

Neural network Across cell line-drug
pairs

Median Spearman’s
rho = 0.37

study 2 [21] Gene expression;
genomic mutation;
protein interaction
network

Colorectal and bladder
cancer patients

Ridge regression Across organoid Correlation r
square = 0.89/0.98

study 3 [22] Gene expression GDSC, CCLE, LINCS Ensemble learning Cross validation within
dataset

MSE = 2.0–4.8

study 4 [23] Gene expression Three clinical datasets
of cancer patients

Transfer learning Cross validation within
dataset

Mean AUC = 0.758

study 5 [24] Gene expression GDSC, clinical trial data Neural network Cross validation within
dataset

The difference of predicted
IC50s

study 6 [25] gene expression;
genomic mutation; CNV

GDSC, CCLE rotation forest cross validation within
dataset

MSE = 3.14 on GDSC and
0.404 on CCLE

study 7 [26] Gene expression; DNA
methylation; genomic
mutation; CNV

265 anti-cancer drugs in
961 cell lines

SVM and elastic net
regression

Cross validation within
dataset

Pearson’s
correlation = 0.3–0.5

study 8 [27] Gene expression CTRPv2, LINCS Semi-supervised
autoencoder

Across cell lines AUROC =∼0.7

study 9 [28] Gene expression;
protein targets of drugs
and pathways

GDSC Bayesian model,
MTL

Within and across cell
lines and drugs

Pearson’s
correlation = 0.30–0.93

study 10 [29] Structure-based drug
similarity; cell line
similarity

GDSC, CCLE A heterogeneous
network

Across cell lines Pearson’s correlation =∼0.8
on CCLE and ∼0.45 on GDSC

study 11 [30] ECFPs; drug response
similarity

CMap of 2.9 million
compound pairs

Neural network Across compound pairs Pearson’s correlation = 0.518

study 12 [31] Gene expression GDSC LASSO Across tumor samples P-values on response
differences

study 13 [32] Gene expression The NeoALTTO clinical
trial dataset

Gene expression
similarity

Leave-one-out
cross-validation across
samples

Concordance index > 0.8

study 14 [33] Chemoinformatic
features and FPs;
multiomic data

GDSC, CCLE Logistic regression Across drug-cell line
pairs

AUROC =∼0.7 on GDSC

study 15 [34] Cell line mutations;
protein–protein
interaction network

GDSC, CCLE A link prediction
approach

Leave-one-out
cross-validation

AUROC = 0.8474

study 16 [35] Gene expression GDSC, clinical trials of
two drugs

Kernelized rank
learning

Cross validation within
dataset

precision = 23% - 36%

study 17 [36] Chemoinformatic
features and FPs;
genomic data

NCI-ALMANAC Neural network Cross validation within
dataset

Pearson’s correlation = 0.97

study 18 [37] Gene expression Pan-cancer TCGA Random forest Across tumor samples accuracy = 86% and
AUC = 0.71

study 19 [38] Molecular FPs; gene
expression

GDSC, CCLE Neural network Cross validation within
dataset

AUROC = 0.89 on GDSC and
0.95 on CCLE

study 20 [39] Gene expression Clinical trial data from
TCGA

SVM Leave-one-out
cross-validation

Accuracy > 80%

study 21 [40] Proteomic,
phosphoproteomic and
transcriptomic data

Multiple cancer cell lines Multiple regression
models

Across cell lines MSE < 0.1 and Spearman’s
correlation = 0.7

study 22 [10] Molecular graphs;
genomic data

GDSC GNN Across cell lines, drugs,
and cell line-drug pairs

Pearson’s
correlation = 0.9310 and
RMSE = 0.0243 across pairs

study 23 [6] Omic data;
monotherapy;
gene–gene interaction
network

GDSC, CCLE, AZSDC Random forest Across drug–drug pairs Pearson’s correlation = 0.47

study 24 [4] Monotherapy; genomic
mutation; CNV; gene
expression

AZSDC Random forest Across drug–drug pairs Pearson’s correlation = 0.53

(Continued)
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Table 2. Continued

Feature types Dataset Model Design for model testing Performance

study 25 [41] Monotherapy; omic data GDSC, COSMIC, AZSDC,
PDX

Ensemble models Across drug–drug pairs Pearson’s correlation = 0.24
and ANOVA –log10(p) = 12.6

study 26 [42] Chemoinformatic
features, SMILES and
FPs; genomic data

GDSC Neural network Across cell lines Pearson’s correlation = 0.79
and RMSE = 0.97

study 27 [43] Molecular FPs; sequence
variation

GDSC, COSMIC Neural network Within cancer types Coefficient of
determination = 0.843 and
RMSE = 1.069

study 28 [44] SMILES; gene
expression;
protein–protein
interaction network

GDSC Neural network Across cell lines, drugs,
and cell line-drug pairs

Pearson’s correlation = 0.928
and RMSE = 0.887 across
pairs

study 29 [45] Gene expression;
genomic mutation

CCLE, CTD2, UCSC
TumorMap

Neural network Across cell line-drug
pairs

Pearson’s
correlation = 0.70–0.96

study 30 [46] SMILES and FPs; gene
expression data

GDSC Neural network Across cell line and
drugs

RMSE = 0.110 + − 0.008

study 31 [17] Canonical SMILES;
mutation state; CNV

GDSC Neural network Across cell line-drug
pairs

Pearson’s correlation = 0.909
and RMSE = 0.027

study 32 [47] Graph representation;
genomic mutation; CNV;
DNA methylation

GDSC, CCLE, TCGA GNN Across cell lines, drugs,
and cell line-drug pairs

Pearson’s correlation = 0.923
across pairs on TCGA

study 33 [48] Molecular FPs NCI-ALMANAC Neural network Across drug–drug pairs Pearson’s
correlation = 0.95–0.98

study 34 [49] Chemoinformatic
features and FPs; gene
expression

Multiple cancer cell lines Neural network Across drug–drug pairs Pearson’s correlation = 0.73

study 35 [50] Chemoinformatic
features and FPs

NCI-ALMANAC Random forest,
XGBoost

Across drug–drug pairs Pearson’s
correlation = 0.43–0.86

study 36 [51] Drug target; gene
expression

AZSDC, GDSC,
NCI-ALMANAC

Multitask learning Across cell lines Pearson’s correlation = 0.23
breast/0.36 colon/0.17 lung

study 37 [52] Molecular FPs and
SMILES; gene
expression;
monotherapy

Multiple drug synergy
databases

Neural network Across drug–drug pairs AUROC = 0.9577 and
MSE = 174.3

study 38 [53] Drug similarity and
protein similarity; drug
target

Multiple drug synergy
databases

Multitask learning Across drug–drug pairs AUROC = 0.8658 /
0.8715/0.8791

study 39 [54] Drug similarity; gene
expression similarity

NCI-DREAM Drug
Synergy data

Logistic regression Across drug–drug pairs AUROC = 0.43–0.74 and
Pearson’s
correlation = 0.42–0.74

study 40 [55] Drug target pathways;
monotherapy

Drug Combination
Database, literature

A manifold ranking
algorithm

In vitro validation Probability
concordance = 0.78

CTRP, Cancer Therapeutics Response Portal; TCGA, The Cancer Genome Atlas; PDX, Patient-Derived Xenograft; AZSDC, AstraZeneca-Sanger Drug Combination
Prediction DREAM Challenge; NCI, National Cancer Institute; AUROC, Area Under Receiver Operating Characteristic curve; SVM, Support Vector Machine; MSE, Mean
Squared Error; RMSE, Root Mean Squared Error; ALMANAC, A Large Matrix of Anti-Neoplastic Agent Combinations.

each molecule. In practice, the generation principles of canonical
SMILES differ between cheminformatic toolkits, but the unique-
ness of SMILES can be guaranteed within one toolkit. In contrast
to SMILES, the presentation of each molecule by InChI is guar-
anteed to be unique. Although SMILES has the ‘bad’ degeneracy
property, it turns out to be beneficial when data augmentation
is needed. It has been reported that using multiple SMILES
strings for the same molecule as an augmentation strategy had
successfully boosted model performance [58–60].

These two representations, especially InChI, have been
widely used for storing chemical structures. A user can easily
fetch these representations for existing molecules in databases
such as Drugbank [61] and Pubchem [62]. They can also be
generated from many well-established software packages,
including the CADD Group’s Cheminformatic Tools and User

Figure 1. Two Examples of SMILES Representations. The SMILES representation

of (A) isopropyl 4-hydroxybenzoate molecule and (B) 2-methoxy ethyl formate

molecule. In both sub-figures, the atom traversal order is labeled by numbers,

while the traversal operation is shown with the arrows.

Services [63] and the InChl generating package [64]. The major
advantages of SMILES and InChI have already surfaced: they
are easy to generate, have trivial mathematical structures
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and require small storage space. However, before we present
any application cases, one can easily notice an inherent
disadvantage of SMILES and InChI: they are 1D in nature so
that they cannot capture complicated structural information.
Moreover, SMILES notation mainly focuses on molecules with
bonds that can fit the 2-electron valence model and fails for
molecules that lie outside of this criteria [65].

Owing to the simplicity of their form, linear notations, espe-
cially SMILES, can be efficiently used in many machine learning-
based drug-related tasks [66], including drug response predic-
tions. The earliest usage of SMILES in the drug response pre-
diction dates back to a research on the GDSC dataset (study 30
in Table 2) [46]. A more recent study where SMILES are used as
molecular descriptors in the drug response prediction domain is
listed as the study 31 in Table 2.

Molecular fingerprint
Aiming at capturing more structural information, people devel-
oped molecular fingerprint (FP) methods to represent molecules.
Although a molecular FP is generally in the form of a bit string,
it is generated by functional group (structural key) or circular
neighbor (circular FPs) mapping algorithms, which are inherent
2D algorithms and differ from a linear notation. The generation
rule of molecular FPs is slightly more complicated than SMILES,
yet it is still easy to implement. The most commonly used
molecular FPs, including the FP2 [67], Molecular Access System
(MACCS) [68] and ECFP [69] FPs, are well integrated into existing
open-source cheminformatics software packages such as RDKit
[70], OpenBabel [67] and CDK [71].

Before introducing specific types of molecular FPs, we will
first summarize the pros and cons of these representations. The
major advantage of the molecular FP is its simple mathemat-
ical structure: it is always a fixed-length bit string (often 100
to 5000 bits), regardless of the size, shape and atom types of
input molecules. This characteristic makes it extremely friendly
to many downstream machine learning tasks. Furthermore, to
achieve better performance in drug response prediction tasks,
it is often necessary to integrate multiple features from both
the drugs and the genomic profiles of cell lines or patients. The
simple form of molecular FP enables it to be integrated into
machine learning models with other types of features. Another
advantage of molecular FPs is that they are very small in size,
resulting in fast model training and testing for downstream
machine learning.

Although molecular figureprints are simple in their mathe-
matical structure, they are very powerful in many applications,
except for tasks that require 3D structural information such
as stereochemistry. While linear notations inevitably sacrifice
description power for model simplicity, molecular FPs reside
at a well-balanced point. Here, we briefly introduce two major
types of molecular FPs based on the generation strategies: the
structural key FP and the circular FP.

Structural keys

The generation rule of the structural keys is simple: it uses a
binary bit string of 0 and 1 to encode the absence and presence
of functional groups. Two widely used structural keys are the
MACCS Keys [68] and the Chemically Advanced Template Search
[72]. The structural keys reliably encode the functional groups
of a molecule. However, one major disadvantage is that they do
not provide relative positions of these functional groups, leading
to information losses of the local environment or the scaffold

of molecules. One potential consequence is that structural keys
cannot distinguish structurally unrelated but biologically sim-
ilar compounds [73]. Another disadvantage is that they can
only encode known functional groups, and the determination of
functional groups is a difficult and subjective task.

It is worth mentioning how structural keys are involved in
the drug response prediction tasks. As covered in a recent review
by Güvençet al. [74], structural keys can be used for calculat-
ing drug similarity scores together with other drug descriptors.
These similarity scores were further used as features for down-
stream machine learning tasks [74]. The aforementioned review
provides a good summary of downstream machine learning
methods that accept drug similarity scores as features.

Circular FPs

Rather than describing the existence of functional groups, cir-
cular FPs aim at representing the neighborhood environment
of each atom. One of the most widely used circular FPs is the
Extended Connectivity FPs (ECFPs) [69]. The most popular ECFP
is Morgan’s FP, which generates FPs based on Morgan’s algorithm.
First, the user needs to pre-define a radius of interest. Then
for each atom, this algorithm determines the neighboring sub-
structures within the radius of interest and hash the results into
a fixed length of bit-string. After repeating this procedure for
every atom, the FP is obtained. A scheme of this process is shown
in Figure 2 for the isopropyl 4-hydroxybenzoate molecule. This
generation rule is simple, which has been implemented in many
cheminformatics softwares.

Compared with the structural keys, ECFP can always generate
a meaningful FP representation through self-learning substruc-
tures based on the pre-defined radius of interest without prior
knowledge of any functional groups. However, if we examine
Figure 2 more carefully, there are cases that multi sub-structures
are hash-mapped into the same bit. As a result, it is not directly
interpretable, since we cannot undo the hash-map process and
decipher what each 0 or 1 of the bit-string refers to. Moreover,
the hash-map operation would inevitably lead to information
loss due to bit collision issues. If interpretability is not a concern,
ECFPs are in general very powerful, as illustrated by the Morgan’s
FP used in study 1 in Table 2 [19].

Graph notations
In recent years, graph notation has become a state-of-the-art
molecular representation. Compared with the simpler linear
notations and FPs, the graph notation encodes more structural
information [75]. As a trade-off between description power and
complexity, the graph notation is complicated in many ways
and machine learning methods on the graph representations
by themselves have become a focus of the current study [75–
77]. We therefore divide this section into two parts: we will
first introduce the graph representation methods, then briefly
introduce some existing graph propagation methods. For a more
detailed review of the entire graph notation regime, we refer
readers to a thorough review by Sun et al. [78].

The graph representation

In the graph representation of molecules, each atom is
represented as a node, while bonded atoms are connected
by edges. The connectivity relationship between nodes can
be easily described by an N∗N adjacency matrix (N being the
number of atoms), usually referred to as the matrix A, where
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Figure 2. Examples of the MACCS FP and the ECFP Type FP. (A) We use the MACCS FP of the glycinamide ribonucleotide molecule as an example, where the presence

of functional groups is denoted by 1 in the FP bit string, absence of functional groups is denoted by 0. (B) The FP generation process of the isopropyl 4-hydroxybenzoate

molecule is shown based on an ECFP type strategy. For each non-hydrogen atom (red), an initial integer identifier is assigned to represent the local information (e.g.

numbers of bonds and connecting atoms) through a hash mapping function. Then, the identifiers are iteratively updated based on the Morgan algorithm, which

combines the initial identifiers with identifiers of neighboring atoms. The neighboring atoms are defined by a circular fragment, where the radius value (r = 0,1,2,3 in

the figure) gradually increases to include more neighboring atoms. Finally, redundant identifiers (e.g. two circular fragments contain identical atoms and connections)

are removed and a fixed length bit string is derived from the identifier list.

the element aij denotes whether or not the node i and the
node j are connected. Another important matrix in the graph
representation is the node feature matrix X, where each node is
encoded by a set of user-defined features. The feature matrix of
a molecule can take in common chemical properties of atoms,
for instance, atom electronegativity, formal charge, radius, etc.
If we incorporate the 3D dimensional coordinates of each atom
into the node feature, then the graph notation would be capable
of capturing the full 3D structural information of a molecule,
which cannot be achieved by any of the previous molecular
representations. Similar to the idea of node feature matrix X,
one can create a matrix E to represent edge features as well,
for instance, bond orders, bond types, bond length, for each
chemical bond. Figure 3A is an example of the adjacency matrix
A, the node feature matrix X and the edge feature matrix E of
the butadiene molecule. This is the most intuitive and simple
type of graph representation for molecules.

Application-wise, the generation of graph representations
has been achieved by many existing softwares, including the

RDKit [70] package and DeepChem [79], which are specifically
designed for chemistry purposes, and Deep Graph Library [80],
which is a more generic graph neural network (GNN) module.
These softwares have documented API, a live and resourceful
user community, and are well maintained. While these packages
deal with the heavy lifting of generating the adjacency matrix,
how to customize the node and edge features is a key factor to
improve performance.

Graph-based neural networks

Once we have the graph presentations, the next question is
how to feed them into machine learning models. Owing to
the complexity of the mathematical structure used in graph
presentations, advanced machine learning algorithms are
needed, such as GNNs. In addition to chemistry, other research
fields that analyze graph-like data are also interesting, including
social media connectivity [81, 82] and recommendation systems
[83, 84]. In recent years, various types of graph learning methods



Representation of molecules for drug response prediction 7

Figure 3. Illustration of graph representations and graph convolution. (A) Graph representation matrices, namely, the Adjacency matrix A, node feature matrix X and

edge feature matrix E, of the butadiene molecule. (B) Information flows through graph convolution. (C) The graph convolution operation in a GNN architecture, the

node of interest is colored in red and edges connected to the node of interest are colored in red. (D) The scheme of a convolution operation in a CNN architecture. On

the left, an example 2-by-2 convolutional kernel and the corresponding input and output are shown. On the right, the node of interest is colored in red and the kernel

is represented by the dashed square. (E) The scheme of the Attentive FP model. The graph attention mechanism is introduced as a trainable feature to represent both

topological adjacency and intramolecular interactions between atoms with large topological distances. For each target atom and its neighboring atoms, state vectors

are used to describe the local environment through node embedding. These state vectors are progressively updated to include more information from neighborhoods

through the attention mechanism, where state vectors are aligned and weighted to obtain attention context vectors and gated recurrent unit layers are used to update

state vectors. (F) Instead of predicting a specific property of a molecule, a GCN-based approach was proposed to predict universal properties of molecules as well as

materials. (G) The scheme of the AGBT method that extracts information from weighted colored algebraic graphs of molecules. This method combines two types of

molecular representations: the BT features generated from bidirectional transformers treatment on SMILES, and the AG features generated from eigenvalues of the

molecular graph’s Laplacian matrix.

or frameworks have been developed [76, 85, 86]. We will
introduce the widely used Message Passing Neural Network
(MPNN) framework and Neural FP model, as well as more
recent approaches including Attentive FP, a universal graph
convolutional network (GCN) and algebraic graph-assisted
bidirectional transformer (AGBT). We will further introduce
advanced treatments of graphs. In terms of implementations,
there are many well-established software packages, such as the
Keras- and Tensorflow-based Spektral [87] and DeepChem [79].
Both packages have APIs with the existing machine learning and
deep learning modules integrated with graph representations
of popular GNN-related datasets. A user who is familiar with
traditional machine learning and deep learning models is able
to pick up these two packages.

Examples of GNNs and graph-based molecular presentations

Many GNN propagation rules are under the MPNN framework
[86, 88]. It is a general framework for learning node embed-
dings or learning the whole graph representations. The MPNN

framework decomposes the learning into two phases: (i) the
message passing phase, during which the information is shared
between nodes to update node features, and (ii) the readout
phase, during which the feature vector of the whole graph is
learned [86]. An example of this framework is the GCN developed
by Kipf et al. [76]. In Figure 3B–D, the convolution operation
in a GCN is very similar to that in a traditional convolutional
neural network (CNN). While the convolution operation in a
CNN collects information from the node of interest in a given-
sized kernel, the convolution operation in a GCN collects the
information from neighborhood nodes that are connected to the
node of interest. The connectivity between nodes is encoded in
the adjacency matrix, which plays a similar role as the convolu-
tion kernel in a CNN. The major difference is that in GCN, the
convolution operation is actually used to update information,
instead of generating a new feature map in CNN. Intuitively,
multiple rounds of graph convolution operations can capture
information from distal nodes [86]. We can also borrow the idea
of pooling layers in CNN as readout functions for GCNs, or any
MPNNs [86]. Study 22 and study 32 in Table 2 are two examples
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on the direct application of the GCN on popular datasets within
the drug response prediction domain. Besides GCN, there are
many other implementations of the MPNN framework, which
have shown promising results on drug classification [85, 89–91],
drug response prediction and chemistry.

In addition to the MPNN framework, other types of GNNs
have been proposed recently to further improve the graph-
based propagation procedure. In the Neural FP model [92], for a
target node of interest within a molecular graph, the influence
of its neighbor nodes decreases with the topological distance.
However, the topological adjacency is not the only factor that
determines node–node interactions. Nodes with large topolog-
ical distance are still able to form intramolecular interactions
such as hydrogen bonds. In Figure 3E, the Attentive FP model
was proposed to address this issue, in which the impact of a
node was learned through a graph attention mechanism [89].
Compared with previous graph-based molecular presentations,
Attentive FP balances the contribution of topological adjacency
as well as hidden linkage among nodes through the attention
mechanism. In Figure 3F, a GCN-based approach was proposed
for predicting universal properties of molecules and materials
[93]. It is also the first attempt to predict the properties of 2D
and porous materials by GCN. Moreover, a new method inspired
by algebraic graphs has been reported recently [94]. In this AGBT
framework in Figure 3G, the 3D molecular information is first
encoded into a weighted colored algebraic graph. By calculating
the eigenvalues of graph Laplacians, the algebraic graph features
are extracted. Briefly, the first non-zero eigenvalue, Fiedler value,
corresponds to the algebraic connectivity that reflects the over-
all connectivity and robustness of the graph. The number of zero
eigenvalues corresponds to the number of connected compo-
nents. Moreover, the algebraic graph is mathematically associ-
ated with the geometric graph, so that molecular descriptors can
be obtained through calculating statistics (e.g. the maximum,
minimum and standard deviations) of non-trivial eigenvalues
of the Laplacian matrix. The computational cost of eigenvalue
calculation is relatively expensive. Meanwhile, the information
from unlabeled molecular data was learned and extracted as
latent vectors by the bidirectional encoder of a transformer
model. By fusing multiple representations from the algebraic
graph, the bidirectional transformer and other machine learning
algorithms, the AGBT framework improved the predictions of
many molecular properties.

Advanced topics: pre-training and multi-task learning

Beyond different ways of constructing GNN architectures, there
are two practical topics on GNN applications that can further
boost predictive performance: pre-training and multi-task learn-
ing (MTL). The pre-training strategy [95] proves to be powerful in
natural language processing [96] and computer vision [97]. Thus,
it is not surprising that this idea has been brought into GNN
applications in chemistry [98]. The motivation of pre-training is
to solve two issues in GNN training: first, in many application
scenarios, the dataset is scarce [99], which is a common issue
for many chemistry datasets; second, GNNs in chemistry often
run on out-of-distribution graph structures [100]. The main idea
of pre-training is straightforward: a model could be first trained
on a larger dataset, which does not necessarily share the same
task as the actual dataset. Then, the pre-trained model will be
trained, or fine-tuned, on the actual dataset. If we treat this
procedure as an optimization strategy, the pre-training step
leverages other datasets to help the model move toward the
desired global minimum, whereas the fine-tuning step helps

the model to actually arrive at that point. Of note, this strategy
requires extra caution, because improper pre-training may lead
to a decrease in performance [101]. Nevertheless, several studies
have reported that a properly implemented pre-training strategy
enhanced the performance of GNNs for both classification tasks
[100] and regression tasks [102].

The second strategy is MTL, which also aims at solving the
data scarcity issue similar to pre-training. The pre-training strat-
egy prioritizes one task and treats other tasks as reference
datasets, whereas MTL does not prioritize any given task and
trains all tasks in parallel. The extra tasks serve as constraints
during MTL, which improves both the performance and train-
ing speed [103]. A review article introduces more about MTL
[103] and this strategy is reported to be successful in many
classification tasks on GNNs [86, 104]. For regression tasks, an
advanced kernelized MTL strategy was tested in a recent work
about predicting drug response [5]. These results indicate that
MTL together with GNNs are beneficial to drug-related tasks.

Summary of graph notations

As the state-of-the-art molecular representation method, graph
notations are not perfect owing to the interpretable issues. The
saliency map, a commonly used tool in computer vision, pro-
vides an opportunity to analyze the activation of the input
graphs and rationalize the feature importance of graphs, or
even produce better features [10]. Unlike the better-established
molecular FP representations, the graph representation is still
developing rapidly, so that selecting a proper notation, as well
as a proper GNN architecture, may be very challenging. Another
issue of graph notations is that they may fail to describe com-
plicated molecules, such as coordination molecules or ionic
molecules [12]. In terms of predictive performance, graph-based
molecular representations are not necessarily the best solution.
A recent comprehensive benchmark study shows that on aver-
age descriptor-based traditional machine learning models out-
performed graph-based neural networks on 11 datasets related
to drug discovery [105]. In addition, descriptor-based models
require much less computational resources than neural net-
works. These results indicate that traditional descriptor-based
methods should be considered and tested, especially given the
low computational cost and competitive performance.

Conclusion and future perspectives
Throughout the review, we mainly provide application examples
in the drug response prediction domain. In fact, many molec-
ular representations and their advanced variants have shown
promising performance in other tasks in the broader field of
drug discovery. For instance, two variants of the linear notations,
the Self-referencIng Embedded Strings (SELFIES) [106] and the
SMILES Pair Encoding [107], have both shown promising perfor-
mance in generation tasks on the QM9 dataset [108] and the
ChEMBL25 dataset [109, 110], respectively. A novel molecular
FP combining the concepts of substructure and atom-pair FP
was proposed [111]. It was benchmarked on a virtual screening
dataset [112] and demonstrated good performance. Although
these examples are not direct applications in the drug response
field, the results indicate that new representations with better
descriptive powers may be beneficial for drug response predic-
tion.

At the end of this review, one may raise a question on how
to choose representation given a drug response prediction task.
As we mentioned earlier, stringent comparisons such as data
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challenges are needed to benchmark the performance of differ-
ent methods. The recent graph notation-based approaches have
shown promising better results on many tasks, yet we also need
to consider the trade-off among descriptive power, complexity,
feasibility and computational resources. Linear notations and
molecular FPs are inherently much easier to be incorporated
with the genomic data in a machine learning model, which can
be achieved by a simple vector concatenation.

We encourage beginners to start with a simpler molecular
representation, then gradually try more advanced ones. The
majority of molecular representations we introduced in this
review have been maturely implemented and incorporated into
existing software packages. Considering many application cases
mentioned above, even simple representations, SMILES and
molecular FPs, can provide an acceptable performance on the
drug response prediction task. Therefore, there is no need to
treat molecular representations as rocket science—it is just an
easy but powerful tool to help us build better drug response
prediction models.

Key Points
• This review provides a thorough survey on widely used

molecular representation methods.
• For each molecular representation method, we intro-

duce its generation mechanism.
• We present its implementation along with application

examples in drug response prediction.
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61. Kratochvíl M, Vondrášek J, Galgonek J. Interoperable chem-
ical structure search service. J Chem 2019;11:45.

62. PubChem. PubChem. https://pubchem.ncbi.nlm.nih.gov/.
63. NCI/CADD Group Chemoinformatics Tools and User Ser-

vices. https://cactus.nci.nih.gov/index.html.
64. InChI Trust - developing the InChI chemical structure standard.

https://www.inchi-trust.org/ (2014).
65. O’Boyle NM. Towards a universal SMILES representation -

a standard method to generate canonical SMILES based on
the InChI. J Chem 2012;4:22.
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