Skip to main content
. 2021 Sep 2;23(1):bbab355. doi: 10.1093/bib/bbab355

Table 4.

Performance scores and validation scheme of some methods involved in this review

Study Algorithms Validation scheme Classification performance Regression performance Remarks
AUROC AUPR ACC F1 MCC Recall Pre Kappa MSE RMSE SCC PCC R 2
Chen et al. [98] RF 0.880 0.915
Sun et al. [90] One-class SVM 10-fold CV 0.684 0.670
Huang et al. [132] LR 10-fold CV 0.92 0.86
Li et al. [159] PEA 10-fold CV 0.90
Sun et al. [38] RACS 0.85
Wildenhain et al. [97] SONAR LOOCV 0.91 0.56
Chen et al. [39] NLLSS LOOCV 0.905
Gayvert et al. [81] RF 10-fold CV 0.866 0.821
Li et al. [100] RF 0.89
Xu et al. [82] SGB 10-fold CV 0.952 0.898 0.805 0.869 0.929
Shi et al. [108] TLMCS 10-fold CV 0.824 0.372
Shi et al. [133] LR, Ensemble learning 10-fold CV 0.954 0.821
Preuer et al. [20] DeepSynergy 5-fold CV 0.90 0.59 0.92 0.56 0.51 255.5 15.91 0.73
Janizek et al. [80] TreeCombo 5-fold CV 0.519 0.70
Chen et al. [116] DBN LOOCV 0.654 0.602 0.715
Cheng et al. [129] Proximity 0.589
Liu et al. [136] GTB 10-fold CV 0.949 0.884 0.772 0.872 0.897
Sidorov et al. [36] RF, XGBoost Leave-one-drug-out CV 35.6–45.0 0.39–0.81 0.43–0.86 0.17–0.74 Performance in different cell line
Andrew et al. [103] RF 5 or 10-fold CV 0.81
Lanevski et al. [18] DECREASE 5-fold CV 0.82–0.91 Dose–response matrix prediction
Zhang et al. [137] FFM 5-fold CV 0.925 0.934 0.761
Julkunen et al. [94] comboFM 10 × 5 nested
CV
9.86–13.04 0.88–0.91 0.95–0.97 Dose–response matrix prediction
Jiang et al. [121] GCN 10-fold CV 0.892 0.794 0.919 0.584
Kuru et al. [113] MatchMaker Leave-drug combination-out CV 0.97 0.85 267.9 0.69 0.69
Zhang et al. [117] AuDNNsynergy 5-fold CV 0.91 0.63 0.93 0.72 0.51

CV: Cross validation. LOOCV: Leave-one-out cross validation.