Skip to main content
. 2021 Sep 2;23(1):bbab355. doi: 10.1093/bib/bbab355

Table 3.

Summary of some studies involved in this review

Study Published year Algorithms Category of methods Drug combination data set Input data types Program code
Tang et al. [130] 2013 TIMMA Systems biology methods Experiments Target profiles https://cran.r-project.org/web/packages/timma/index.html [158]
Pivetta et al. [93] 2013 ANN Classic ML methods Experiments Concentrations of drugs
Chen et al. [98] 2013 RF Classic ML methods Zhao et al. [23] DDIs, PPIs, targets-enriched pathways
Sun et al. [90] 2014 One-class SVM Classic ML methods DCDB Gene expression profiles
Huang et al. [132] 2014 LR Classic ML methods DCDB Side effects
Li et al. [159] 2015 PEA Systems biology methods DCDB, TTD, Literatures Fingerprints, ATC codes, side effects, targets’ sequences, PPIs, targets’ GO terms
Sun et al. [38] 2015 RACS Systems biology methods DCDB, Literatures, NCI-DREAM, TTD GO-based mutual information entropy, topological features in drug/target networks https://github.com/DrugCombination/RACS
Wildenhain et al. [97] 2015 SONAR Classic ML methods Experiments. Chemical-genetic interactions, fingerprints
Chen et al. [39] 2016 NLLSS Systems biology methods Literatures Structural information, DTIs
Gayvert et al. [81] 2017 RF Classic ML methods Held et al. [160] study. Single drug dose response
Li et al. [100] 2017 RF Classic ML methods AZ-DREAM Structural information, target networks, drug induced gene expression data
Xu et al. [82] 2017 SGB Classic ML methods DCDB Fingerprints, ATC codes, PPIs, CCIs, and disease pathways.
Shi et al. [108] 2017 TLMCS Classic ML methods DCDB ATC codes, DDIs, DTIs, targets’ GO terms, SEs
Shi et al. [133] 2017 LR, ensemble learning Classic ML methods DCDB DDIs, DTIs, SEs, ATC codes https://github.com/JustinShi2016/Drug-Drug-Interactions/tree/master/ISBRA2016
KalantarMotamedi et al. [99] 2018 RF Classic ML methods NCATS [161] Targets, targets’ pathways
Preuer et al. [20] 2018 DeepSynergy Deep learning methods O’neil et al. study. Fingerprints, physicochemical, toxicophore features, cell lines’ gene expression levels www.bioinf.jku.at/software/DeepSynergy
Janizek et al. [80] 2018 TreeCombo Classic ML methods O’Neil et al. study. Fingerprints, toxicophore structures, cell lines’ gene expression levels
He et al. [102] 2018 DCPT Classic ML methods Experiments Exome-seq, RNA-seq and target profiles
Chen et al. [116] 2018 DBN Deep learning methods AZ-DREAM Ontology fingerprints, cell lines’ gene expression, targets’ pathways
Cheng et al. [129] 2019 Proximity Systems biology methods DCDB, TTD PPIs https://github.com/emreg00/toolbox
Liu et al. [136] 2019 RWR, GTB Classic ML methods DCDB DTIs, CCIs, targets’ sequences, targets’ GOs https://github.com/hliu2016/SynerDrug
Sidorov et al. [36] 2019 RF, XGBoost Classic ML methods NCI-ALMANAC structure features, physicochemical properties http://ballester.marseille.inserm.fr/NCI-Alm-Predictors.zip
Andrew et al. [103] 2019 RF Classic ML methods Commercial data. Clinical trial features
Lanevski et al. [18] 2019 DECREASE Classic ML methods Experiments, O’Neil et al. study. Dose–response matrix http://decrease.fimm.fi
https://github.com/IanevskiAleksandr/DECREASE/tree/master/210_Novel_Anticancer_combinations
Zhang et al. [137] 2019 FFM Classic ML methods DCDB, NData [2] Targets, enzymes, ATC codes,
Julkunen et al. [94] 2020 comboFM Classic ML methods NCI-ALMANAC, etc. Fingerprints, cell lines’ gene expression, drugs’ concentrations https://doi.org/10.5281/zenodo.4129688
Jiang et al. [121] 2020 GCN Deep learning methods O’Neil et al. Study PPIs, DTIs
Kuru et al. 2021 MatchMaker Deep learning methods DrugComb. Structural and physiochemical, cells’ gene expression
Zhang et al. [117] 2021 AuDNNsynergy Deep learning methods O’neil et al. study Fingerprints, physicochemical properties, cell lines’ gene expression, mutation, copy number
variation

Notes: TIMMA: Target inhibition interaction using maximization and minimization averaging. PEA: Probability ensemble approach. RACS: Ranking-system of anti-cancer synergy. NLLSS: Network-based Laplacian regularized least-square synergistic drug combination prediction. GTB: Gradient tree boosting. cNMF: Composite non-negative matrix factorization. FFM: Field-aware factorization machines. FM: Factorization machine.