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Abstract

Clinical data are increasingly being mined to derive new medical knowledge with a goal of enabling greater diagnostic precision, better-
personalized therapeutic regimens, improved clinical outcomes and more efficient utilization of health-care resources. However,
clinical data are often only available at irregular intervals that vary between patients and type of data, with entries often being
unmeasured or unknown. As a result, missing data often represent one of the major impediments to optimal knowledge derivation
from clinical data. The Data Analytics Challenge on Missing data Imputation (DACMI) presented a shared clinical dataset with
ground truth for evaluating and advancing the state of the art in imputing missing data for clinical time series. We extracted 13
commonly measured blood laboratory tests. To evaluate the imputation performance, we randomly removed one recorded result
per laboratory test per patient admission and used them as the ground truth. DACMI is the first shared-task challenge on clinical
time series imputation to our best knowledge. The challenge attracted 12 international teams spanning three continents across
multiple industries and academia. The evaluation outcome suggests that competitive machine learning and statistical models
(e.g. LightGBM, MICE and XGBoost) coupled with carefully engineered temporal and cross-sectional features can achieve strong
imputation performance. However, care needs to be taken to prevent overblown model complexity. The challenge participating
systems collectively experimented with a wide range of machine learning and probabilistic algorithms to combine temporal
imputation and cross-sectional imputation, and their design principles will inform future efforts to better model clinical missing data.
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Introduction

Clinical data are increasingly being mined to derive
new medical knowledge in order to improve diagnostic
precision, better personalize interventions and increase
efficient utilization of health-care resources [1]. However,
unlike experimental data that are collected per a
research protocol, the primary role of clinical data is
to help clinicians care for patients, so the procedures
for its collection are not often systematic. Clinically
appropriate data collection often does not occur on a
regular schedule but rather is guided by patient condition
and clinical or administrative requirements. Thus,
electronic health record data are often only available
at irregular intervals for selected variables that vary
between patients and type of data. While the absence
of recorded data may be clinically appropriate, machine
learning algorithms’ performance typically suffers from
biased and incomplete data. Although numerous impu-
tation algorithms are available for imputing missing
measurements [2–5], many of these only focus on a
time snapshot using the cross-sectional correlation (e.g.

correlation across subjects or across variables) and are
not well-suited to longitudinal clinical data [6]. In fact,
for clinical data, including longitudinal data, multiple
imputation (MI), for example, multivariate imputation
by chained equations (MICE) [2], is still a widely used
standard practice for addressing the presence of missing
data [7, 8]. However, clinical data will usually include
a non-continuous and asynchronous time component
as patients will have different symptoms and findings
recorded, diagnostic studies performed and treatments
provided across different time points. Thus, testing algo-
rithm’s ability to explicitly account for the correlation
across irregular time points in clinical data motivates the
Data Analytics Challenge on Missing data Imputation
(DACMI) challenge. Before the challenge, there were a
few emerging research efforts attempting to combine
cross-sectional correlation and longitudinal correlation
[6, 9–11]. Aiming to draw from community research
expertise to further improve the state of the art, the
DACMI challenge took place from March to June 2019
with a data embargo period in the following year and
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is the first shared-task challenge on clinical time series
imputation to our best knowledge.

Methods
Dataset generation
We developed a dataset from the public intensive
care unit (ICU) database, MIMIC3 [12], and provided
it as a shared-tasked dataset to develop and validate
clinical data imputation algorithms. Figure 1 shows our
data generation and inclusion and exclusion criteria.
We extracted all admissions in MIMIC3 where each
of the 13 blood laboratory tests, shown in Table 1,
was recorded at least once. We selected these specific
laboratory tests because they are frequently measured
on ICU admissions, are quantitative and are clinically
meaningful (e.g. serum creatinine in acute kidney injury
identification). We further organized data by unique
patient admissions. We excluded time points (the time
when a lab test was performed) with more than half of
the 13 laboratory tests missing. We excluded admissions
without at least 10 remaining time points for each vari-
able. This inclusion and exclusion criteria are motivated
by the need to randomly mask recorded laboratory test
results to create the ground truth, as detailed below.
By keeping a significant number of observations both
cross-sectionally and longitudinally, we can effectively
limit the impact that the masking alters the clinical
time series (i.e. the more observations, the less impact
from masking one of them). We also refer the reader to
the Discussion section for consideration of the clinical
context regarding inclusion and exclusion criteria. We
have released our source code for dataset creation so that
future research can investigate alternative inclusion and
exclusion criteria suitable for different goals. We further
excluded three ICU admissions that had a constant value
across all the time points for one or more laboratory tests,
as exactly the same measurements repeated throughout
admission indicate signs of problematic recording. Our
dataset has 16 534 unique ICU admissions that contain
396 631 time points and 4 773 769 non-missing test result
measurements. We randomly split the dataset into a
training set and a test set, each containing half of the
patient admissions.

The generated dataset contains tests that were not
performed for a specific patient and have no measured
values, which we call natively missing data. The natively
missing data do not have ground truth for evaluating the
performance of an imputation algorithm. Although par-
ticipating teams still imputed natively missing data, such
data were not included in the evaluation of imputation
algorithms. Thus, we randomly removed one recorded
result per laboratory test per patient admission, which
gave 13 masked results with actually measured ground
truth, scattered throughout the varying time points,
see Supplementary Table 1, available online at http://
bib.oxfordjournals.org/, for an example of natively and
artificially missing data. This masking choice to create

Figure 1. Flowchart of DACMI challenge data generation. The flowchart
describes the filters applied and the number of data points taken forward
at each step.

artificially missing data is to balance the need to have
enough ground truth for evaluation and to minimally
alter the clinical time series. Table 1 shows that the
native missing rates of tests had small differences
(≤5%) to the combined missing rates. Supplementary
Table 2, available online at http://bib.oxfordjournals.o
rg/, shows the sequence length and available lab tests
per patient for the selected clinical laboratory tests. We
further preserved the time irregularities and varying
lengths of stays to reflect the real clinical scenario.
We asked the challenge participants to impute both
the natively missing and the artificially missing data.
We only compared their imputed values for artificially
missing data with corresponding ground truth when
evaluating the challenge participating systems.

Challenge organization and participating teams
The challenge was part of the IEEE International Con-
ference on Healthcare Informatics (ICHI) and leveraged
the global outreach of the conference for advertisement
in order to attract participating teams. We have also
cross-promoted the challenge in the community forums
of American Medical Informatics Association and at
chapter events of American Statistical Association. The
DACMI challenge took place from March to June 2019
and attracted participation from 12 teams worldwide
(Table 2). They came from multiple continents, including
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Table 1. Characteristics of selected clinical laboratory tests

Laboratory test Unit Interquartile range Native missing rate (%) Native + Artificial missing rate (%)

Chloride mmol/l 100–108 1.19 5.36
Potassium mmol/l 3.7–4.4 1.31 5.48
Bicarb mmol/l 22–28 1.40 5.57
Sodium mmol/l 136–142 1.26 5.43
Hemotocrit % 26.8–32.7 12.48 16.65
Hemoglobin g/dl 8.9–11.0 15.01 19.18
MCV fl 86–94 15.13 19.30
Platelets k/ul 131–331 14.49 18.65
WBC count k/ul 7.1–14.1 14.75 18.91
RDW % 14.4–17.4 15.25 19.42
BUN mg/dl 16–43 0.76 4.92
Creatinine mg/dl 0.7–1.8 0.72 4.89
Glucose mg/dl 100–148 2.67 6.84

Notes: Abbreviations: MCV, mean corpuscular volume; WBC, white blood cell

Asia, Europe and North America. They also span across
academia and multiple industries, including technology,
insurance and pharmaceutical companies. The challenge
workshop was held 10 June 2019, colocated with IEEE
ICHI, and had a data embargo period in the following
year.

Evaluation metrics
We evaluated the performance of systems using range
normalized root-mean-square deviation (nRMSD). RMSD
is frequently used to measure the differences between
the model-predicted values and the observed values [13].
Normalizing the RMSD brings different laboratory tests
to the same scales and facilitates comparison between
them, and we adopted the common choice of range
normalization. Let Xa,t denote the imputed values for
laboratory test t of admission a, Ya,t represent the actual
measured values of the test, j index the sequences of the
time series Xa,t and Ya,t. nRMSD for test t is

nRMSD(t) =

√√√√√√√
∑

a,j Ia,t,j

( ∣∣∣Xa,t,j−Ya,t,j

∣∣∣
max(Ya,t)−min(Ya,t)

)2

∑
a,j Ia,t,j

,

where Ia,t,j is 1 if admission a, test t at index j is missing
and 0 otherwise. Range normalization brings fluctuation
of different laboratory tests to a comparable scale. For
nRMSD, smaller is better.

Ethics
Ethics approval is waived since MIMIC3 is a public de-
identified dataset.

Challenge participating systems
To offer a reference standard for the challenge partici-
pating systems, we provided three-dimensional MI with
chained equations (3D-MICE) implementation and its
data handling utilities to the challenge participating
teams for quickly getting familiarized with the data.

We also provided 3D-MICE results on the challenge
dataset as a performance reference. MICE [2] assumes a
conditional model for each variable to be imputed, with
the other variables as possible predictors. MICE can rely
on regression from predictors to target variables or sam-
pling target variables from joint probability distribution
with predictors. 3D-MICE combined regression-based
MICE and Gaussian Process (GP) to integrate the cross-
sectional and temporal imputations using heuristic
weights [14].

Team Ping An [14] used LightGBM [15] to integrate both
temporal and cross-sectional features. They included
the following feature sets. F1 consists of the values of
the other laboratory tests in the current time-stamp.
F2 consists of the current time index (see examples in
Supplementary Table 1 available online at http://bib.oxfo
rdjournals.org/) and the current time-stamp. F3 consists
of the durations between the current time-stamp and the
time-stamps before and after. F4 consists of the values
of all the 13 laboratory tests in pre and post 3 time-
stamps. F5 consists of the max/min/mean values of all
the laboratory tests of the current patient admission.
They separately built one model for each laboratory test.

Team AstraZeneca [16] proposed a variant of 3D-MICE.
They calculated local temporal features, including F1 and
F4, as described above and the slope of change trend
at each time-stamp estimated using GP. They addition-
ally calculated global patient similarity features using
summary statistics (min, max, percentile, mean and SD)
for the laboratory tests. Instead of using heuristics to
combine temporal and cross-sectional imputation, they
used both local temporal features and global patient
admission similarity features to augment MICE features
and to let MICE’s conditional probability modeling deter-
mine how to combine it with cross-sectional imputation.
When choosing the regressor for MICE, they used random
forest (RF) for laboratory tests with high skewness [red
cell distribution width (RDW) and blood urea nitrogen,
creatinine and glucose (BUN)] and LASSO for the others.

Team Vanderbilt [17] applied XGBoost [18] and
explored pre-filling strategies, including global mean,
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Table 2. Challenge participating system method comparison

Team (Continent
Organization)

Main algorithm Temporal and cross-sectional modeling
consideration

Pre-filling

Ping An [14] (A, I) LightGBM Multi-directional temporal and
cross-sectional features

AstraZeneca [16] (E, P) MICE GP estimated trend features and summary
statistics to augment cross-sectional
features for MICE

Vanderbilt [17] (N, U) XGBoost Measurements from concurrent and pre-
and post-three time-stamps

Global mean, local mean, SVD and
Soft-Impute

HKBU [20] (A, U) Fusion layer to combine RNN and
MLP outputs

Temporal features for RNN, cross-sectional
features for MLP

Temporal decay

Padova [21] (E, U) Weighted average of KNN and
linear interpolation outputs

Temporal features for linear interpolation,
cross-sectional features for KNN

TSU [22] (N, U) Piecewise linear interpolation and
non-linear extension of MICE

Temporal features for linear interpolation,
cross-sectional features for non-linear
extension of MICE

Linear interpolation for tests with
over 0.5 correlation with time

DLUT [23] (A, U) KNN, Soft-Impute and nuclear
norm matrix factorization

No explicit modeling for temporal trends

NCSU [24] (N, U) Matrix factorization methods Regularization term for modeling temporal
locality

Drexel [25] (N, U) Similarity weighting Time window based similarity to capture
temporal locality

Buffalo/Virginia [26] (N, U) Fusion gate to combine RNN
outputs

Separate RNNs for temporal features of
each test and for cross-sectional features

IBM [27] (N, T) XGBoost as the ensemble method Base models: linear model for temporal
imputation; KNN, RF, MLP for
cross-sectional imputation; and
bi-directional GRU and LSTM for combined
imputation

Iowa [28] (N, U) Ridge regression, LASSO or gradient
boosting as the ensemble method

Base models: spline basis functions for
temporal imputation; RBF neural network
for cross-sectional imputation; and
bi-directional LSTM for combined
imputation

RBF interpolation

Continent: A – Asia, N – North America, E – Europe. Organization: I – Insurance, P – Pharmaceutical, U – University, T – Technology.

local mean, iterative Singular Value Decomposition (SVD)
and Soft-Impute (iteratively replacing the missing values
with those calculated from a soft-thresholded SVD [19])
that do not explicitly account for temporal features. They
found that iterative SVD and Soft-Impute pre-filling are
more effective than the other two. After pre-filling, they
used window-size-based extraction to create features
used by XGBoost, and their features are essentially F1 and
F4 as described above. They normalized each laboratory
test using global mean and standard deviation before
imputation. They observed that pre-filling enables a
faster convergence for XGBoost. They also observed
that increasing the window size resulted in modest
improvement in accuracy for glucose imputation and
little improvement for other laboratory tests.

Team Hong Kong Baptist University (HKBU) [20]
proposed Context-Aware Time Series Imputation (CATSI)
to explicitly capture the patient admission condition
by a global context vector to augment a bi-directional
recurrent neural network (RNN). They used multilayer
perceptron (MLP) to learn the model for cross-sectional
imputation and used a fusion layer to integrate the
temporal imputation and the cross-sectional imputation.
They pre-filled the raw measurements using a trainable

temporal decay method where measurements farther
apart have smaller weights (multiplicative decay factors)
when pre-filling the current missing value [10].

Team Padova [21] combined weighted K-Nearest
Neighbors (KNN) and linear interpolation to capture the
cross-sectional correlation and the temporal correlation,
respectively. For KNN imputation, they used population-
level Maximal Information Coefficient between labora-
tory tests to weight the differences between different
laboratory tests when calculating the distances between
patient admissions. They then computed the imputed
value using the average of values of the same test from
nearest neighboring patient admissions, weighted by the
KNN distances. Either KNN or linear interpolation, or
their weighted average, were then selected separately for
each variable based on validation set performance.

Team Tennessee State University (TSU) [22] used piece-
wise time interpolation, a non-linear extension of MICE,
and their combination to capture the non-linear trends
for imputation. Their piecewise time interpolation used
only temporal correlation. Their non-linear extension of
MICE essentially replaces MICE’s linear regressors with
non-linear gradient boosting tree regressors. Their hybrid
model applies piecewise time interpolation to laboratory
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tests whose correlation with time is >0.5, then runs non-
linear extension of MICE on all laboratory tests in the
second stage.

Team Dalian University of Technology (DLUT) [23]
experimented with KNN, Soft-Impute and matrix fac-
torization using nuclear norm as loss function as
imputation methods. Nuclear norm is defined as the
sum of singular values of a matrix and is a continuous
approximation to a matrix’s rank. Intuitively, matrix
factorization using nuclear norm aims to recover a low-
rank matrix from the observed subset of its entries. Their
models do not explicitly use temporal correlations.

Team North Carolina State University (NCSU) [24]
applied regularized matrix decomposition that seeks
low-rank approximation to the observed data matrix
for imputation. Their regularizations aim to reduce
overfitting and preserve temporal locality (closer time-
stamps imply closer measurements). They experimented
with configurations where patient admissions share
latent factors or have unique latent factors.

Team Drexel [25] calculated patient admission simi-
larities based on observed data and used the similarities
to weight the contribution to the imputing target from
the measured values of the same variables of similar
patients. They calculated time-sensitive similarity by fil-
tering the target patient admission using a time win-
dow (consisting of F1 and F4 as previously described)
around the time-stamp to be imputed, generating a tar-
get segment. They generated reference segments with
the same length as the target segment, from each of
the rest patient admissions, and calculated the similarity
between target and reference segments.

Team Buffalo/Virginia [26] used a RNN to learn the
global representations of all laboratory tests and a series
of RNNs to learn laboratory test-specific patterns and
to merge them through a fusion gate. They enabled
both forward and backward directions of recurrence for
imputation in order to improve its ability of long-term
memory. They also added a regression layer on top of the
recurrence layer to utilize correlation between temporal
trends.

Team IBM [27] developed a stacked ensemble learner
that employs six base models: linear base model for
temporal imputation, KNN, RF, MLP for cross-sectional
imputation, bi-directional Gated Recurrent Unit (GRU)
and bi-directional Long Short-Term Memory (LSTM) for
combined imputation. They then used XGBoost to com-
bine the base models.

Team Iowa [28] used an ensemble learner with base
models, including regularized regression with smoothing
spline basis functions, radial basis function (RBF) kernel
interpolation, RBF neural network and bi-directional
LSTM using RBF interpolation for pre-filling. They
experimented with ridge regression, LASSO or gradient
boosting as the ensemble method.

Comparing the challenge participating systems, we
note that several teams adopted the gradient boosting
algorithms as primary tools for imputation [14, 17, 22].

A few teams used RNN (including LSTM and GRU) for
imputation [20, 26–28]. Several teams used KNN-based
approaches [21, 23, 27]. Some teams used ensemble mod-
els to combine simple models, such as linear regression
and/or advanced models such as RNN [27, 28]. Matrix
factorization methods (including SVD and Soft-Impute)
were used by multiple teams, either as the primary impu-
tation methods [23, 24] or during the pre-filling step
[17]. Participating teams performed cross-validation for
parameter tuning to avoid overfitting. We refer to the
reader to Table 2 for a more convenient and detailed
comparison between challenge participating systems.

Evaluation results
Table 3 shows the results of the teams. Team Ping An
[14] achieved the best overall nRMSD of 0.1782, using
LightGBM-based system, significantly better than other
teams with non-overlapping 95% confidence intervals
(CIs) (see Supplementary Table 3 available online at
http://bib.oxfordjournals.org/). Team AstraZeneca [16]
leveraged the probabilistic framework of MICE instead of
machine learning models to optimize the combination of
cross-sectional and temporal imputations, and achieved
an nRMSD of 0.1862. Team Vanderbilt [17], using
XGBoost, achieved an nRMSD of 0.1871, which was close
to that of Team AstraZeneca with overlapping 95% CIs
(Supplementary Table 3 available online at http://bib.o
xfordjournals.org/). The top three teams significantly
outperformed other teams and 3D-MICE by a margin
with non-overlapping 95% CIs (Supplementary Table 3
available online at http://bib.oxfordjournals.org/). For
example, the top team’s 95% CI [0.1774, 0.1789] is non-
overlapping with 3D-MICE’s 95% CI [0.2263, 0.2282],
suggesting the statistical significance of the difference.
In addition, for specific lab tests, the top three systems
that use machine learning or probabilistic models to
integrate temporal and cross-sectional correlations
significantly (non-overlapping 95% CIs) outperform 3D-
MICE. Feature analysis for the top team ranked F4
as the most important feature set, followed by F2,
F3 and F5 (see Challenge participating systems section
for feature set definition), all being temporal and
cross-sectional features. These observations suggest
the benefits of properly trained machine learning or
probabilistic models to learn to combine the temporal
and cross-sectional imputations when compared with
heuristic combination used in 3D-MICE. On the other
hand, we also noticed that ensemble machine learning
models [27, 28], that combined many base models used
by the top performers (Table 2), in fact came last in
performance. Note that many such base models (e.g.
LSTM and neural networks) are themselves advanced
models instead of weak models. Unlike the conventional
wisdom that an ensemble of weak models leads to
performance improvement, we see that an ensemble of
non-weak machine learning models may actually lead
to performance decline, possibly due to too complex
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optimization objective function as a result of too many
parameters. While machine learning and probabilistic
models are in principle more effective than heuristic
models, care needs to be taken to prevent overblown
model complexity. Although we chose to only include
directly measured lab tests, there are strong correlations
among some of the tests (e.g. hematocrit can be
estimated as tripling the hemoglobin concentration
and dropping the units). However, our previous study
showed that such correlation for estimation, though
strong, is not perfect [6]. Such correlations can be readily
utilized by linear regression based models, but none
of the systems relying on linear regressions [27, 28]
placed top in the evaluation (even when only looking at
hematocrit and hemoglobin). This suggests that machine
learning tools used by top performers likely helped
them to obtain more accurate results than calculating
based on standard approaches. CATSI replaced temporal
imputation-derived features with RNN component but
did not perform as competitively. This is likely because
the ICU clinical time series have highly variable lengths
and impose challenges to the parameter sharing of
RNN across admissions during imputation. Time-Aware
LSTMs and variants [29] may partially address such
challenges. KNN-based methods slightly outperformed
3D-MICE, suggesting limited benefits of only exploring
similar patients instead of all the patients when
imputing missing values for the patient of interest.

Looking more closely at the differences in the results
from individual laboratory test, we note that the top
performers are usually the overall top performer, with
a few exceptions where Team AstraZeneca came first
in RDW and Team Vanderbilt came first in BUN. On
the other hand, the bottom performers for individual
laboratory tests are usually the overall bottom performer,
with a few exceptions where Team IBM came last in
RDW, BUN, creatinine and glucose. In order to evaluate
the impact when a certain subset of the data points
were missing, we compare missing clinical data at
the beginning (the first time-stamps, 5.6% out of total
missing), in the middle, and at the end (the last time-
stamps, 5.2% out of total missing) of the patient admis-
sions in the test data. Figure 2 shows the imputation
performance differences for missing data at different
stages of patient admissions across all the laboratory
tests for each challenge participating team. The general
pattern shows significantly larger (with non-overlapping
95% CIs) imputation errors for beginning and end time-
stamps than for middle time-stamps. For nine of the
teams, beginning time-stamps are associated with signif-
icantly larger (with non-overlapping 95% CIs) imputation
errors than end time-stamps, while for the rest three
teams, end time-stamps are associated with modestly
larger imputation errors than beginning time-stamps.
Supplementary Figure 1 through Supplementary Figure
13, available online at http://bib.oxfordjournals.org/,
show laboratory test-specific imputation performance
differences for missing data at different stages of patient Ta
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Figure 2. The imputation performance differences for missing data at different stages of patient admissions across all the laboratory tests for each
challenge participating team. The label ‘begin’ (‘end’) corresponds to the first (last) time-stamps of the patient admissions, and the label ‘mid’
corresponds to the time-stamps between the first and the last.

admissions, for each challenge participating team.
Laboratory test specific patterns are in general similar
to the patterns across all the laboratory tests. In rare
cases (e.g. Team Iowa in hematocrit and hemoglobin),
imputation errors for middle time-stamps are larger
than those for end time-stamps, likely a system-specific
pattern.

Discussion
This challenge has several limitations. First, our choice of
the ICU dataset MIMIC3 to derive the challenge dataset
excludes non-ICU inpatients and outpatients. Practically
speaking, MIMIC3 is arguably the most widely used pub-
lic large clinical data by the machine learning commu-
nity. Moreover, medicine has evolved into an era where
hospitals progressively adopt more real-time monitoring
for the patients and generate ICU-like clinical data, mak-
ing today’s ICU a snapshot for tomorrow’s standard of
care [30]. On the other hand, data missing rate varies
for different clinical settings. For example, one typically
expects higher missing rate in general inpatients than
ICU patients and higher missing rate in outpatients than
inpatients. Comparing results from this challenge to the
original 3D-MICE study that focused on general inpa-
tients [6], it is not surprising that higher missing rate
results in less imputation accuracy, but in both settings,
combining the cross-sectional correlation and longitudi-
nal correlation results in improved accuracy from lever-
aging either correlation alone. Future work on outpatient
imputation may further chart the missing rate landscape
and illustrate where the ceiling effect of clinical data
imputation might be.

Another limitation concerns artificially missing data
as ground truth in performance evaluation. Although
measuring natively missing data is most ideal, it is
logistically impossible for retrospective dataset such as
MIMIC3. To assess objectively imputation for natively
missing data, one will need to collect prospectively and

unbiasedly spare samples (e.g. blood samples) to produce
ground truth, which is our ongoing work with an in-
house patient cohort. However, we made best efforts to
minimally alter the clinical time series and ensured that
the native missing rates of tests had small differences
(≤5%) to the combined native and artificial missing
rates. Moreover, the combined missing data make the
imputation task harder than observed reality and render
our performance evaluation a conservative one. On the
other hand, the statistics on available lab tests per
patient (Supplementary Table 2 available online at http://
bib.oxfordjournals.org/) show a grouping pattern, e.g.
Chem-7 panel tests (chloride, potassium, bicarb, sodium,
BUN, creatinine and glucose) versus other tests. Tests
from the same group tend to have similar median and
interquartile range of available lab tests per patient
(Supplementary Table 2 available online at http://bib.o
xfordjournals.org/) although the time of missing has
large variations (e.g. Supplementary Table 1 available
online at http://bib.oxfordjournals.org/). This may favor
algorithms that put an emphasis on leveraging cross-
sectional correlations to a limited degree.

Another limitation concerns the inclusion criteria
that all patients need to have at least 10 time points of
contemporaneous no more than 50% missing complete
blood count (CBC) and Chem-7 tests. Table 1 suggests
Chem-7 tests tend to be ordered more than other tests,
which is corroborated by previous case reports for ICU
lab test utilization frequency [31]. This partially informed
our choice of requiring a least 7 out of 13 labs to be
present, as such a missing CBC component would not
eliminate a time point but a missing Chem-7 component
would. However, this may not always be the case. For
example, a patient with ongoing bleeding may present
with a low hemoglobin but normal Chem-7. This patient
would likely be monitored closely for CBC (e.g. every
6 h), but less frequently for Chem-7 (e.g. once a day).
The patient will undergo quick interventions to fix the
bleeding. As a result, the hemoglobin may return to

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab489#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab489#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab489#supplementary-data
http://bib.oxfordjournals.org/
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normal when Chem-7 is taken. In this case, our strict
inclusion criteria could lead to not being able to learn
how well these different imputation techniques work
on more physiologically deranged values. Although the
summary statistics in Table 1 and previous reports [31]
suggest such cases may not be too prevalent, they may
nevertheless arise with certain clinical scenarios. Thus,
we have released our source code for dataset creation
so that future research can investigate more relaxed
inclusion criteria and its impact on the imputation
system performance.

Another limitation concerns the fact that often in
clinical medicine if a lab result is missing, it is because
the clinical provider felt like that test result would be
normal or unhelpful in diagnosing or treating the patient.
As a result, these data are missing not at random, and
the missing pattern contains inherent information. Eval-
uating the utility of such missing pattern asks for a
downstream task (e.g. diagnosis or intervention) and is
beyond the scope of this challenge but will be our future
work. For this challenge, we applied range normalization
to bring variation of different laboratory tests to a com-
parable scale and used nRMSD as evaluation metric. How
much of the degree of improvement as measured by a
standardized metric will lead to tangible clinical benefits
(e.g. improved prediction on diagnosis or even interven-
tion choice) likely depends on clinical tasks and settings
and is worth systematic evaluation through communi-
tywide effort in both the informatics and clinical com-
munities. Complicating the issue of missing data, clinical
data quality also depends on the fact that its primary role
is to help clinicians care for patients. As a result, factors
related to health-care operation and delivery can greatly
bias and impact the data availability and quality [32]. The
design principles of some of the challenge participating
teams may also inform future algorithms to potentially
overcome these issues. For example, extending on the
global context vector idea by Team HKBU [20], one can
add a time-varying bias vector to RNN and similar mod-
els in order to capture and quantify the underlying bias
factors contributing to the observed data quality issues.

The DACMI challenge has generated considerable
interests both across and beyond the challenge partic-
ipating teams. Although the challenge has an extended
embargo period for its full data release due to the pan-
demic, the released training part of the challenge data
has been enabling development of advanced algorithms
for clinical longitudinal data imputation, including Time-
Aware Multi-Modal Auto-Encoder [33]. For latest progress
on imputation for time series in the general domain, we
refer the reader to the surveys [34, 35] that complement
this article. The DACMI challenge has provided a solid
foundation to evaluate and advance the state of the
art in imputing missing data in clinical time series. The
challenge has attracted numerous international teams
spanning three continents across multiple industries and
academia. Given the rapid progress in the past years,
we expect that more exciting developments of clinical

data imputation will continuously shape the emerging
landscape and provide opportunities for researchers to
contribute.

Key Points

• Most clinical datasets contain missing data and
are longitudinal by nature. However, most com-
monly used imputation methods do not directly
accommodate longitudinal, clinical time series.

• The DACMI challenge is the first shared-task
challenge on clinical time series imputation to
our best knowledge. We presented a shared clini-
cal dataset with ground truth for evaluating and
advancing the state of the art in imputing miss-
ing data for clinical time series.

• The challenge attracted 12 international teams
spanning three continents across multiple indus-
tries and academia.

Supplementary Data
Supplementary data are available online at https://acade
mic.oup.com/bib.
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