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Abstract

Alzheimer’s disease (AD) has a strong genetic predisposition. However, its risk genes remain incompletely identified. We developed
an Alzheimer’s brain gene network-based approach to predict AD-associated genes by leveraging the functional pattern of known AD-
associated genes. Our constructed network outperformed existing networks in predicting AD genes. We then systematically validated
the predictions using independent genetic, transcriptomic, proteomic data, neuropathological and clinical data. First, top-ranked
genes were enriched in AD-associated pathways. Second, using external gene expression data from the Mount Sinai Brain Bank study,
we found that the top-ranked genes were significantly associated with neuropathological and clinical traits, including the Consortium
to Establish a Registry for Alzheimer’s Disease score, Braak stage score and clinical dementia rating. The analysis of Alzheimer’s brain
single-cell RNA-seq data revealed cell-type-specific association of predicted genes with early pathology of AD. Third, by interrogating
proteomic data in the Religious Orders Study and Memory and Aging Project and Baltimore Longitudinal Study of Aging studies, we
observed a significant association of protein expression level with cognitive function and AD clinical severity. The network, method
and predictions could become a valuable resource to advance the identification of risk genes for AD.
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Introduction
Alzheimer’s disease (AD) is a complex and progressive
neurodegenerative disorder that accounts for the major-
ity of all dementia cases [1–6]. AD is partly caused by
genetic mutations [7–9]. Mutations in APP, PSEN1 and

PSEN2 are associated with early-onset AD [7]. APOE-ε4 is
a well-known risk allele for late-onset AD. Most known
or putative AD-associated genes are discovered through
genome-wide association studies (GWAS). Previously,
GWAS identified CLU, CR1 and PICALM, along with
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approximately 20 more genes [7]. A meta-analysis of
GWAS identified rare variants in PLCG2, ABI3 and TREM2
implicating microglia-related innate immunity in AD
[10]. In addition, network approaches are used to identify
AD-associated molecular networks or pathways [11]. For
example, a module-trait network approach was proposed
and applied to identify gene coexpression modules that
were associated with cognitive function decline [12],
whereas a large-scale proteomic analysis identified
an energy metabolism-linked protein module, strongly
associated with AD pathology [4]. AD stage-associated
molecular networks were discovered by using a deep
multilayer brain proteomics approach [13]. By leveraging
a comprehensive collection of genome-wide epigenomic
profiles, an approach called DIVAN is proposed, which
can accurately and robustly identify disease-specific risk
variants [14]. Despite the substantial advancements in
understanding the genetic basis of AD, a large proportion
of the phenotypic variance in AD cannot be explained
by known risk genes [15–17], suggesting additional AD-
associated genes that remain to be discovered. Since
experimental approaches are often time-consuming and
expensive, computational approaches provide a promis-
ing alternative to discovering AD-associated genes.

Previous studies have shown that functional gene
networks (FGNs) are promising for predicting disease-
associated genes [18, 19]. FGNs are constructed by
integrating heterogeneous omics datasets mainly from
public datasets [18, 20, 21]. In an FGN, a node represents
a gene, and the edge connecting two genes represents
the co-functional probability (CFP) that the two genes
take participate in the same biological process or
pathway [22]. For example, using a global (i.e. non-tissue
specific) FGN for mice, novel candidate genes for bone-
mineral density and thermal pain were predicted [23,
24]. Considering that gene interactions might be rewired
in different tissues, tissue-specific networks were later
proposed to capture gene interactions more accurately in
tissues. Greene et al. proposed to leverage tissue-specific
gene function annotation data to guide the construction
of tissue-specific networks using a supervised learning
approach; with this approach, they constructed 144
human tissue-specific networks and investigated these
networks for the interpretation of gene functions and
diseases [19, 20]. One limitation of these networks is
that the gene expression data, which are taken as input
features to construct the network for a given tissue (say
brain), remain not tissue-specific; that is, expression
data of not only the tissue under investigation but
also other tissues were used. Therefore, the resulting
network may have limited accuracy in modeling tissue-
specific gene interactions due to the interference caused
by other tissues. Later in our previous work, we built
a brain gene network by integrating only microarray-
based brain-specific gene expression data [25]. Existing
networks were exclusively built with naïve Bayesian
classifiers (NBC). NBC has the limitation that its feature
independence assumption usually does not hold and it
could not well capture the nonlinearity in real data.

Here we proposed to predict AD-associated genes by
leveraging a brain FGN constructed with Alzheimer’s
brain gene expression data. Considering the limitation
of the NBC, the state-of-the-art XGBoost algorithm was
adopted to construct the brain FGN because it does
not assume feature independence and is suitable for
nonlinear modeling. The resulting brain FGN (called
ADBrainNexus for simplicity) is a weighted network, in
which the weight of the edge represents the CFP that
two genes participate in the same biological process in
human brains. A machine learning model was trained to
predict the association of each gene with AD by learning
the functional pattern of known AD-associated genes
collected from multiple data resources, including the
GWAS Catalog and Online Mendelian Inheritance in Man
(OMIM) databases. With this model, we scored all other
human genes that were not used in model training. The
higher the score is, the more likely the gene is associated
with AD. Note that our predictions do not indicate any
causality, that is, the predicted genes may be either
directly or indirectly associated with AD. Using indepen-
dent data from the Mount Sinai Brain Bank (MSBB) study,
we found that the top-ranked genes were significantly
associated with AD traits, including the Consortium to
Establish a Registry for Alzheimer’s Disease (CERAD)
score, Braak stage score and clinical dementia rating
(CDR), suggesting the functional relevance of our predic-
tions to AD. We observed cell-type-resolved association
of predicted genes with early pathology of AD using
brain single-cell RNA-sequencing (scRNA-seq) dataset.
Further, we uncovered a significant association of the
protein-level expression of top-ranked genes with both
cognitive function and AD clinical severity using external
proteomic data from the Religious Orders Study and
Memory and Aging Project (ROSMAP) and Baltimore
Longitudinal Study of Aging (BLSA) studies. The resulting
predictions and pipeline could be valuable to advance
the identification of risk genes for AD.

Materials and methods
Construction of brain-specific FGNs
We constructed an Alzheimer’s disease brain FGN (called
ADBrainNexus) by integrating heterogeneous genomic
interaction data mainly including gene expression and
DNA methylation. Gene expression data were obtained
from the Gene Expression Omnibus (GEO) and Digital
Expression Explorer 2 (DEE2) databases. DEE2 is a
database of RNA-seq gene expression data generated
using a unified pipeline [26]. From GEO, we searched
datasets on human Alzheimer’s studies. Because for
each dataset the correlation between every pair of genes
needs to be calculated as features and the correlation
could be spurious if the number of samples is small, we
retained only the datasets containing at least 10 samples
following the practice in our previous work [27]. For the
dataset containing both AD and control samples, we
partitioned the samples into the AD and control groups,
thus forming two sub-datasets. In doing so, we obtained
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a total of 21 AD datasets and 13 control datasets.
The control datasets will be used to build a healthy
brain network for comparison. For these datasets, we
calculated gene-level expression values by taking the
mean of all its probes, which is the conventional practice.
In addition, we also searched the DEE2 database and
identified 17 healthy brain datasets, in which gene
expression is measured with Fragments per Kilobase of
exon model per million mapped reads (FPKM). In each
dataset, lowly expressed genes (FPKM < 0.1 in more than
90 % samples, which is the same criteria used in our
previous work [27]) were removed. We obtained 21 and
30 gene expression datasets for AD and control samples,
respectively. For each gene expression dataset, Spearman
correlation between gene pairs is calculated as features.
In addition, we obtained human brain DNA methylation
datasets from the ref [28, 29]. If a dataset contains both
AD and control samples, the two groups of samples
are separated. We obtained nine AD and five control
DNA-methylation datasets. Gene methylation level is
calculated as the average of the methylation level of the
CpG sites that map to the gene. For each dataset, the
Spearman correlation between methylation profiles of
gene pairs is calculated as the feature. The accession
ID of all above-described gene expression and DNA
methylation datasets are provided in Supplementary
Table 1. In addition, we also considered six pairwise
genomic features, which were obtained from the GIANT
website [20], including protein–protein interaction (PPI)
from MINT, IntAct and BioGRID, the chemical and genetic
perturbations, shared 3’ UTR microRNA binding motif
from MSigDB and co-occurrence of transcription factor
binding sites.

We generated functionally related (positives) and
unrelated (negatives) gene pairs using the same method
established in our previous work [18, 20, 23, 25]. Briefly,
positive and negative gene pairs are obtained based
on the functional annotation to Gene Ontology (GO)
biological process or Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. For GO terms, only the
annotation with experimental evidence codes (EXP, IDA,
IPI, IMP, IGI and IEP) were used for quality control.
Because GO terms are hierarchical, we first propagate
all genes of a GO term to its parent term recursively
using the previously established methods [20]. Then,
gene pairs that are co-annotated to the same GO term
or KEGG pathway are considered as positives; gene pairs
that are not co-annotated to any GO term or pathway are
considered as negatives. The gene pairs generated from
GO and KEGG were combined, and redundant ones were
removed, resulting in 828 712 positive pairs. Negatives
were generated using the same approach as established
in the work [20, 23, 25]. Considering the limitation of
the NBC as used in previous work, the state-of-the-art
XGBoost algorithm was adopted to build the network
prediction model because it does not assume feature
independence, is suitable for nonlinear modeling, and
scalable to large datasets. An XGBoost model was learned

using the features and the labelled positive or negative
gene pair as input. The learned model was then used to
predict CFP for all possible gene pairs, resulting in the
brain FGN (called ADBrainNexus for simplicity). As can
be seen from the method to construct ADBrainNexus, the
edge weight in the network represents the probability
that two genes work in the same biological process or
pathway, indicating that the network is a FGN based on
previous studies [20, 23]. ADBrainNexus is a weighted
network, in which the weight of an edge connecting two
genes represents the CFP that two genes participate in
the same biological process in human brains.

We tested the running time of building the network.
We used a machine with 2 Intel(R) Xeon(R) Gold 6126
CPUs (2.60GHz, 48 cores) and 1T memory. The num-
ber of cores is set to 32 for running XGBoost. It takes
126 minutes to construct the ADBrainNexus network.
This network is freely available at https://zenodo.org/re
cord/5594149.

Model development for predicting
AD-associated genes
First, we collected known AD-associated (positives) and
non-AD (negatives) genes to build the machine learning
model (see details in Supplementary Note 1). Briefly,
to identify AD-associated genes, we performed inten-
sive hand-curation of various disease gene resources,
including AlzGene [30], AlzBase [31], OMIM [32], Dis-
Genet [33], DistiLD [34] and UniProt [35], Open Targets
[36], GWAS Catalog [37], differentially expressed genes
(DEGs) in ROSMAP [38] and published literature. The
genes curated from each resource along with the corre-
sponding criteria to select genes are provided in Supple-
mentary Note 1. As the AD-associated genes and their
reliability vary across these resources, we used a voting
strategy and selected only those genes that are included
in at least two resources to ensure higher reliability. As a
result, we obtained 147 genes that are associated with
AD. To identify non-AD genes that had no known or
minimal association with AD, functional enrichment and
public databases were leveraged to remove any genes
that exhibit potential associations with AD. The remain-
ing were considered as non-AD genes.

For each gene, we extracted its CFP with each of the
147 collected AD-associated genes from ADBrainNexus
as a feature based on a previously proposed method
[39] (the weight between each gene and itself is set to
1). Consequently, each gene has 147 features and they
are collected into a 147-dimensional feature vector. The
feature data for the training set were represented by
a matrix X. The labels (1 for positives and 0 for neg-
atives) of these genes were stored in a vector y. The
feature matrix of all other genes not in the training
set was extracted. Then, a machine learning method is
used to build models to predict AD-associated genes.
The performance of the model is evaluated with 5-fold
cross-validation.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
https://zenodo.org/record/5594149
https://zenodo.org/record/5594149
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data


4 | Li et al.

Decile enrichment test for AD pathways
and phenotypes
The decile enrichment test proposed in the previous
study [19] is applied to statistically assess whether a
larger proportion of a given AD-associated gene set falls
into the first decile of predicted genes. The genes in the
training set are first excluded. The remaining genes are
ranked and split into 10 evenly binned deciles. Let Pnet

and Prandom denote the proportion of a given gene set that
falls into the first decile based on our prediction and
random chance, respectively. The decile enrichment tests
whether Pnet is significantly larger than Prandom by using
the binomial test (see details in [19]).

Statistical assessment of the association
of top-ranked genes with AD using
biological networks
We test whether top-ranked genes show significant func-
tional associations with AD based on statistical analysis
of functional genomic data. The method for the signifi-
cance test is described below.

Let t denote the metric of interest calculated for a given
list of genes based on given genomic data. For exam-
ple, t can be the Pearson correlation coefficient (PCC)
between a pair of genes calculated from gene expression
data. Let tobserved and trandom be the metrics calculated
for a set of top-ranked k genes and randomly selected
k genes, respectively. We test whether tobserved is signif-
icantly larger than trandom. By randomly generating 106

gene lists, 106 trandom values can be obtained. Let Nsig

denote the number of trandom values that are larger than
tobserved. Then, we calculate a P-value = Nsig/106.

The details for calculating t are described separately
for each type of genomic data in the following: (1)
testing by sequence similarity networks. An identity
score between each predicted gene and each known
AD-associated gene is computed using BLAST. Then t
is calculated as the maximum of the identity scores. (2)
Testing by miRNA-target binding data. Only the miRNA
that is associated with AD is considered. t denotes the
number of AD-associated miRNAs that can bind to both
known and predicted AD-associated genes. (3) Testing
by gene coexpression networks. t represents the number
of coexpressed gene pairs between predicted genes and
the AD-associated genes. (4) Testing by PPI networks.
t denotes the number of predicted genes that interact
with at least one known AD-associated gene.

AD neuropathological and clinical traits
in the MSBB study
We obtained an independent dataset with AD-associated
neuropathological and clinical traits from the MSBB
study [40]. The data from Brodmann area 36 (parahip-
pocampal gyrus), one of the most vulnerable regions to
AD [41], were used. This dataset contains gene expression
data for 215 donors for which AD traits are available.
These traits include the neuritic plaque density assessed
by CERAD score, neurofibrillary tangle severity by Braak

score and severity of dementia by CDR score. The dataset
is publicly available at the AMP-AD portal on Synapse
(Synapse ID: syn3159438). For each gene, its PCCs with
the CERAD, Braak and CDR scores were calculated.

Based on the CERAD score, we extracted control and
AD samples using the criteria provided on https://www.
synapse.org/Synapse:syn6101474; based on the Braak
score, we followed the practice in [41] and divided
samples into three groups in the ranges of [0, 2], [3, 4]
and [5, 6], representing different levels of tau pathology;
based on the CDR score, the samples were partitioned
into three groups in the range of [0], [0.5, 2] and [3, 5]
in the same way as used in [41], representing different
degrees of severity of clinical dementia.

Proteomic and cognitive data
in the ROSMAP study
ROSMAP are longitudinal clinical–pathologic cohort
studies of aging and AD. The clinical and proteomic
data for ROSMAP samples were downloaded from
Synapse (accession ID: syn3219045). Based on the clinical
variable ‘dcfdx_lv’, we identified individuals with no
cognitive impairment (NCI, n = 174), mild cognitive
impairment (MCI, n = 100) and ADs (n = 104). The protein
expression was quantified with TMT labeling (Synapse:
syn21266454). We considered the protein of which the
expression increased or decreased monotonically across
the three stages. Then, Kendall’s Tau-b test is applied to
test whether the trend was significant.

Proteomic data for asymptomatic
and symptomatic AD in BLSA study
Clinical and proteomic data for individuals in the BLSA
study were downloaded from Synapse (accession ID:
syn3606086). Based on the description, we identified
controls (n = 13), asymptomatic AD (AsymAD) (n = 14)
and AD (n = 20) individuals. The protein expression
used in our analysis was publicly available (accession
ID: syn4216216). We restricted our analysis to the
protein of which the expression increased or decreased
monotonically across the three stages. Kendall’s Tau-
b test is applied to test whether protein expression is
correlated with AD severity.

Results
Overview of ADBrainNexus-based prediction
of AD-associated genes
Our approach predicts AD-associated genes by leverag-
ing ADBrainNexus and 147 known AD-associated genes
from multiple resources including OMIM and AD GWAS
studies (Figure 1). ADBrainNexus was built by integrat-
ing 21 Alzheimer’s brain gene expression datasets, 9
Alzheimer’s brain DNA methylation datasets and 6 other
functional genomic datasets (see Materials and Methods)
using XGBoost; the network is accurate with area under
the receiver operating characteristic curve (AUROC) =
0.9066. Non-AD genes were selected using a function
enrichment-based method (Supplementary Note 1).

https://www.synapse.org/Synapse:syn6101474
https://www.synapse.org/Synapse:syn6101474
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
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Figure 1. Overview of the brain FGN (ADBrainNexus) based prediction of AD-associated genes and their functional characterization. (A) Construction
of ADBrainNexus by integrating brain gene expression data, DNA methylation data and other interaction networks using XGBoost. (B) Selection of AD-
associated genes. In total, 147 known AD-associated genes were collected from various resources, including OMIM, DisGeNet, Uniprot, DistiLD, AlzBase,
AlzBase, AlzGene, literature report, Open Targets, ROSMAP-DEG and GWAS-catalog. The gene that was present in at least two resources was selected.
The AD-associated genes, as well as potential positive genes inferred with a functional enrichment method, were then removed from the full set of all
human genes. The remaining genes were treated as non-AD genes (negatives). (C) Predicting AD-associated genes using a machine learning model built
by integrating ADBrainNexus and AD-associated genes. (D) Validation of predicted genes using heterogeneous functional genomic data based on their
association with AD-associated traits.

Table 1. Comparison of the ADBrainNexus with the healthy brain network, the GIANT and BaiHui networks in predicting
AD-associated genes

Networks Lasso Ridge regression ExtraTrees

AUROC AUPRC AUROC AUPRC AUROC AUPRC

GIANT 0.690 ± 0.011 0.425 ± 0.019 0.546 ± 0.001 0.446 ± 0.003 0.881 ± 0.012 0.611 ± 0.026
BaiHui 0.884 ± 0.0005 0.768 ± 0.0005 0.933 ± 0.002 0.852 ± 0.005 0.929 ± 0.006 0.847 ± 0.009
Healthy Brain 0.898 ± 0.001 0.638 ± 0.007 0.922 ± 0.001 0.788 ± 0.003 0.905 ± 0.008 0.748 ± 0.017
ADBrainNexus 0.926 ± 0.001 0.727 ± 0.005 0.951 ± 0.001 0.874 ± 0.001 0.927 ± 0.008 0.840 ± 0.010

First, we compared ADBrainNexus with the network
built with healthy brain datasets based on their perfor-
mance in predicting AD-associated genes (see Materials
and Methods). For both networks, we tested lasso, ridge
regression and ExtraTrees for building models. We found
that ridge regression performed better than the other
two methods on both networks (Table 1). We therefore
chose ridge regression to build the model to predict AD-
associated genes. The model based on ADBrainNexus
has AUROC = 0.951±0.001 and area under the preci-
sion–recall curve (AUPRC) = 0.874±0.001, which is higher
than that of the healthy brain-based network (AUROC =
0.922±0.001, AURPC = 0.788±0.003). We also compared
ADBrainNexus with the brain networks in the GIANT
and BaiHui database; ADBrainNexus also achieved bet-
ter performance (Table 1). This analysis suggests that
ADBrainNexus is superior than the two existing networks
in predicting AD-associated genes.

We validated the top-ranked genes using the top genes
obtained by the gene-level GWAS P-value approach and

the DIVAN approach [14] (the score for each gene is com-
puted using cross-validation). First, we computed a gene-
level P-value for each gene using the MAGMA software
(v1.07). The GWAS summary statistics data from a large-
scale AD study [42] are used as the input for MAGMA.
Using the decile test method described in [19], we find
that our top-ranked first-decile genes are significantly
enriched in the top-ranked 100 genes obtained by the
gene-level GWAS P-value method (P = 7.2×10−9). Second,
for the disease-specific variant annotation approach, we
obtained the variant scores for AD (https://sites.google.co
m/site/emorydivan/home), which are computed with the
DIVAN method [14]. Then, we computed the sum of the
score of all variants belonging to a gene as the gene score.
Using the above-mentioned decile test method, we find
that our top-ranked first-decile genes are significantly
enriched in the top-ranked 100 genes obtained by DIVAN
(P = 0.023).

Furthermore, we evaluated the model based on the
hypothesis that top-ranked genes were likely involved

https://sites.google.com/site/emorydivan/home
https://sites.google.com/site/emorydivan/home
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in AD if they show sequence similarity to or interact
with known AD-associated genes. To do so, we analyzed
external biological network data, including protein
sequence similarity networks, brain gene coexpression
from Mayo RNA-seq study, PPI from Human Reference
Interactome and STRING, miRNA–target interaction
from mirTarBase (Release 7.0), which were not used
in building the ADBrainNexus. This analysis showed
that the top-ranked genes showed significant sequence
similarity to, were significantly co-expressed, had more
interactions and shared more miRNA binding sites with
known AD-associated genes (see Materials and Methods;
Supplementary Figure 1).

Second, having validated the predictive value of
ADBrainNexus on these external network data, we
further updated the model to predict AD-associated
genes by integrating the features extracted from both
the external networks and ADBrainNexus (see details in
Supplementary Figure 2). Compared with using the fea-
tures only from the ADBrainNexus network, the updated
model achieved higher prediction performance (AUROC
= 0.969±0.001, AUPRC = 0.921±0.002) (Supplementary
Figure 2). This model predicts a score for each gene. A
higher score indicates that a gene is more likely to be
associated with AD, and vice versa. We found that 18
of the top-ranked 20 genes were associated with AD
based on the literature report (Supplementary Table
2), suggesting that our model captured the molecular
signature of AD-associated genes and was able to make
confident predictions. The source codes for building
the model are freely available at https://github.com/ge
nemine/ADBrainNexus. The scores for the top-ranked
200 genes (excluding know AD-associated genes) are
provided in Supplementary Table 3 (see the top-ranked
2000 genes at https://github.com/genemine/ADBrainNe
xus).

Top-ranked genes are enriched in AD-associated
biological processes
We tested the enrichment of predicted genes in AD-
associated biological processes (after excluding genes in
the training set). We collected AD-associated biological
processes from the GO database through enrichment
analysis as follows. First, using the Panther web server,
we performed GO enrichment analysis of our collected
147 AD-associated genes and obtained 858 GO biological
processes. Second, from a recent review paper on AD
[43], we identified AD-related risk factors, biological
processes or phenotypes, which include amyloid-beta,
memory, neuroinflammation, synapse-related functions,
APP, reactive oxygen species in central nervous systems.
Third, we manually went through the 858 enriched GO
terms and selected those terms that are involved in
the above-described AD-related risk factors, biological
processes or phenotypes. Finally, we obtained 41 AD-
associated biological processes. We performed the
analysis using the decile enrichment test established in
[19], which tests whether the genes in a biological process

of interest are enriched in the top-ranked first-decile
(i.e.10% ) of predicted genes (see Materials and Methods).
We observed that the top-ranked genes were signifi-
cantly enriched in all gene sets. Examples of enriched
biological processes include cognition (GO:0050890, False
Discovery Rate (FDR) = 2.8×10−39), learning or memory
(GO:0007611, FDR = 1.2×10−38), neuroinflammatory
response (GO:0150076, FDR = 2.5×10−15), regulation
of synaptic plasticity (GO:0048167, FDR = 1.5×10−23),
response to amyloid-beta (GO:1904645, FDR = 8.5×10−23),
amyloid-beta clearance (GO:0097242, FDR = 5.3×10−10)
(Figure 2). The enrichment results for all 41 biological
processes are provided in Supplementary Table 4.

We tested whether the top-ranked first-decile genes
overlapped with gene modules that were associated with
AD in published studies. We obtained two gene sets from
a recently published network association study on AD
[13]. The first was a set of 28 kinases that were possibly
implicated in AD; 20 of them were enriched in the first
decile of our predictions (P-value < 0.0001). The second
was the Aβ-correlated cascade gene set (14 genes) (after
removing CLU because it was in the training set); seven
ranked in the first decile (P-value < 0.0001). These results
support the association of our predicted genes with AD.

Expression of top-ranked genes are correlated
with neuropathological and clinical traits on
independent datasets
We tested whether the expression of top-ranked genes
was associated with AD using the independent MSBB
RNA-seq dataset (see Materials and Methods). For each
gene, we calculated its PCC with the CERAD, Braak
and CDR score (see Materials and Methods). We then
evaluated the correlation of the predicted ranks of the
genes with the three traits. This analysis showed that
higher ranks (higher predicted scores) were associated
with higher mean PCC values for all three phenotypes.
The predicted ranks were well correlated with the CERAD
(r = -0.915), Braak (r = -0.902) and CDR (r = -0.931) score
(Figure 3A). We assessed the association of top-ranked
genes as a module with the three traits. The eigengenes
(i.e. the first principal component) for the top-ranked
100, 200 and 300 genes were all significantly correlated
with the CERAD, Braak and CDR scores (Figure 3B;
Supplementary Figure 3).

We then examined the correlations of top-ranked indi-
vidual genes (those not included in the training set)
with AD traits [12]. Among the top-ranked 200 genes, we
identified 123, 120 and 135 genes that were significantly
correlated with the CERAD, Braak and CDR score, respec-
tively (FDR < 0.05). Of them, 107 were correlated with all
three phenotypes (Supplementary Table 3). Taking PRKCB
as an example, its correlations with CERAD, Braak and
CDR scores were -0.38 (FDR = 1.43×10−6), -0.35 (FDR =
2.22×10−5) and -0.38 (FDR = 7.70×10−7). Another example
is PLCB1, of which the PCC with the three traits were -0.40
(FDR = 3.39×10−7), -0.40 (FDR = 1.64×10−6) and -0.46 (FDR
= 9.12×10−9), respectively. These results on independent

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
https://github.com/genemine/ADBrainNexus
https://github.com/genemine/ADBrainNexus
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
https://github.com/genemine/ADBrainNexus
https://github.com/genemine/ADBrainNexus
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data


A brain network predicts Alzheimer’s disease genes | 7

Figure 2. Enrichment of the top-ranked first-decile predictions in AD-associated gene sets or pathways using the decile enrichment test (described in
Materials and Methods).

datasets indicate the association of top-ranked genes
with AD.

We further compared the predicted genes with the
number of APOE-ε4 alleles based on the proportion of the
variance of the three traits that they can explain using
the method established in [44]. The number of APOE-
ε4 alleles was considered as the baseline genetic risk
factor [44]. We observed that the expression of the top-
ranked genes explained comparable or more variance
for the CERAD, Braak, and CDR scores compared with
APOE-ε4 (Figure 3C). Taking the result for CERAD as an
example, PLCB1 explained the highest proportion (16.2 %
) of its variance, whereas APOE-ε4 explains only 4.1 % .
Of interest, PLCB1 also explained the highest proportion
of variance for the Braak (15.9 % ) and CDR (20.7 % )
scores, implying that it might be a potential candidate
gene.

Brain single-cell analysis identifies
cell-type-specific transcriptional changes
associated with early pathology of AD
We examined whether the cell-type-specific expression
of predicted genes was associated with the early
pathology of AD. We overlapped the top-ranked 200 genes
with the AD-associated DEGs identified in six major cell

types in a large-scale single-cell transcriptomic study
of Alzheimer’s brains [45]. The study analyzed three
subgroups of individuals: no-pathology, early-pathology
and late-pathology [45]. The cell types are astrocytes
(Ast), oligodendrocytes (Oli), oligodendrocyte precursor
cells (Opc), microglia (Mic), excitatory (Ex) and inhibitory
(In) neurons.

Of the top-ranked genes, we found that 3, 11, 2, 48 and
30 were DEGs between no-pathology and early-pathology
subgroups in Ast, Oli, Opc, Ex and In, respectively
(Figure 4A; Supplementary Table 3). We observed that
these DEGs were highly cell-type specific; most of them
were differential in only neurons (Ex or In) (Figure 4A).
For example, PRKX was upregulated in oligodendrocytes
(log2fold change = 1.15, FDR = 2.6×10−23). Another exam-
ple was FOS, which was downregulated in excitatory
neurons in early-pathology individuals (log2fold change
= -1.67, FDR=3.85×10−32). This analysis suggests that our
predicted genes are likely involved in the early stages
of AD. To examine the functions of these DEGs, we
performed GO enrichment analysis using the Panther
web server and found that they were enriched in AD-
associated biological processes such as neuron death
(GO:1901214, FDR = 4.32×10−9) and aging (GO:0007568,
FDR = 2.02×10−8) (Supplementary Table 5).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data


8 | Li et al.

Figure 3. Correlation of top-ranked genes with AD neuropathological and clinical traits on the MSBB dataset. (A) The correlation between predicted
scores and the three AD traits, (i.e. the CERAD, Braak and CDR scores. All genes (after excluding genes in the training set) were sorted by their predicted
scores and divided into 50 bins. For each gene, its absolute PCC with each trait was calculated. For the genes in each bin, their average score predicted
by our method was plotted against their average correlation. The trend is fitted with a linear regression model. (B) The association of the eigengene (the
first principal component) of the top-ranked 200 genes with the three traits. CERAD score is a measurement of neuritic plaque density. Braak score is
a measurement of neurofibrillary tangle severity. CDR measures the severity of dementia. (C) The proportion of variance of each trait explained by the
top-ranked genes. The proportion of variance explained by the number of APOE-ε4 alleles (the baseline genetic risk factor) is also shown for comparison.

Further, we found that 46% of the DEGs were still
differential between early-pathology and late-pathology
subgroups (Supplementary Table 3). This observation
implied that expression dysregulation observed in the
late stages of AD could have happened early before
symptoms could be observed. These DEGs might be
valuable for AD risk prediction.

Protein expression of top-ranked genes are
associated with cognitive function and AD
clinical severity
First, we investigated whether expression changes of
proteins encoded by top-ranked genes were associated
with cognitive function. We obtained clinical and protein
expression data from the ROSMAP study (see Materials
and Methods). We identified three groups of individuals
with different levels of cognitive function: NCI (n =
174), MCI (n = 100) and AD (n = 104). We focused on
the top-ranked 200 genes, of which 131 have protein
expression available. This analysis identified 40 genes
(31%) of which the protein expression levels were
significantly correlated with cognitive function (FDR <

0.05; see Materials and Methods; Supplementary Figure
4). Of them, 21 showed positive correlations and the
remaining 19 showed negative correlations (Figure 4B).
For example, the expression of MAPK1 and PLCB1 was
positively and negatively correlated with cognitive
function, respectively.

Second, we examined whether protein expression of
top-ranked genes was associated with AD clinical sever-
ity. Asymptomatic AD (AsymAD) was defined as a pre-
clinical state by the international working group [46].
Clinical and protein expression data were obtained from
the BLSA study. We identified control (n = 13), AsymAD
(n = 14) and AD (n = 20) samples. 57 of the top-ranked
200 genes had protein expression available and were
considered for this analysis. This analysis identified 15
(26%) proteins exhibiting a significant correlation with
AD clinical severity (Supplementary Figure 5). Of these,
two genes showed positive correlation and the remaining
showed negative correlation (Figure 4C).

In summary, this proteomic analysis showed that our
top predictions were associated with cognitive function
and AD clinical severity, suggesting that they might be
promising risk genes for AD.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
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Figure 4. Association of the top-ranked 200 genes with early-pathology AD, cognitive function, and AD clinical severity. (A) Differential expression of the
top-ranked genes between no-pathology and early-pathology subgroups of individuals for each cell type using the brain scRNA-seq data. The cell types
are astrocytes (Ast), oligodendrocytes (Oli), oligodendrocyte precursor cells (Opc), microglia (Mic), excitatory (Ex) and inhibitory (In) neurons. Colored and
gray dots indicate significant and insignificant differential expression, respectively. The Venn diagram shows the overlap of the DEGs among different
cell types. (B) Protein expression of 40 genes showed monotonously upregulation (n = 21) or downregulation (n = 19) from NCI to MCI to AD based on
the ROSMAP proteomic data. (C) Protein expression encoded by 15 genes showed monotonously upregulation (n=2) or downregulation (n=13) across
controls, AsymAD and AD based on the BLSA proteomic data.

Case studies of top-ranked genes supported
by multiple lines of evidence
In the above sections, we showed that the top-ranked
genes were associated with AD supported by different
types of functional genomic evidence. To identify genes
with multiple evidence, we considered the following six
lines of individual gene-level evidence: the correlation
with the CERAD, Braak and CDR score based on the
MSBB dataset, the differential expression between no-
pathology and early-pathology individuals based on the
Alzheimer’s brain scRNA-seq data, the association with
cognitive function based on the ROSMAP data and the
association with AD clinical severity based on the BLSA
data. The evidence of the top-ranked 200 genes was
visualized in the circular plot (Figure 5). We considered
the genes with at least four lines of evidence. In total,
59 such genes were identified (Supplementary Table 3).
Specifically, three genes (PLCB1, PAK1, ACTN2) were sup-
ported by all six lines of evidence. This analysis provided
a set of multiple evidence-based candidate genes to the
community for further experimental verification.

We selected PLCB1 (phospholipase C beta 1) for
illustration because it was supported by six lines of
evidence (Figure 6). The gene expression was correlated
with the CERAD (PCC = -0.37), Braak (PCC = -0.35) and

CDR (PCC = -0.37) score (FDR < 0.001) (Figure 6A–C).
Its expression was upregulated in inhibitory neurons
and downregulated in oligodendrocytes in individuals
with early-pathology AD compared with that in healthy
controls (Figure 6D). Increased protein expression of
PLCB1 was associated with a higher level of cognitive
function declining (Figure 6E) and AD clinical severity
(Figure 6F). Previous work showed that PLCB1 was
genetically associated with AD with suggestive evidence
based on GWAS Catalog database (P-value = 5.0×10−6 for
rs3859675 [47]; P-value = 2.0×10−6 for rs117019330 [48]).
Our analysis at the gene and protein expression level
provides further evidence supporting the association of
PLCB1 with AD, making it a promising candidate risk gene.

Discussion
AD is a neurodegenerative disease with heteroge-
neous pathologies [16, 49, 50]. However, predicting AD-
associated genes remains a challenge because AD is
caused mainly by common variants of multiple genes
and by the disruption of complex pathways. FGNs
are an important model for characterizing complex
functional relationships between genes and have been
successfully applied to predict candidate genes for

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab522#supplementary-data
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Figure 5. Visualization of the six lines of evidence supporting the functional association of the top-ranked 200 genes with AD. The six circles show the
strength of the six lines of evidence, including the Pearson correlation with the CERAD, Braak and CDR scores based on the MSBB dataset, the differential
expression between controls and early-pathology AD based on the human brain scRNA-seq data, the association with cognitive function based on the
ROSMAP proteomic data and the association with AD clinical severity based on the BLSA proteomic data. The darker the color is, the stronger the
association is.

complex diseases, including autism [19] and Parkinson’s
disease [51]. Since AD is caused by gene dysregulation in
the brain, we considered and constructed an Alzheimer’s
brain gene network, called ADBrainNexus, for predicting
AD-associated genes. The key idea of our approach
was to learn the pattern of AD-associated genes from
ADBrainNexus using machine learning methods. Our
model assigns each gene a probabilistic score, which
reflects the likelihood that the gene is associated with
AD.

We demonstrated that the top-ranked genes predicted
by our approach were functionally relevant to AD
by interrogating multiple lines of genomic evidence.
First, we showed that AD-associated pathways or
phenotypes were enriched for top-ranked genes using
the decile enrichment test. Second, based on the
analyses of the independent MSBB data, we observed
that the top-ranked genes were correlated with AD-
associated neuropathological (CERAD and Braak scores)

and clinical (CDR) traits, suggesting that they were
likely associated with AD. Third, the analysis of an
AD brain scRNA-seq dataset found that a large pro-
portion of the top-ranked genes were differentially
expressed between no-pathology and early-pathology
individuals, implying their association with early-stage
AD. Intersecting our predicted genes with the DEGs
identified in different cell types revealed cell-type-
resolved association of top-ranked genes with AD.
Fourth, using external data from the ROSMAP and
BLSA studies, we showed that the protein expression
of top-ranked genes was associated with the degrees of
cognitive function (NCI, MCI and AD) and AD clinical
severity (controls, AsymAD, AD). Taken together, the
above multi-omics analysis of molecular, neuropatho-
logical and clinical data provided evidence that our
predictions were reliable, and the top-ranked genes
were promising candidates for further experimental
verification.
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Figure 6. Multiple lines of evidence supporting the association of PLCB1 expression with AD traits. (A, B and C) The gene expression was associated
with the CERAD, CDR and Braak stage scores using the MSBB dataset. (D) The expression in inhibitory neurons and oligodendrocytes was differentially
expressed between no-pathology and early-pathology individuals based on the brain scRNA-seq study. A positive sign of log(FC) indicates that the
gene expression is upregulated in early-pathology individuals compared with no-pathology individuals. In contrast, a negative sign indicates that the
gene expression is downregulated in early-pathology individuals compared with no-pathology individuals. For this comparison, PLCB1 is upregulated
in inhibitory neurons (thus giving a positive sign of log(FC)) but downregulated in oligodendrocytes (thus a negative sign of log(FC)). (E) Correlation of
protein expression level with cognitive function based on the ROSMAP data. (F) Correlation of protein expression level with AD clinical severity using
the BLSA data.

Our contributions are 3-fold. First, we constructed
ADBrainNexus, a brain-specific FGN by integrating
multiple AD brain RNA-seq datasets and several other
gene interaction networks. We showed that this network
showed better performance in predicting AD-associated
genes than existing networks. Second, we collected
a set of genes that were likely associated to AD by
performing an intensive, stringent hand curation of
multiple resources, providing a potential resource for the
community. Third, we predicted novel candidate genes
and showed that the top-ranked genes exhibit significant
associations with AD through functional enrichment
analysis and multi-omics analysis of multiple external
datasets. These genes were found to be correlated
with AD-associated traits such as early-pathology,
neuropathological traits, cognitive function and clinical
severity. We narrowed down the top-ranked 200 genes by
taking advantage of the multiple lines of evidence. This
resulted in a list of 59 AD-associated genes supported
by at least four lines of evidence, providing a set of
promising candidates to the community for further
experimental testing.

Although our predictions are promising, our model
to predict AD-associated genes could be improved in
several ways. First, our predictions were made at the

gene level without differentiating splice isoforms gen-
erated from the same gene through alternative splic-
ing [6, 52, 53]. This is essential because isoforms of the
same gene might have different or even opposite func-
tions. Isoforms have been implicated in diseases such
as ovarian cancers [54]. The prediction of AD-associated
genes at the isoform level could have the potential to
promote our understanding of AD. Second, the human
brain consists of multiple heterogeneous structures, each
of which may contain many cell types. ADBrainNexus
is not cell-type-resolved yet. Building cell-type-specific
FGN by leveraging single-cell genomic data [55–58] could
be helpful to address this question. Lastly, our predictions
do not implicate causality. Our predictions represent only
statistical association.

In summary, we predicted novel AD-associated genes
and provided multiple lines of evidence at different
molecular levels supporting their association with AD.
Further studies are needed to experimentally test the
validity of our predictions. The developed method for
prediction and validation is generic and can be readily
extended to other complex diseases, such as Parkinson’s
disease, cancers and heart diseases. We expect that the
predicted genes might become a useful resource for
therapeutic target discovery for AD.
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Key Points

• We constructed a brain-specific functional
gene network (called ADBrainNexus for short),
which achieved better performance in predicting
Alzheimer’s disease (AD)-associated genes than
existing networks.

• A set of known AD-associated genes are collected
by intensive manual curation of various disease
gene resources, including OMIM, GWAS Catalog,
DisGenet and AD-associated publications.

• We built a model by mining ADBrainNexus and
predicted novel candidate genes for AD. The
association of top-ranked genes with AD were
validated using genetic, transcriptomic and pro-
teomic data from multiple external datasets.

Supplementary Data
Supplementary data are available online at https://acade
mic.oup.com/bib.
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