Skip to main content
. 2021 Dec 21;23(1):bbab531. doi: 10.1093/bib/bbab531

Table 1.

DL algorithms reviewed in the paper

App Algorithm Models Evaluation Environment Codes Refs
Imputation
DCA AE DREMI Keras, Tensorflow, scanpy https://github.com/theislab/dca [18]
SAVER-X AE + TL t-SNE, ARI R/sctransfer https://github.com/jingshuw/SAVERX [58]
DeepImpute DNN MSE, Pearson’s correlation Keras/Tensorflow https://github.com/lanagarmire/DeepImpute [20]
LATE AE MSE Tensorflow https://github.com/audreyqyfu/LATE [59]
scGAMI AE NMI, ARI, HS and CS Tensorflow https://github.com/QUST-AIBBDRC/scGMAI/ [60]
scIGANs GAN ARI, ACC, AUC and F-score PyTorch https://github.com/xuyungang/scIGANs [19]
Batch correction
BERMUDA AE + TL KNN batch-effect test (kBET), the entropy of Mixing, SI PyTorch https://github.com/txWang/BERMUDA [63]
DESC AE ARI, KL Tensorflow https://github.com/eleozzr/desc [67]
iMAP AE + GAN kBET, Local Inverse Simpson’s Index (LISI) PyTorch https://github.com/Svvord/iMAP [70]
Clustering, latent representation, dimension reduction and data augmentation
Dhaka VAE ARI, Spearman Correlation Keras/Tensorflow https://github.com/MicrosoftGenomics/Dhaka [72]
scvis VAE KNN preservation, log-likelihood Tensorflow https://bitbucket.org/jerry00/scvis-dev/src/master/ [75]
scVAE VAE ARI Tensorflow https://github.com/scvae/scvae [76]
VASC VAE NMI, ARI, HS and CS H5py, keras https://github.com/wang-research/VASC [77]
scDeepCluster AE ARI, NMI, clustering accuracy Keras, Scanpy https://github.com/ttgump/scDeepCluster [79]
cscGAN GAN t-SNE, marker genes, MMD, AUC Scipy, Tensorflow https://github.com/imsb-uke/scGAN [82]
Multi-functional models (IM: imputation, BC: batch correction, CL: clustering)
scVI VAE IM: L1 distance; CL: ARI, NMI, SI; BC: Entropy of Mixing PyTorch, Anndata https://github.com/YosefLab/scvi-tools [17]
LDVAE VAE Reconstruction errors Part of scVI https://github.com/YosefLab/scvi-tools [86]
SAUCIE AE IM: R2 statistics; CL: SI; BC: modified kBET; Visualization: Precision/Recall Tensorflow https://github.com/KrishnaswamyLab/SAUCIE/ [15]
scScope AE IM:Reconstruction errors; BC: Entropy of mixing; CL: ARI Tensorflow, Scikit-learn https://github.com/AltschulerWu-Lab/scScope [92]
Cell-type Identification
DigitalDLSorter DNN Pearson correlation R/Python/Keras https://github.com/cartof/digitalDLSorter [51]
scCapsNet CapsNet Cell-type Prediction accuracy Keras, Tensorflow https://github.com/wanglf19/scCaps [52]
netAE VAE Cell-type Prediction accuracy, t-SNE for visualization pyTorch https://github.com/LeoZDong/netAE [101]
scDGN DANN Prediciton accuracy pyTorch https://github.com/SongweiGe/scDGN [53]
Function analysis
CNNC CNN AUROC, AUPRC and accuracy Keras, Tensorflow https://github.com/xiaoyeye/CNNC [54]
scGen VAE Correlation, visualization Tensorflow https://github.com/theislab/scgen [114]

DL Model keywords: AE + TL: autoencoder with transfer learning, DANN: domain adversarial neural network, CapsNet: capsule neural network