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Abstract

Combination therapy has shown an obvious efficacy on complex diseases and can greatly reduce the development of drug
resistance. However, even with high-throughput screens, experimental methods are insufficient to explore novel drug
combinations. In order to reduce the search space of drug combinations, there is an urgent need to develop more efficient
computational methods to predict novel drug combinations. In recent decades, more and more machine learning (ML)
algorithms have been applied to improve the predictive performance. The object of this study is to introduce and discuss the
recent applications of ML methods and the widely used databases in drug combination prediction. In this study, we first
describe the concept and controversy of synergism between drug combinations. Then, we investigate various publicly
available data resources and tools for prediction tasks. Next, ML methods including classic ML and deep learning methods
applied in drug combination prediction are introduced. Finally, we summarize the challenges to ML methods in prediction
tasks and provide a discussion on future work.
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Introduction
In recent decades, with the discovery and application of new
therapeutic targets, many advances have been made in drug
development [1–4]. However, due to the biological complexity
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of cancer, cardiovascular diseases and other diseases, multiple
target genes are involved and their protein products play key
roles in controlling abnormal pathways and networks [5]. The
monotherapy usually cannot break down the entire disease
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pathways and networks [6]. The redundancy and complexity
of pathways often lead to compensation and resistance to
monotherapy [7]. In many cases, drug resistance is a major
obstacle for the effective treatment, which is often caused
by the heterogeneity of complex diseases [8–11]. The specific
mechanisms of drug resistance include increased efflux of drugs
[12], mutations of target proteins [13] and activation of disease
alternative pathways [14]. In order to overcome the limitations of
monotherapy, combination therapy is presented as a promising
therapy to achieve more disease control [15]. The theoretical
basis of combination therapy is that multiple drugs can be
used to target multiple targets, pathways or cellular processes
involved in the pathogenesis of a specific disease type [15, 16].
Compared with monotherapy, combination therapy can greatly
increase the therapeutic effect, decrease the dosage to avoid
toxicity and slow down the development of drug resistance
[17]. Thus, combination therapy has become a standard clinical
treatment strategy for many complex diseases such as cancer,
acquired immune deficiency syndrome, asthma, diabetes and
bacterial infection [18, 19].

Clinical experience is obviously not an efficient method to
identify a large number of effective drug combinations [20].
Subsequently, systematic large-scale screening techniques are
conducted, including high-throughput screening (HTS) method
[21] and multiplex screening for interacting compounds method
[22]. Relying on these large-scale screening methods, a large
number of available drug combination databases have been
accumulated. These databases greatly accelerate the discov-
ery of drug combinations. However, as the number of drugs
increases, the search space exponentially explodes, thus it is
impractical to screen all possible drug combinations for all pos-
sible indications [23–25]. Therefore, computational methods are
urgently needed to reduce the search space of drug combina-
tions.

In the past decades, computational methods have been
widely used in the prediction of drug combination, including
systems biology methods, kinetic models, mathematical meth-
ods, stochastic search algorithms and machine learning (ML)
methods. Systems biology methods focus on the control and
analysis of biological networks, in which biological knowledge
is needed [26]. The limitations in biological knowledge make
it difficult to large-scale drug combination discovery. Kinetic
modeling methods simulate the dynamic changes of nodes
in realistic biological networks using kinetic equations [27].
However, the kinetics of most biological networks cannot be
well-defined. In the mathematical methods, one or more direct
mathematical models [28] and statistical tests [29] are applied.
The success rates of them mainly depend on the quality
of the assumptions behind the models. In stochastic search
algorithms, drugs are iteratively combined and measured, in
effect searching through the vast space of possibilities [30].
However, due to time and space costs of the calculation, they
are only computational accessible to small datasets. Some
studies of these methods and their brief descriptions are
listed in Table 1. Different from the above hypothesis-driven
methods, which are limited by prior knowledge and difficult
to processing larger dataset, ML methods are more data-
driven prediction. Given a certain amount of training data,
they can learn the complex nonlinear relationships between
input attributes data (such as chemical structure) and the
associated output (such as synergy score) [31, 32]. ML methods
have been increasingly applied to drug combination prediction
due to their high predictive performance and large prediction
range [16, 33].

Moreover, Dialogue for Reverse Engineering Assessments and
Methods consortium (DREAM) (www.dreamchallenges.org) has
launched two community challenges to promote the develop-
ment of innovative drug combination prediction methods. The
first challenge, NCI-DREAM [28], is to predict 91 drug combi-
nations in a single cell line (OCI-LY3) launched in 2012. ML
methods are not applicable due to less training data. The best
performing method, DIGRE, uses a mathematical model. The
other challenge is AstraZeneca-Sanger Drug Combination pre-
diction (AZ-DREAM) [34], which is sponsored by AstraZeneca
and the Sanger Institute in 2015. This challenge provides 11
576 combinations in 85 cancer cell lines. There are 160 teams
participating and MLs are more competitive to this dataset. The
winning method is based on Random Forest (RF) [35] method, an
ensemble learning-based ML method.

The rest of the review is divided into six sections, starting
with section Machine learning workflow for drug combina-
tion prediction, which summarizes the ML workflow for drug
combination prediction. Section Definition of synergistic effect
in prediction task introduces the concept and controversy of
synergism and antagonism between drug combinations. Section
Databases, web servers and software tools provides the infor-
mation about related databases, including drug combination
databases and other related databases. Section Machine learning
methods used in drug combination prediction summarizes the
ML methods for drug combination prediction, including classic
ML methods and deep learning (DL) methods. Section Challenges
and future work concludes the challenges and future work.

Machine learning workflow for drug
combination prediction
In ML methods, the problem of drug combination prediction is
usually formulated as a multi-class classification or a regres-
sion task. Combination effects could be classified as syner-
gistic, additive and antagonistic effect according to the def-
inition. While most classification studies classify drug com-
binations into two categories, synergy and non-synergy. Non-
synergy involves slight synergy, additive effect and antagonism.
The regression task is to predict the quantitative synergistic
score of drug combination. In the input data for training, the
synergy/non-synergy categories or synergy scores are consid-
ered as label data, while the various properties about drugs,
drugs’ target proteins, or cancer cell lines are regarded as feature
data. There are three main ML approaches applied in the task
of drug combination prediction, i.e. supervised learning [36],
unsupervised learning [37] and semi-supervised learning [38, 39].
In supervised learning, the training data are composed of input
features and output labels of samples. Different models are used
to learn a function that maps an input to an output. An optimal
model can determine the labels for unseen instances correctly.
The purpose of unsupervised learning is to learn the hidden pat-
terns from unlabeled input data. For example, clustering is the
most popular technique in unsupervised learning [40]. In semi-
supervised learning, the training data consist of a small number
of labeled samples and a large number of unlabeled samples.
The labeled samples are used to predict the unlabeled samples
through the applied algorithms in semi-supervised learning,
such as manifold ranking algorithms [38]. So far, most of the
methods for predicting drug combinations are supervised learn-
ing. Therefore, this review mainly focuses on the application of
supervised ML.

The workflow for predicting drug combinations using ML
methods is shown in Figure 1. Firstly, the samples, labels and
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Table 1. A list and brief description of some computational methods reviewed in this manuscript

Category of
methods

Abbreviation Algorithms Description

Systems biology
methods

MTOI Multiple target optimal
intervention

MTOI identifies potential drug targets and suggests
optimal combinations of the target intervention that best
restore the network to a normal state [128].

Network proximity
calculation

The topology relationships between drug modules
(subnetworks of drug target proteins) and disease
modules (subnetworks of disease proteins) were
calculated according to the distance between protein
nodes [129].

TIMMA Target inhibition
interaction using
maximization and
minimization
averaging

TIMMA searches for optimal set of cancer-specific targets
of each drug based on drug-target network [130].

Kinetic models Kinetic model A kinetic model for several small networks with typical
crosstalk modules can investigate crosstalk in inducing
drug resistance [27].

Mathematical
methods

CDA Combinatorial drug
assembler

CDA makes hyper-geometric tests for signaling pathway
gene set enrichment analysis to perform signaling
pathway expression pattern analysis and drug set pattern
analysis [29].

Stochastic search
algorithms

MACS Medicinal algorithmic
combinatorial screen

A novel fitness function based on the level of inhibition
and the number of drugs is applied with search
algorithms [30].

Classic machine
learning methods

SVM Support vector
machine

SVM constructs a hyperplane or a set of hyperplanes to
classify data points [82, 131].

NB Naïve Bayes Naïve Bayes is a statistical classification method based on
the Bayes rule of conditional probability [82, 90].

LR Logistic regression LR assumes that the data obey the Bernoulli distribution
(binomial distribution). Use the maximum likelihood
function to solve the parameters, so as to achieve the
purpose of data classification [132, 133].

RF Random forest An integrated classifier consisting of multiple decision
trees [36, 81, 97–103] .

ANN Artificial neural
network

An ANN is based on a collection of connected units or
nodes called artificial neurons, which are aggregated into
layers [93].

SGB Stochastic gradient
boosting

SGB [87] uses an ensemble of weak classifiers to construct
a prediction model, typically decision trees that
incorporate randomization into the procedure [82].

XGBoost Extreme gradient
boosting

XGBoost is a tree learning algorithm for sparse data
processing in the framework of gradient boosting and
provides parallel tree promotion [36, 80, 135].

GTB
(GBM/GBRT)

Gradient tree boosting
(gradient boosting
machine or gradient
boosted regression
tree)

GTB algorithm is based on regression tree. Each tree is
learned from the residual of all previous trees using the
negative gradient value of loss function in the current
model [136].

FM Factorization machine FM models pairwise interactions via inner products of
respective feature latent vectors using the matrix
factorization method [94, 137].

Deep learning
methods

FNN Feedforward neural
network

A FNN is an ANN with multiple fully connected layers
between the input and output layers.

DBN Deep belief network DBN is composed of stacked RBM. RBM is a generative
stochastic ANN with a bipartite structure.

AE Autoencoder AE is a neural network consisted of an encoder and a
decoder, which has an internal (hidden) layer that
describes a code used to represent the input.

GCN Graph convolutional
network

The GCN used a convolutional neural network to do
graph embedding, and thus solved a link prediction task.
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Figure 1. Workflow of ML methods used in drug combination prediction.

features are retrieved from drug combination databases and
other related databases. In a sample, each instance (i.e. drug
and/or cancer cell line) is represented by a feature vector, which
reflects structural and/or other properties of the corresponding
instances. Then the feature vectors of each instance are concate-
nated or fused to obtain the feature vector of each sample. Next,
these feature vectors and corresponding labels can be fed into
classic ML or DL models for training. The parameters of the ML
models can be optimized during the training stage. Then various
metrices are used to evaluate performance of these models and
to select the optimal one. After training stage, these models can
be applied to an external test set to evaluate the generalizability
or to predict novel drug combinations. Biological experiments
or literatures searching are conducted to verify the prediction
results. Finally, some interpretable analysis would be performed
to explore the related biological mechanism.

Definition of synergistic effect in prediction
task
As mentioned in above section, the prediction task of drug com-
bination is usually divided into classification and regression task
(Figure 2). In classification task, the combination effect of drugs
is usually classified as synergistic, additive and antagonistic
effect. Generally speaking, the synergistic, additive or antago-
nistic effect means that the effect of two drugs is greater than,
equal to or less than the sum of the effects of individual drugs.
The additive effect is mainly used as a boundary to distinguish
synergistic and antagonistic effect [17]. The effect or response of
a drug is usually measured by the inhibition or viability of cell
proliferation [41, 42].

In addition to the above classification methods for drug
combination effects, Chou and Talalay et al. [17] subdivided the
degree of synergy into additive, slight synergism, moderate syn-
ergism, synergism, strong synergism and very strong synergism.
The degree of antagonism was also divided in the same way.
Tang et al. [43] divided the drug combination into five categories:
strong antagonism, weak antagonism, non-interaction, weak
synergy and strong synergy.

In regression task, the synergism or antagonism of drug
combination is quantified based on different models. The
basic assumptions of these models are different. In previous
reviews [17, 43–45], some definitions of synergy quantification
were described in detail. In the past 20 years, researchers have
not reached a consensus on the quantification and accurate
definition of synergism and antagonism, which remains one of
the biggest challenges in this field [16]. In these quantification
models, the two most widely used reference models for
calculating the synergistic and antagonistic effects of drug
combinations are the Loewe additivity model (Loewe) [46] and
the Bliss independence model (Bliss) [47].

Loewe additivity model defines the effect of the combination
of a compound with itself as additive effect. For the combination
of drug 1 and drug 2, let d1 and d2 be the dosage of drug 1 and
drug 2 in combination, Di represents the dosage of single drug
required when the drug is used alone to achieve the combination
effect ELoewe, and E1 and E2 refer to the effects obtained by using
drug 1 and drug 2 alone, respectively. According to Loewe, when
there is no interaction between drug A and drug B, the Loewe
additivity model of this combination is defined as:

d1

D1
(
when E1 = ELoewe

) + d2

D2
(
when E2 = ELoewe

) = 1 (1)
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Figure 2. Classification and regression task in drug combination prediction. The color figure is made using R SynergyFinder package [70]. Note: EA,B, EA, EB refer to the

effect of treatment with drug combination (A + B), drug A and drug B respectively. Loewe: Loewe additivity model. Bliss: Bliss independence model. HAS: Highest Single

Agent model. ZIP: Zero Interaction Potency model.

Then Chow-Talalay combination index (CI) [17] for Loewe
model assigns a quantitative measure to any given drug com-
bination:

SLoewe = CI = d1

D1
+ d2

D2
(2)

If CI is less than (or greater than) 1, the combination is
considered to be synergistic (or antagonistic).

The Bliss independence model takes probabilistic view and
considers that the two drugs of a combination have probability
independence. E1 and E2 are considered as the effects obtained
by using drug 1 and drug 2 alone, and EBLISS is considered as the
combination effect. When drug 1 and drug 2 act independently,
this combination can achieve the following equation:

When EBLISS is greater than or less than the right-hand side of
the equation, there is a synergistic or antagonistic effect.

EBLISS = E1 + E2 − E1E2 (3)

There are many studies comparing Bliss with Loewe models
[43, 45, 48–51]. In these comparisons, Loewe model is more
consistent with the expected combination effect of two drugs
acting on the same target or pathway, while Bliss model aims to
non-interactive drug combinations, which means the two drugs
independently act on different targets or pathways. Loewe model
requires a dose–response curve for a single drug, but Bliss model
does not. Moreover, Bliss model does not have a definition of
‘additive,’ because when a drug is tested in combination with
itself, it will not seem to be ‘independent.’

In recent years, a variety of models have been developed to
evaluate the effect of drug combination. Most of the models
are derived from the variants of these two models [52, 53]. In
addition, median-effect [54], highest single agent (HSA) model
[55] and zero interaction potency (ZIP) model [56], etc. are also

mentioned in our review. It should be noted that the synergy
of drug combination depends on the specific dosage of drugs.
Therefore, after determining the synergistic drug combinations,
further experiments are needed to determine the synergistic
dose range.

Databases, web servers and software tools
The databases, web servers and software tools available in drug
combination prediction including drug combination related- and
other related-databases, which provide label (sample) and fea-
ture data, respectively. The statistics and links of the databases
are listed in Table 2.

Drug combination databases are mainly established to collect
drug combination information. In this review, we list nine
databases, six web servers and four software tools. Different
criteria are used to classify and quantify drug combinations
in these databases, which can be used as the benchmarks
for advanced ML methods to implement the classification or
regression tasks. For classification task, the drug combinations
are often classified as ‘synergistic/additive/antagonistic’ or
‘efficacious/non-efficacious’ in these databases. For regression
tasks, these databases provide various synergy scores to quantify
the interaction between the drugs in combinations.

Among these databases, DrugComb, DrugCombDB, SYN-
ERGxDB, NCI-ALMANAC, O’Neil et al. study and AZ-DREAM
mainly focus on anti-cancer drug combinations. Figure 3 shows
the number of overlapping drugs, combination experiments
between three databases, DrugComb, DrugCombDB and SYN-
ERGxDB. In terms of the statistics, there is some overlap between
the three databases since part of the data in these databases
were collected from NCI-ALMANAC and O’Neil et al. study. In
addition to a variety of cancers, DrugComb also provided data
for other diseases such as malaria and COVID-19. In addition,
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Figure 3. The number of overlapping (A) drugs, (B) combination experiments and (C) cell lines between three anti-cancer drug combination databases, i.e. DrugComb,

DrugCombDB and SynergxDB. The number of drugs and cell lines only includes those involved in drug combination data. The statistical results of drugs and combination

experiments are the approximate number of estimates since there are different identifies of drugs provided by the three databases, and the situation of synonyms is

taken into account.

ASDCD was constructed for antifungal drug combinations. DCDB
and TTD databases collect many kinds of drug combinations for
a variety of human diseases.

In addition, we list six web servers containing DrugComb,
DrugCombDB, SYNERGxDB, NCI-ALMANAC, DrugR+, ASDCD and
SynergyFinder. The introduction of web servers is along with
that of databases and soft tools. In these websites, users can
search and visualize the synergy effects of drug combinations
on specific tissues or cell lines. Besides, four software tools,
i.e. SynergyFinder, Synergy, Combenefit and CompuSyn, are also
used to calculate the synergy scores of drug combination based
on some synergy models. The software tools can also provide
the visualization, analysis and quantification of synergistic or
antagonistic drug combination effects.

Other related databases introduced in this review can be
used as the feature data of samples to be fed into ML mod-
els. When applying ML methods to make predictions, choosing
appropriate feature data as input can effectively improve model
prediction performance, and reduce training time and the risk
of overfitting. The data stored in these databases including (1)
chemical feature of the drugs, including the chemical structures,
the anatomical therapeutic chemical (ATC) codes, chemical–
chemical interactions (CCI); (2) feature data of drugs’ target pro-
teins, including gene expression data, protein sequences, gene
ontology (GO) terms, pathways, etc.; (3) pharmacological infor-
mation, including cell line response to drugs, drug side effects
(SE) and other information. Statistics and some information of
these databases are shown in Table 2. The brief introduction of
each other related database is shown in Supplementary file.

DrugComb

DrugComb is a web-based database published in 2019 [41]
and updated in March 2021 [57]. In addition to data of drug
combination synergy, the monotherapy sensitivity screening
data are also provided, involving diseases such as cancers,
malaria and COVID-19. The data stored in the DrugComb
database are collected from 37 studies. Both combination and
single drug screening data provided in this database involve 8397
drugs. Combination data stored in DrugComb (v1.5) contain 739
964 combination experiments for 4268 drugs tested in 288 cell
lines. DrugComb also provides five types of synergy score for
these combinations. The synergy scores involve four commonly
used reference models, Bliss, HSA, Loewe, and ZIP and a novel

measurement named S score. Additionally, the targets of drugs
are provided in the database.

DrugComb provides a web server to analyze and visualize the
synergy of drug combinations. In this website, it can provide the
predicted synergy scores of a given drug combination for a cell
line at the single dose level. The prediction is based on a ML
model, CatBoost [58], which is a gradient boosting framework
based on decision-trees. Furthermore, DrugComb also uses a
drug-target network-based model to visualize the mechanisms
of action of drug combinations.

DrugCombDB

DrugCombDB [59] is also a web-based database of drug combi-
nations released in 2019. The data in DrugCombDB are from four
sources, i.e. HTS assays of drug combinations, the U.S. Food and
Drug Administration (FDA) Orange Book [60], manual curations
from the literatures, and external databases. In total, Drug-
CombDB includes 498 865 combination experiments, covering
5350 drugs and 104 cancer cell lines. It also provides quantitative
synergy scores based on four models, i.e. HSA, Loewe, Bliss
and ZIP.

In the DrugCombDB website, the properties of the combi-
nation or component drugs are also concluded, such as the
common target proteins of the combination, molecular weight
and chemical structure.

SYNERGxDB

SYNERGxDB [61] is a pharmacogenomic database released in
2020. It integrates nine drug combination datasets from aca-
demic groups and pharmaceutical companies, resulting in 536
596 combination experiments for 1977 compounds tested in
151 cell lines. In addition to drug combinations, SYNERGxDB
also includes metabolomics, gene expression, copy number and
mutation profiles of the cancer cell lines. All the drugs and cell
lines are annotated to unique identifiers. The same four synergy
scores are provided, Loewe, Bliss, HSA and ZIP scores.

In the SYNERGxDB website, it provides further analysis of
biomarker discovery, cell-line sensitivity analysis, tissue-specific
enrichment analysis and consistency in synergy scores.

NCI-ALMANAC

The NCI-ALMANAC (a large matrix of anti neoplastic agent
combinations) database [42] was published by the US National
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Cancer Institute (NCI) in 2017. These data come from an HTS that
tested 304 549 combination experiments of 104 investigational
and approved drugs across 60 cancer cell lines forming the NCI-
60 panel. The synergy level is quantified by the ComboScore, a
modified version of the Bliss model.

NCI-ALMANAC website allows searching the ComboScores of
drug combination. In addition, the data can be visualized as a
heatmap summarizing the entire dataset, as a bar plot of the
ComboScores for a particular drug pair in all cell lines, or as dose
response curves for one drug combination in a given cell line.

O’Neil et al. study

O’Neil et al. [62] from the Merck research laboratories conducted
a large-scale oncology screening, and published the data in
2016. The database consists of 22 737 combination experiments
covering 38 experimental and approved drugs in 39 cancer cell
lines. Two models, i.e. HSA and Bliss are used to quantify the
synergy in drug combinations.

ASDCD

Antifungal synergistic drug combination database (ASDCD)
[63] focuses on synergistic drug combinations for the therapy
of fungal infection. The first version of ASDCD database
was released in 2011. In the latest version released in 2013,
ASDCD recorded previously published synergistic antifungal
drug combinations, chemical structures, target proteins, target-
related signaling pathways, indications and other pertinent
data. The latest version includes 548 combination experiments
and 1225 drug–target interactions of 135 individual drugs from
literatures and external databases.

For each entered drug, the ASDCD website provides researchers
with three related links: drug target, target-related signaling
pathway, and its synergistic interactions with other drugs.

AZ-DREAM

In order to accelerate the understanding and prediction of
drug combination synergy, DREAM Challenges cooperated with
AstraZeneca and the Sanger Institute to launch the AZ-DREAM
Challenge in 2016 [34]. The AZ-DREAM Challenge database
includes 11 576 combination experiments in 85 cancer cell lines.
The challenge also provides additional information on drugs
and molecular characterization of these cell lines.

DCDB

The first release of drug combination database (DCDB) [64] col-
lected drug combinations from PubMed, FDA Orange Book [60].
Since the release of 2.0 version [65] in 2014, DCDB contains 1813
combination experiments, which are classified as ‘efficacious,’
‘need further study’ or ‘non-efficacious,’ consisting of 904 dis-
tinctive drugs. 1445 combinations are annotated as ‘efficacious’
and reported in ClinicalTrials website (https://clinicaltrials.gov/)
to meet their study criteria in clinical trials.

TTD

Therapeutic target database (TTD) [66] is not a drug combination
database. It mainly provides the information about therapeu-
tic protein and nucleic acid targets, and corresponding drugs
against these targets. TTD contains 119 combination experi-
ments, which are classified as synergistic, additive, antagonistic,
potentiative and reductive. In addition, it also includes 1008
target combinations of drug combinations.

DrugR+
DrugR+ [67] is a computational database based on DrugBank
and KEGG data published in 2019, which is organized for drug
repurposing. It also provides drug combination-related informa-
tion because combination therapy is considered as an alterna-
tive strategy to enhance the success rate of drug repurposing.
This alternative strategy is called ‘combined drug replacement
(CDR)’ in this database, which means a drug can be replaced
by drugs with no/trivial adverse reactions. This database also
supports drug combinations to enhance the effect of drugs. By
searching existing data and mining latent information based
IF-THEN rules, this database provides the drugs with the same
biological targets and same/similar mechanism of action for CDR
or combination therapy.

SynergyFinder

The R package SynergyFinder [68] implements four synergy
scoring models, HSA, Loewe, Bliss and ZIP. The synergy scores
are calculated across the tested concentration combinations,
which can be visualized as either a two-dimensional or a three-
dimensional landscape on the dose matrix. This landscape of
drug interaction scoring is informative for specifying specific
dose regions where synergistic or antagonistic drug interactions
occur.

There is also a SynergyFinder web application for the pre-
processing and visualization of the drug combination dose–
response data released in 2017 [69] and updated in 2021 [70]
(release 2.0). The tool calculates synergy scoring using four ref-
erence models, i.e. HSA, Loewe, Bliss and ZIP models. The degree
of a drug combination effect can be visualized as a synergy
landscape. In addition to two-drug combination, SynergyFinder
2.0 supports the similar synergy analysis of higher order drug
combination data (a combination involved three or more drugs),
along with automated outlier detection procedure, extended
curve-fitting functionality and statistical analysis of replicate
measurements.

Synergy

Synergy [71] is a python library for calculating, analyzing and
visualizing drug combination synergy released in 2021. For the
calculation of synergy, it provides nine synergy models, includ-
ing Loewe, CI, Bliss, HSA, ZIP and other models. Moreover, it pro-
vides tools for evaluating confidence intervals and conducting
power analysis. The synergy also could be visualized through
heatmaps, surfaces and isosurfaces.

CompuSyn

CompuSyn [72] is a software based on the theory of the median-
effect equation of mass-action law and the CI theorem for auto-
mated quantitative simulation of synergism or antagonism in
drug combination studies. It was set up by Dr Dorothy Chou
in 2005. It can generate graphics including dose-effect curves,
median-effect plot, CI plot and isobologram for synergism or
antagonism.

Combenefit

Combenefit [73] is a free software tool that enables the quantifi-
cation, analysis and visualization of synergistic or antagonistic
drug combinations. Combenefit is provided as a Matlab package
and a standalone software for Windows OS. In this software,
three synergy models (Loewe, Bliss, HSA) are used to quantify

https://clinicaltrials.gov/
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synergy effect. In Combenefit, the graphical outputs consist of
the single agent or combination dose–response data and the
resulting synergy distribution for a particular combination.

Machine learning methods used in drug
combination prediction
The widely used ML methods can be divided into classic ML
method and DL method. Classic ML methods include support
vector machine (SVM) [74], decision tree (DT) [75], RF and
extreme gradient boosting (XGBoost) [76]. While DL models
contain feedforward neural network (FNN) [77], deep belief
network (DBN) [78], autoencoder (AE) [79], etc. Due to its
characteristic of multiple processing layers, DL methods require
more training data, more hyperparameters, more computational
resource and memory [33]. The performance of DL models would
greatly improve with the increasing input data, especially large-
scale dataset (more than hundreds of thousands of samples).
While in the conditions of small- (hundreds of samples) and
medium-scale (thousands to tens of thousands of samples)
datasets, classic ML methods may perform better than DL
methods with less hyperparameter tuning [80].

In the studies introduced in this manuscript, most studies of
classic ML methods apply various feature types, while most DL
methods only use structural and physiochemical information to
represent drugs. The input feature type and other information
of each method reviewed in this manuscript are listed in Table 3.
Furthermore, some classic ML methods, such as tree-based algo-
rithms (DT, RF, XGBoost, etc.), can extract important features [81,
82], and explain the individual prediction by decomposing the
decision path into one component per feature. While DL model
is lack of interpretability.

The performance and validation scheme of each method
are listed in Table 4. It should be noted that different sets of
performance metrics should be applied in different conditions.
In binary classification tasks, the most used metrics are receiver
operating characteristic (ROC) curve and the area under the ROC
curve (AUROC) [83]. However, the high AUROC may not indicate
a good predictor under imbalanced dataset condition [84]. In the
case of class imbalance, the precision-recall (PR) curve and the
area under the PR curve (AUPR) should be applied. When we care
only about positive samples in imbalanced dataset, F1-score and
positive predictive value should be used. If the large number of
true negatives cannot be ignored, balanced accuracy (BACC) and
Matthew’s correlation coefficients (MCC) would be more suitable.
In regression tasks, mean squared error (MSE) and root mean
squared error (RMSE) could not be compared in different dataset
since different data distribution would obtain different score
range.

Classic ML methods

This section focuses on the advanced or special ML algorithms
applied in drug combination prediction, which can achieve high
prediction accuracy (ACC) in small- and medium-scale data
sets, including artificial neural network (ANN) [85], factorization
machine (FM) [86], RF, stochastic gradient boosting (SGB) [87],
XGBoost and other ensemble learning methods. Due to the
relatively low prediction ACC, some classical ML algorithms
are mostly used as baselines, such as Naïve Bayes (NB) [88],
logistic regression (LR) [89] and SVM [18, 20, 82, 90, 91]. As
shown in Figure 4, some studies used only one classic ML model
(classifier or regressor) for prediction (e.g., DT), while other

studies integrating a series of classifiers or regressors through
ensemble learning (e.g., RF). Among ensemble learning models,
bagging (bootstrap aggregating) and boosting are the two main
methods [92]. Table 1 lists classic ML algorithms mentioned
in this section and provides brief descriptions for these
algorithms.

Single model-based methods

Since most single models are used as baseline models (SVM,
NB, LR, etc.) to show the performance improvement of ensemble
learning-based or DL methods. We would only introduce two
studies using advanced single model-based methods, ANN and
FM. Different from other studies, both studies do not predict
synergistic drug combinations using these models directly. The
ANN-based study predicts the cytotoxicity of drug pairs firstly,
while the FM-based study predicts complete dose–response
matrix of drug combinations.

ANN. Pivetta et al. [93] proposed an algorithm based on ANN
and experimental design. To construct training dataset, they first
obtained the experiment results of cytotoxicity when the drugs
were used alone or in combination within a fixed concentration
range. Then an ANN was used to predict the cytotoxicity of
drug pairs on the entire concentration space within the selected
concentration range. According to the predicted cytotoxicity
values, they further calculated the synergistic effects of drug
pairs through a defined mathematical equation. The prediction
results were validated in experiment. Unlike other methods, the
authors found out synergistic drug combinations through the
analysis of the calculated cytotoxicity surface. Drug combina-
tions with desired cytotoxicity and the related lowest dose of the
drugs can be found.

comboFM. Julkunen et al. [94] presented comboFM to obtain
the synergistic drug pairs by predicting the complete dose–
response matrix. They applied FM to learn the five-order tensors
of drug pairs. The input features of comboFM contained five
groups, two molecular fingerprints of the drugs, concentration
values of both drugs, and gene expression profiles of cancer cell
lines. Then an FM was applied to achieve the regression task.
At last, they applied NCI ComboScore to quantify the synergism
of drug pairs according to the dose–response matrix. Compared
with RF, FM achieved better performance with Pearson’s corre-
lation coefficient (PCC) of 0.95–0.97. In order to support the pre-
diction results, experimental validation was further performed
on 16 predicting drug pairs. The predicted dose–response matrix
took the concentration information into account, which would
be an effective strategy for drug pair synergy prediction.

Ensemble learning-based methods

In supervised learning algorithms, ensemble learning-based
methods could have a better prediction performance than single
model-based methods by integrating the predictions of multiple
models into a single output [95]. As shown in Figure 4, two main
methods of ensemble learning are bagging and boosting. Bagging
[96] applies a set of ML algorithms, which are trained separately
with random samples from the training set and produce the
final prediction through a voting or averaging approach. The
idea of boosting is to iteratively fit models so that the training
of model at a given step depends on the models fitted in
the previous steps. For the typical algorithms in bagging and
boosting introduced in this section (RF and gradient boosting),
there may be few improvements to the algorithms in these
studies, but we believe the feature data and workflows they
used are illuminating.
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Table 3. Summary of some studies involved in this review

Study Published
year

Algorithms Category of
methods

Drug
combination
data set

Input data types Program code

Tang et al. [130] 2013 TIMMA Systems
biology
methods

Experiments Target profiles https://cran.r-project.o
rg/web/packages/ti
mma/index.html [158]

Pivetta et al. [93] 2013 ANN Classic ML
methods

Experiments Concentrations of
drugs

Chen et al. [98] 2013 RF Classic ML
methods

Zhao et al. [23] DDIs, PPIs,
targets-enriched
pathways

Sun et al. [90] 2014 One-class
SVM

Classic ML
methods

DCDB Gene expression
profiles

Huang et al. [132] 2014 LR Classic ML
methods

DCDB Side effects

Li et al. [159] 2015 PEA Systems
biology
methods

DCDB, TTD,
Literatures

Fingerprints, ATC
codes, side effects,
targets’ sequences,
PPIs, targets’ GO terms

Sun et al. [38] 2015 RACS Systems
biology
methods

DCDB,
Literatures,
NCI-DREAM,
TTD

GO-based mutual
information entropy,
topological features in
drug/target networks

https://github.com/
DrugCombination/RA
CS

Wildenhain et al.
[97]

2015 SONAR Classic ML
methods

Experiments. Chemical-genetic
interactions,
fingerprints

Chen et al. [39] 2016 NLLSS Systems
biology
methods

Literatures Structural information,
DTIs

Gayvert et al. [81] 2017 RF Classic ML
methods

Held et al. [160]
study.

Single drug dose
response

Li et al. [100] 2017 RF Classic ML
methods

AZ-DREAM Structural information,
target networks, drug
induced gene
expression data

Xu et al. [82] 2017 SGB Classic ML
methods

DCDB Fingerprints, ATC
codes, PPIs, CCIs, and
disease pathways.

Shi et al. [108] 2017 TLMCS Classic ML
methods

DCDB ATC codes, DDIs, DTIs,
targets’ GO terms, SEs

Shi et al. [133] 2017 LR,
ensemble
learning

Classic ML
methods

DCDB DDIs, DTIs, SEs, ATC
codes

https://github.com/Ju
stinShi2016/Drug-Dru
g-Interactions/tree/ma
ster/ISBRA2016

KalantarMotamedi
et al. [99]

2018 RF Classic ML
methods

NCATS [161] Targets, targets’
pathways

Preuer et al. [20] 2018 DeepSynergy Deep
learning
methods

O’neil et al.
study.

Fingerprints,
physicochemical,
toxicophore features,
cell lines’ gene
expression levels

www.bioinf.jku.at/so
ftware/DeepSynergy

Janizek et al. [80] 2018 TreeCombo Classic ML
methods

O’Neil et al.
study.

Fingerprints,
toxicophore
structures, cell lines’
gene expression levels

He et al. [102] 2018 DCPT Classic ML
methods

Experiments Exome-seq, RNA-seq
and target profiles

Chen et al. [116] 2018 DBN Deep
learning
methods

AZ-DREAM Ontology fingerprints,
cell lines’ gene
expression, targets’
pathways

Continued

https://cran.r-project.org/web/packages/timma/index.html
https://cran.r-project.org/web/packages/timma/index.html
https://cran.r-project.org/web/packages/timma/index.html
https://github.com/DrugCombination/RACS
https://github.com/DrugCombination/RACS
https://github.com/DrugCombination/RACS
https://github.com/JustinShi2016/Drug-Drug-Interactions/tree/master/ISBRA2016
https://github.com/JustinShi2016/Drug-Drug-Interactions/tree/master/ISBRA2016
https://github.com/JustinShi2016/Drug-Drug-Interactions/tree/master/ISBRA2016
https://github.com/JustinShi2016/Drug-Drug-Interactions/tree/master/ISBRA2016
www.bioinf.jku.at/software/DeepSynergy
www.bioinf.jku.at/software/DeepSynergy
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Table 3. Continued

Study Published
year

Algorithms Category of
methods

Drug
combination
data set

Input data types Program code

Cheng et al. [129] 2019 Proximity Systems
biology
methods

DCDB, TTD PPIs https://github.com/e
mreg00/toolbox

Liu et al. [136] 2019 RWR, GTB Classic ML
methods

DCDB DTIs, CCIs, targets’
sequences, targets’
GOs

https://github.com/
hliu2016/SynerDrug

Sidorov et al. [36] 2019 RF, XGBoost Classic ML
methods

NCI-
ALMANAC

structure features,
physicochemical
properties

http://ballester.marsei
lle.inserm.fr/NCI-Alm-
Predictors.zip

Andrew et al. [103] 2019 RF Classic ML
methods

Commercial
data.

Clinical trial features

Lanevski et al. [18] 2019 DECREASE Classic ML
methods

Experiments,
O’Neil et al.
study.

Dose–response matrix http://decrease.fimm.
fi
https://github.com/Ia
nevskiAleksandr/DE
CREASE/tree/maste
r/210_Novel_Anticance
r_combinations

Zhang et al. [137] 2019 FFM Classic ML
methods

DCDB, NData
[2]

Targets, enzymes, ATC
codes,

Julkunen et al. [94] 2020 comboFM Classic ML
methods

NCI-
ALMANAC,
etc.

Fingerprints, cell lines’
gene expression,
drugs’ concentrations

https://doi.org/10.5281/
zenodo.4129688

Jiang et al. [121] 2020 GCN Deep
learning
methods

O’Neil et al.
Study

PPIs, DTIs

Kuru et al. 2021 MatchMaker Deep
learning
methods

DrugComb. Structural and
physiochemical, cells’
gene expression

Zhang et al. [117] 2021 AuDNNsynergy Deep
learning
methods

O’neil et al.
study

Fingerprints,
physicochemical
properties, cell lines’
gene expression,
mutation, copy
number
variation

Notes: TIMMA: Target inhibition interaction using maximization and minimization averaging. PEA: Probability ensemble approach. RACS: Ranking-system of anti-
cancer synergy. NLLSS: Network-based Laplacian regularized least-square synergistic drug combination prediction. GTB: Gradient tree boosting. cNMF: Composite
non-negative matrix factorization. FFM: Field-aware factorization machines. FM: Factorization machine.

Bagging-based methods. A commonly used bagging-based algo-
rithm is RF, which is an ensemble of multiple decision trees.
A certain number of RFs are used in drug combination predic-
tion [36, 81, 97–103]. Especially in AZ-DREAM challenge, the top
winning method is based on RF. One of the possible reasons is
that RF is particularly suitable for processing high-dimensional
data and does not require feature selection [104]. Especially
in classification tasks, RF is considered to be one of the most
effective ML methods [33, 105].

RF. Gayvert et al. [81] used only single drug dose response
as the feature of drugs, and applied RF to predict both synergy
and effectiveness of drug pairs in mutant BRAF melanomas. The
single drug dose response was expressed as GI50, which was the
percentage of concentration required to inhibit 50% of growth
inhibition. Each sample was represented by a 54-dimensional
feature vector consisting of the mean and difference between
GI50 of two drugs in 27 melanoma cell lines. Synergy labels
were based on CI index, and effectiveness labels were defined
by setting thresholds for GI50. Then RF model was trained on

this dataset and achieved good performance for predicting syn-
ergy (AUROC = 0.8663) and effectiveness (AUROC = 0.8809). They
further performed experiments to validate the prediction results
on novel cell lines independent of training set, and proved the
generalization ability of the approach. Through one of the exper-
iments, the authors found that synergy and effectiveness can be
predicted from a relatively small subset (36 samples) based only
on single drug responses. This inspires us drug responses may
be effective features. However, there was no compared method,
and they did not report the sizes of positive or negative samples,
the metrics AUROC and ACC are not enough to evaluate the
performance.

SONAR. Wildenhain et al. [97] predicted drug pairs that exhib-
ited species-selective toxicity toward human fungal pathogens
by combining RF and NB, which was called Second Order Naive
Bayesian and Random Forest (SONAR). Chemical-genetic inter-
action matrix (CGM) data and chemical structural features are
used. Firstly, a NB was built to predict genetic sensitivities using
structural features and CGM data. Then the feature set contained

https://github.com/emreg00/toolbox
https://github.com/emreg00/toolbox
https://github.com/hliu2016/SynerDrug
https://github.com/hliu2016/SynerDrug
http://ballester.marseille.inserm.fr/NCI-Alm-Predictors.zip
http://ballester.marseille.inserm.fr/NCI-Alm-Predictors.zip
http://ballester.marseille.inserm.fr/NCI-Alm-Predictors.zip
http://decrease.fimm.fi
http://decrease.fimm.fi
https://github.com/IanevskiAleksandr/DECREASE/tree/master/210_Novel_Anticancer_combinations
https://github.com/IanevskiAleksandr/DECREASE/tree/master/210_Novel_Anticancer_combinations
https://github.com/IanevskiAleksandr/DECREASE/tree/master/210_Novel_Anticancer_combinations
https://github.com/IanevskiAleksandr/DECREASE/tree/master/210_Novel_Anticancer_combinations
https://github.com/IanevskiAleksandr/DECREASE/tree/master/210_Novel_Anticancer_combinations
https://doi.org/10.5281/zenodo.4129688
https://doi.org/10.5281/zenodo.4129688


12 Wu et al.

Ta
b

le
4.

Pe
rf

or
m

an
ce

sc
or

es
an

d
va

li
d

at
io

n
sc

h
em

e
of

so
m

e
m

et
h

od
s

in
vo

lv
ed

in
th

is
re

vi
ew

St
u

d
y

A
lg

or
it

h
m

s
V

al
id

at
io

n
sc

h
em

e
C

la
ss

if
ic

at
io

n
p

er
fo

rm
an

ce
R

eg
re

ss
io

n
p

er
fo

rm
an

ce
R

em
ar

ks

A
U

R
O

C
A

U
PR

A
C

C
F1

M
C

C
R

ec
al

l
Pr

e
K

ap
p

a
M

SE
R

M
SE

SC
C

PC
C

R
2

C
h

en
et

al
.[

98
]

R
F

0.
88

0
0.

91
5

Su
n

et
al

.[
90

]
O

n
e-

cl
as

s
SV

M
10

-f
ol

d
C

V
0.

68
4

0.
67

0
H

u
an

g
et

al
.[

13
2]

LR
10

-f
ol

d
C

V
0.

92
0.

86
Li

et
al

.[
15

9]
PE

A
10

-f
ol

d
C

V
0.

90
Su

n
et

al
.[

38
]

R
A

C
S

0.
85

W
il

d
en

h
ai

n
et

al
.[

97
]

SO
N

A
R

LO
O

C
V

0.
91

0.
56

C
h

en
et

al
.[

39
]

N
LL

SS
LO

O
C

V
0.

90
5

G
ay

ve
rt

et
al

.[
81

]
R

F
10

-f
ol

d
C

V
0.

86
6

0.
82

1
Li

et
al

.[
10

0]
R

F
0.

89
X

u
et

al
.[

82
]

SG
B

10
-f

ol
d

C
V

0.
95

2
0.

89
8

0.
80

5
0.

86
9

0.
92

9
Sh

ie
t

al
.[

10
8]

T
LM

C
S

10
-f

ol
d

C
V

0.
82

4
0.

37
2

Sh
ie

t
al

.[
13

3]
LR

,E
n

se
m

bl
e

le
ar

n
in

g
10

-f
ol

d
C

V
0.

95
4

0.
82

1

Pr
eu

er
et

al
.[

20
]

D
ee

p
Sy

n
er

gy
5-

fo
ld

C
V

0.
90

0.
59

0.
92

0.
56

0.
51

25
5.

5
15

.9
1

0.
73

Ja
n

iz
ek

et
al

.[
80

]
Tr

ee
C

om
bo

5-
fo

ld
C

V
0.

51
9

0.
70

C
h

en
et

al
.[

11
6]

D
B

N
LO

O
C

V
0.

65
4

0.
60

2
0.

71
5

C
h

en
g

et
al

.[
12

9]
Pr

ox
im

it
y

0.
58

9
Li

u
et

al
.[

13
6]

G
T

B
10

-f
ol

d
C

V
0.

94
9

0.
88

4
0.

77
2

0.
87

2
0.

89
7

Si
d

or
ov

et
al

.[
36

]
R

F,
X

G
B

oo
st

Le
av

e-
on

e-
d

ru
g-

ou
t

C
V

35
.6

–
45

.0
0.

39
–

0.
81

0.
43

–
0.

86
0.

17
–

0.
74

Pe
rf

or
m

an
ce

in
d

if
fe

re
n

t
ce

ll
li

n
e

A
n

d
re

w
et

al
.[

10
3]

R
F

5
or

10
-f

ol
d

C
V

0.
81

La
n

ev
sk

ie
t

al
.[

18
]

D
EC

R
EA

SE
5-

fo
ld

C
V

0.
82

–
0.

91
D

os
e–

re
sp

on
se

m
at

ri
x

p
re

d
ic

ti
on

Z
h

an
g

et
al

.[
13

7]
FF

M
5-

fo
ld

C
V

0.
92

5
0.

93
4

0.
76

1
Ju

lk
u

n
en

et
al

.[
94

]
co

m
bo

FM
10

×
5

n
es

te
d

C
V

9.
86

–
13

.0
4

0.
88

–
0.

91
0.

95
–

0.
97

D
os

e–
re

sp
on

se
m

at
ri

x
p

re
d

ic
ti

on
Ji

an
g

et
al

.[
12

1]
G

C
N

10
-f

ol
d

C
V

0.
89

2
0.

79
4

0.
91

9
0.

58
4

K
u

ru
et

al
.[

11
3]

M
at

ch
M

ak
er

Le
av

e-
d

ru
g

co
m

bi
n

at
io

n
-o

u
t

C
V

0.
97

0.
85

26
7.

9
0.

69
0.

69

Z
h

an
g

et
al

.[
11

7]
A

u
D

N
N

sy
n

er
gy

5-
fo

ld
C

V
0.

91
0.

63
0.

93
0.

72
0.

51

C
V

:C
ro

ss
va

li
d

at
io

n
.L

O
O

C
V

:L
ea

ve
-o

n
e-

ou
t

cr
os

s
va

li
d

at
io

n
.



Drug combination prediction 13

Figure 4. Frameworks of the classic ML methods introduced in this review.

seven parameters derived from CGM and NB-derived predicted
likelihood scores, and were used as the input to RF model.
This algorithm obtained an AUROC of 0.91 and a PCC of 0.56
with Bliss scores. Then the predicted results were verified by
experiments. According to comparing different feature combi-
nations, the authors found that the predicted likelihoods derived
from NB slightly improved predictive power and combining the
parameters from CGM greatly augmented prediction ACC. But
there was no compared method.

DCPT. Non-synergistic effect in healthy controls for combi-
nation therapy should also be taken into account. He et al. [102]
developed a drug combination prediction and testing (DCPT)
platform to predict the patient-specific combination effects
(synergy versus non-synergy) using a RF model. DCPT predict the
patient-specific responses of single-compound and drug com-
bination using exome-seq, RNA-seq and target profiles as input
features, which were obtained from ex vivo testing in patient-
derived samples. Then HSA model was used to calculate the
synergistic effects through the response results. Additionally, the
cancer-selective synergies were identified by using differential
single-compound response between patient cells and healthy
controls, hence reducing the likelihood of toxic combination
effects. Finally, using T-cell prolymphocytic leukemia (T-PLL) as
a case study, they show how the DCPT platform successfully
predicted distinct synergistic combinations for each of the three
T-PLL patients.

In addition to RF, some studies have designed novel bagging-
based methods that combine multiple classic ML models. Two
popular ensemble rules to integrate the outputs of multiple base
predictors are classifier ensemble rule and weighted average rule
[106, 107]. The classifier ensemble rule applies a classification
function to map outputs of base predictors to a label, while the
weighted average ensemble rule takes the weighted average of
outputs from base predictors.

TLMCS. Shi et al. [108] combined one-class SVMs to design a
two-layer multiple classifier system (TLMCS), which integrated
five types of feature (Figure 5a). In the first layer of TLMCS,
five SVM classifiers are regarded as the base predictors training
with five feature types separately. Then the outputs of five base
predictors are concatenated into a vector as the input to the
SVM in the second layer. Compared with concatenated vectors
of the original features and other two ML methods, TLMCS
showed a better performance. This showed that TLMCS utilizes
the feature vectors as fully as possible in its first layer and has no
need to train the model with highly-dimensional concatenation
of heterogeneous features. Additionally, the authors performed

another experiment using one-class SVMs in TLMCS to discover
potential drug pairs among unknown drug pairs. That is, they
only used positive samples (effective drug combinations) to train
TLMCS and run the trained TLMCS on the unknown drug pairs.
The top predicted results were validated from literatures. The
predicting power of one-class SVMs has been demonstrated
from this experiment. However, there is a problem of class
imbalance in this study; the number of negative samples is about
200 times than that of positive samples. The metric AUROC is not
accurate to evaluate the performance of models. And the metric
of AUPR is 0.372; we consider that there should be given other
metrics to prove the predictive power of the models.

DECREASE. Ianevski et al. [18] predicted the complete dose–
response matrix of drug combinations. They proposed drug
combination response prediction (DECREASE), which is an
ensemble of composite non-negative matrix factorization
(cNMF) and XGBoost algorithms. The input of DECREASE was
a single row or column or diagonal of the dose–response matrix.
Then DECREASE detected outliers, and used the average of
cNMF and XGBoost to predict the complete dose–response
matrix. According to the predicted dose–response values, the
synergism of drug pairs was computed using four synergy
scores (Bliss, Loewe, HSA or ZIP). Compared with other seven
classic ML algorithms, DECREASE showed better performance.
The authors found that it worked the best when the diagonal
of the dose–response matrix was used as input through com-
putational experiments in various datasets. This is an efficient
experimental–computational approach to identify synergistic
combinations with a minimal set of measurements and could
reduce the cost and time required for HTS experiments. And
the only input needed is a submatrix of dose–response matrix,
without other features of drugs.

Boosting-based methods. Gradient boosting method [109] is a
popular method in boosting-based methods. The core idea of
gradient boosting is to minimize the residuals of each model in
a sequential way through the calculation of the gradient.

SGB. Xu et al. [82] proposed a computational model based
on SGB. Six features were integrated, including molecular struc-
tures, structural similarities, ATC codes similarities, protein–
protein interactions (PPIs), CCIs and disease pathways. To avoid
overfitting, the minimum redundancy and maximum relevance
method was performed to extract useful features. Three ML
methods, SVM, NB and SGB, were used to predict, among which
SGB-based model had the best performance. The authors also
found that therapy information of drugs (ATC codes) plays an
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Figure 5. The flowcharts of some selected typical methods reviewed in this manuscript. (A) TLMCS [108], an ensemble learning-based method. (B) DeepSynergy [20],

an FNN. (C) MatchMaker [113], an FNN-based method. (D) A DBN-based method [116]. (E) AuDNNsynergy [117], an AE-based method. (F) A GCN-based method [121].

important role in prediction, and the performance of biologi-
cal feature (disease pathways) was relatively lower, this may
because the incompleteness of pathways or the simple features
they used.

TreeCombo. Janizek et al. [80] presented an XGBoost-based
approach trained on O’Neil et al. study dataset, named TreeCombo.
The input features were the drug physiochemical features and
cancer cell line gene expression data as used by DeepSynergy
(see Feedforward neural network) [20]. According to the com-
parison, TreeCombo outperformed DeepSynergy, a DNN-based
model. This showed the excellent performance of XGBoost
was comparable to DL in the terms of medium-scale dataset
(∼22 000 samples). And XGBoost require less hyperparameter
tuning or feature preprocessing. Moreover, TreeCombo is also
interpretable. It can extract genes with well-established links to
cancer as important features according to importance identified
by TreeSHAP [110]. However, DNNs also can give the feature
importance with the help of DeepSHAP tool [110], which should
be used in future studies of DNNs.

Deep learning methods

DL is a particular type of ML with multiple data processing
layers, which are based on ANNs (shallow neural network). The
deep network structure makes DLs better able to capture the
nonlinear and complex relationships between input and output
[111, 112]. To learn the complex functions mapping the input to
the output, DLs can perform automatic feature extraction from
raw data and learn features at multiple levels, while classic ML
models would depend more on the human-crafted features. But
it is not clear that features learned directly from raw data will
always be better than human-crafted features [111]. In addition
to feature vectors, the input to the DL models can also be a graph
constructed by integrating multiple networks, which is trained
by graph neural networks.

Feedforward neural network

FNN is a deep ANN with multiple fully connected layers, and
is trained with a back-propagation learning algorithm [77]. The
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FNN model can be regarded as the simplest DL models, which is
often used as a baseline for DL methods.

DeepSynergy. Preuer et al. [20] proposed DeepSynergy, which
is often used as a baseline in predicting drug combinations. It
is an FNN with two hidden layers (Figure 5b). The input layer
received chemical descriptors of both drugs and gene expression
values of corresponding cancer cell lines. Compared with four
advanced ML methods, i.e. gradient boosting machines (GBM), RF,
SVM and elastic nets (EN), DeepSynergy was confirmed to have
the best performance in various scoring metrics. DeepSynergy
resulted in an AUROC of 0.90 in the classification task and a
PCC of 0.73 in the regression task. However, it is difficult for
DeepSynergy and other comparison methods to predict novel
drug combinations when applying data from novel cell lines
or drugs. They suggested this was due to limitations in size
and diversity of the training dataset. Additionally, we noted that
this classification task was class imbalanced, although they got
high AUROC and ACC scores, both metrics were inappropriate
to evaluate the performance of methods. The BACC score they
used is more suitable in an imbalanced dataset test, while BACC
of DeepSynergy (0.76) is lower than GBM (0.80).

MatchMaker. Kuru et al. [113] proposed MatchMaker in 2021
(Figure 5c). MatchMaker contains three FNNs and is trained in
DrugComb database. Firstly, the chemical structure features of
each drug were concatenated with gene expression features of
the corresponding cell line and input to two FNNs. The repre-
sentation learned by the two FNNs were then concatenated and
input to a third FNN to predict the synergy scores. In both regres-
sion and classification tasks, MatchMaker showed better perfor-
mance than DeepSynergy [20] and TreeCombo [80]. Especially,
compared with DeepSynergy, the correlation was increased by
about 20% and MSE was improved by about 40%. Matchmaker
does show high prediction performance, but it still has simi-
lar problems as DespSynergy in class imbalanced classification
task, which should be more explored in future studies.

Deep belief network

DBN is a less common type of DL model and composed of stacked
restricted Boltzmann machine (RBM). The RBM is an undirected,
generative stochastic ANN with a bipartite structure [114], which
is composed of a visible input layer and a hidden layer and
connections between but not within layers. This composition
leads to a fast, layer-by-layer unsupervised training procedure
[115].

DBN. Chen et al. [116] reported a method based on DBN to
predict effective drug combination from gene expression, path-
way and the ontology fingerprints of drugs (Figure 5d). They used
the drug pairs from AZ-DREAM [34]. The authors claimed that
according to the results published on the DREAM website, the
stacked RBMs-based DBN (Figure 5c) outperformed the partici-
pating groups of the AZ-DREAM. But the feature set they used
was different from the AZ-DREAM challenge, so the performance
comparison results are questionable.

Autoencoder

AEs are unsupervised learning technique, which are usually
used for dimensionality reduction and feature representation
learning before using other ML methods for prediction [111]. An
AE is a neural network consisting of an encoder and a decoder.
Between encoder and decoder, there is an internal (hidden) layer
that describes a code used to represent the input [79]. A good AE
can accurately learn the representation of input with accurately
building a reconstruction.

AuDNNsynergy. Zhang et al. [117] proposed AuDNNsynergy, in
which AEs were used to extract deep representations and a FNN
was used to achieve prediction task (Figure 5e). AuDNNsynergy
integrated chemical structure data of drugs and multi-omics
data of cell lines. First, three AEs were trained to obtain the
representations of cancer cell lines from gene expression, copy
number and genetic mutation data of tumor samples. The AEs
consisted of six densely connected layers. Then the output of the
three encoders of AEs, combined with physicochemical proper-
ties of drugs, was used as the input of FNN to predict the synergy
value of given drug pairs. The comparison results showed that
AuDNNsynergy outperformed four state-of-art approaches, i.e.
DeepSynergy, GBM, RF and EN. The authors also found that
AuDNNsynergy can be used to predict combinations in novel cell
lines. This may show the generalizability of applying informative
features of cell lines, which could transfer and maintain the
knowledge of different cell lines’ samples to achieve robust pre-
dictions. In addition, AuDNNsynergy can be applied to conduct
interpretation analysis to identify important genes as critical
predictors.

Graph convolutional network

The input of graph convolutional network (GCNs) is represented
as a graph, which is the network structure consisting of nodes
(vertices) and edges (links). GCNs use a convolutional neural
network to obtain the embeddings of nodes or the graphs [118].
Especially in biomedical studies, the graph structure data are
more informative due to the complex and systematic biological
interactions between different biological entities. Thus, GCNs
have been popular in various drug discovery prediction tasks
[119, 120].

GCN. Jiang et al. [121] proposed a cell line-specific GCN
(Figure 5f) model using the database from O’Neil et al. study.
In each cell line, the multimodal graph in this study was
constructed by integrating the drug–drug combination, drug–
protein interaction and PPI networks. The GCN model consists
of an encoder and a decoder. The encoder can obtain new
representations from the multimodal graph and the decoder
can obtain the predicted synergy scores from representations.
The performance of this method is not too much different from
DeepSynergy in AUROC. There is also the similar problem of
class imbalance, the number of negative samples is about 10
times than that of positive samples in this study. In addition, the
authors found that the drug–protein interaction data are highly
limited with the small data set. This may mask some hidden
associations in cell line-specific networks.

Visible neural network

DrugCell. Kuenzi et al. [122] proposed an interpretable model,
DrugCell, to predict the responses of human cancer cells to
monotherapy. DrugCell uses a modular neural network design
that combines visible neural network (VNN) with conventional
ANN. In VNN, the hierarchy of cell subsystems is guided by GO
priori knowledge to simulate human cell biology. Each subsys-
tem contains several neurons to express multiple distinct states.
Then relative local improvement in predictive power (RLIPP)
scores are calculated to represent the importance of biological
mechanisms simulated by subsystems in each drug response.
For identifying synergistic drug combinations, the RLIPP scores
of 25 drugs from DeepSynergy study are ranked. The authors
pointed that drugs would be synergistic if they inhibit separate
pathways of regulating common basic functions. Although this
method does not perform too well in prediction performance, it
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provides a good inspiration in the interpretation of drug synergy
mechanism.

Challenges and future work
In order to accelerate the discovery of combination therapy for
complex diseases, many AI-driven biopharmaceutical compa-
nies have been committed to the development of drug com-
binations based on ML and network pharmacology methods.
Pharnext (https://pharnext.com/), a French company, has devel-
oped disease molecular networks composed of disease targets
to find low-dose synergistic drug combinations for neurode-
generative diseases. The company has developed a novel fixed-
dose synergistic combination of baclofen, naltrexone and sor-
bitol for the treatment of Charcot–Marie–Tooth Disease Type
1A (CMT1A), and is planning to conduct an additional Phase 3
clinical trial. Lantern Pharma company (https://www.lanternpha
rma.com/) works on predicting drug combinations through ML
methods and Genomics. The company has found that BNP7787
can substantially prevent and mitigate the severity of paclitaxel-
induced neurotoxicity as well as cisplatin-induced neurotoxic-
ity [123]. Currently, some companies, including Healx (https://
healx.io/) and Innoplexus (https://www.innoplexus.com/), are
committed to using their artificial intelligence platform to find
effective combination therapy for COVID-19.

Although there have been many studies of academic and
industry fields on the prediction of combination therapy and
high prediction performance has been obtained, there are still
some challenges in this field.

Limited sample data and lack of generalizability

According to the above studies, appropriate datasets seem cru-
cial for gaining better prediction performance. Although some
large publicly available databases and web servers have been
developed recently, the number of cancer cell lines and drugs
is limited, which may affect the model generalizability in pre-
dicting novel drug combinations. Most methods are difficult
to generalize novel drugs and cell lines. Researchers should
pay more attention to improving the generalizability of models
in future studies, such as using external test sets and adding
regularization techniques in models.

Lack of informative feature type

To represent drugs and cell lines, the state-of-the-art studies
usually applied structure information, physicochemical proper-
ties of drugs and gene expression profiles of untreated cancer
cell lines as feature sets to predict combinations across different
cell lines. This may ignore the biological connection between
drugs and cells since synergism is the response of cells to
drugs. Thus, more feature types should be considered, such as
multi-omics cellular response under drug perturbations. These
informative feature types would also help to further explore the
biological mechanism of synergistic effects.

Inconsistence of label data

Researchers have not reached a consensus on the quantification
and accurate definition of synergism and antagonism yet, which
is one of the most controversial concepts in this field [17, 43–
45]. Many drug combination databases and software tools (Drug-
Comb, DrugCombDB, synergy, etc.) have provided the synergy
scores of a variety of quantification models. But the synergy

results of multiple samples are quite inconsistent. For example,
some quantification models may show a sample as strong syn-
ergy, while some would obtain an antagonistic result. In addition,
there may be some experimental noises in the synergy scores
[124], which makes the results inaccurate. Inaccurate label set
would have a great impact on the prediction results. We hope
that the future research would focus on the accurate quantifi-
cation of synergism and antagonism. And researchers should
screen out the accurate labels when making predictions.

The study of antagonism

Most studies report synergism but rarely report antagonism
as the main topic. It should be noted that antagonism is also
important in combination therapy [44]. This may be related
to the study of SE, toxicity of combination therapy and can
avoid lots of unnecessary clinical trials. Richards et al. [125] have
revealed death kinetics as a predictive feature of antagonism
since inhibitory crosstalk between cell death pathways.

Prediction of synergy on specific dose combination

In addition, the determination of synergy depends on the spe-
cific dose tested in experiments. Drug combinations are fre-
quently found to be synergistic in one does range and antag-
onistic in another [51]. Rather than simply classifying whether
a combination has synergistic effect, we should consider what
dose range optimizes the synergy of this combination. Moreover,
when using different dose combination, the response prediction
of drug combination should not be ignored. It has been a major
challenge to accurately predict the drug response in the era of
precision medicine [111]. And there have been some studies
applied in prediction of single drug response [126, 127], and
drug combination [94]. These studies would help us get closer
to achieving the goal of precision medicine in the clinic, which
should be further explored in future research.

Class imbalanced in classification task

Drug combination prediction is more suitable for regression task
since many databases have provided various synergy scores of
samples. In previous studies, most carry out classification tasks,
that is, drug combinations are simply classified as synergis-
tic and non-synergistic effects. However, the training data set
used in many studies has the problem of imbalanced classes.
The number of synergistic (positive) samples is small (minority
class), whereas the number of non-synergistic (negative) sam-
ples is large (majority class), which is generally more than 10
times than that of positive samples [121]. Thus, these meth-
ods could get high AUROC or ACC results, but AUROC metric
would pay more attention to the predictive performance of
majority class (negative samples) and ignore that of minority
class (positive samples). While we should pay great attention
to the prediction performance of minority class. The AUROC
metric is not accurate to evaluate the performance of methods
in imbalanced datasets. The F1-score, BACC, MCC and other
more metrics would better reflect the model performance with
this problem (see Section ‘5 Machine learning methods used in
drug combination prediction’). Moreover, ML models should be
improved to solve the problem of class imbalance and augment
the prediction ACC of minority class (synergy samples).

Lack of interpretability

Furthermore, in the context of models that guide medical
decision-making, interpretability is critical. Especially through

https://pharnext.com/
https://www.lanternpharma.com/
https://www.lanternpharma.com/
https://healx.io/
https://healx.io/
https://www.innoplexus.com/
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DL models, although they can get relatively accurate prediction
results, the potential factors affecting the prediction results
cannot be understood. Some models and tools could help to
extract key features from the training set, such as tree-based
methods, TreeSHAP and DeepSHAP, but they still cannot explain
some mechanisms behind the biological processes. Recently,
Kuenzi et al. [122] attempted to develop an interpretable DL
model to predict drug response of cancer cells, which can be used
to suggest synergistic drug combinations. This would be a great
attempt and inspire researchers to study more mechanisms
of action of drug synergy through designing interpretable DL
models.

Experimental validation to adjust the calculation model

Finally, after prediction by various methods, clinical trials can
be carried out to further verify the selected drug combination.
The experimental validation includes in vitro experiments, in vivo
experiments and clinical trials. The closed loop of calculation
prediction and wet test verification is conductive to drug com-
bination prediction. The experimental results can be used to
adjust the calculation model to obtain a better prediction effect.

Key Points
• This manuscript reviews nine drug combination

databases, six related web servers, four related soft-
ware tools and other related databases, which con-
tain input features of samples. A list of statistical
information and links of all databases are provided.

• ML methods including classic ML methods and DL
methods are introduced, the advantages and disad-
vantages of these methods are discussed.

• The challenges including the limited data, inconsis-
tence of label data, class imbalanced in classifica-
tion task, lack of generalizability and interpretabil-
ity of models. Additionally, more informative feature
type, prediction of dose combination and antagonism,
and more experimental validation should be further
explored in future studies.
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Bioinformatics.
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