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Abstract

Although high-throughput data allow researchers to interrogate thousands of variables simultaneously, it can also introduce a
significant number of spurious results. Here we demonstrate that correlation analysis of large datasets can yield numerous false
positives due to the presence of outliers that canonical methods fail to identify. We present Correlations Under The InfluencE (CUTIE),
an open-source jackknifing-based method to detect such cases with both parametric and non-parametric correlation measures, and
which can also uniquely rescue correlations not originally deemed significant or with incorrect sign. Our approach can additionally be
used to identify variables or samples that induce these false correlations in high proportion. A meta-analysis of various omics datasets
using CUTIE reveals that this issue is pervasive across different domains, although microbiome data are particularly susceptible to
it. Although the significance of a correlation eventually depends on the thresholds used, our approach provides an efficient way to
automatically identify those that warrant closer examination in very large datasets.
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Introduction
Studies using high-throughput assays can measure thou-
sands of variables simultaneously, which results in an
extremely large number of correlations between them
[1–8]. Specific data points can sometimes exert a dis-
proportionate effect when estimating the significance of
a correlation [9], to the extent that their removal from
the analysis leads to a non-significant result. This phe-
nomenon has been previously characterized—Pearson’s r
is known to be sensitive to these influential observations
[10, 11]. Despite the bias that such points induce on a cor-
relation, they are rarely considered during analysis [12,
13]. With the rapid growth in dataset size (both in dimen-
sionality and in number of samples), integrated analyses
that combine genomics, metabolomics, proteomics and
other omic datasets yield millions of correlations [14, 15].
Thus, tools are needed to identify influential points in an
automated manner.

Although influential observations can be visually
inspected [11], this approach is suitable only when the

number of correlations is small and, more importantly,
is open to subjective interpretation. Various methods
have thus been proposed to detect correlations driven by
specific data points, including Cook’s distance (or Cook’s
D), DFFITS, DSR, log-transformations or non-parametric
methods [16]. However, each of those approaches
has important limitations. Metrics that measure an
individual observation’s effect on the regression line
(e.g., Cook’s D, DFFITS and DSR) are not symmetric
with respect to the choice of ‘x’ and ‘y’ variables. The
log-transform can be employed to reduce the effect of
skewness when using Pearson’s correlation, although
selective log-transformation of a subset of variables is
difficult due to the lack of a consistent procedure for
choosing which variables to transform. Non-parametric
methods such as Spearman and Kendall can be used
to rank-transform the data and attempt to limit the
effect of influential observations, although they are
less powerful than Pearson and should only be used
when data strongly violate the assumptions of linear
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regression [16]. In addition, current approaches to detect
influential observations have been limited to identify
cases in which the removal of a data point converts a
significant correlation into a non-significant one, but
the opposite case (i.e., non-significant correlations that
become significant after removing influential points)
has, to the best of our knowledge, not been previously
studied. Further, the sign of a statistically significant
correlation can also be affected by influential points,
again a scenario that has not been addressed so far.
Therefore, methods that can work with both parametric
and non-parametric metrics, that do not exhibit these
limitations, and which can be efficiently computed with
large datasets, are highly desirable.

Here we propose Correlations Under The InfluencE
(CUTIE), a novel algorithm and open-source software
tool to automatically detect influential observations in
high-dimensional data. CUTIE performs a leave-one-out
resampling of each pairwise correlation and determines
whether the resultant correlation retains its statistical
significance based on the resampled P value. We can
also identify true correlations that incorrectly appear to
be not significant due to influential observations, and
cases where the correlation sign depends on the presence
or absence of such observations, neither of which have
been previously studied. We demonstrate that CUTIE can
accurately detect false correlations in simulated datasets
and that real datasets often contain large numbers of
such correlations that our method can identify.

Results
A classification of correlations based
on influential data points
We are interested in identifying correlations that initially
appear ‘true’ based on some test of statistical signifi-
cance, but which can be deemed non-significant after the
removal of a data point (Figure 1A). For the purpose of
our study, correlations will be defined as belonging to one
of four possible classes: true positives (TPs), canonical
correlations that truly reflect a significant association
between two variables; false positives (FPs), correlations
that appear significant but are in fact driven by an influ-
ential observation; true negatives (TNs), when two vari-
ables exhibit no significant association, and false nega-
tives (FNs), when failure to find a significant existing cor-
relation is due to an influential observation (Figure 1B).
Given a set of correlations, CUTIE examines if those
initially deemed significant are truly so (Figure 1C, left)
and whether those not considered significant should in
fact be (Figure 1C, right). CUTIE can additionally identify
correlations in which the sign of the correlation changes
when influential observations are removed (Figure 1D).

CUTIE accurately identifies influential
observations in simulated datasets
We generated simulated datasets to evaluate CUTIE’s
ability to distinguish these four types of correlations and

compared CUTIE with Cook’s D, DFFITS and DSR, three of
the most common parametric regression diagnostics (see
Methods and Supplementary Figure 1) [17, 18]. To assess
the performance of these metrics, we constructed power
curves. Power curves depict the proportion of correlations
classified as true (either TP if P < 0.05 or FN if P > 0.05, as
defined in Figure. 1B) as a function of effect size of the
Pearson’s r of the data. With respect to FP simulations,
CUTIE correctly classifies all of them as FP when r ≥ 0.29.
Not using CUTIE in these cases would result in an error
rate of 100% for those correlations (Figure 2A, blue line).
Cook’s D and CUTIE exhibit comparable performance on
these scatterplots (green and blue lines overlap com-
pletely) with the exception of r = 1, which Cook’s D does
not flag as an FP. For correlations that were initially
not significant (Figure 2A, red line), the curve remains
mostly flat except from r = 0.24 to r = 0.28, indicating
borderline situations where the removal of a point trans-
forms a not significant correlation into a significant one.
Cook’s D also incorrectly flags correlations as FN at a
greater rate than CUTIE (purple line rises earlier than
red line). In simulated data of FNs, CUTIE can effectively
rescue 100% of the strongest correlations among those
initially non-significant (P > 0.05), as shown by the red
line between r = 0.29 and r = 0.52 (Figure 2B). Although
these correlations were initially deemed not significant,
CUTIE can identify the underlying significant correlation
if the outlier point was removed. Cook’s D is also able
to rescue these correlations, although incorrectly rescues
correlations of lesser strength that would not have been
significant using Pearson’s correlation alone (the purple
line rises earlier than the red one).

Although CUTIE can rescue FN effectively, we can also
observe borderline situations where the removal of a
point transforms a significant correlation into a non-
significant one, as observed in the blue curve between
r = 0.52 and r = 0.7 (Figure 2B). Using Cook’s D, however,
would result in an over-labeling of FPs due to the pres-
ence of influential points in strong FN correlations, as
shown by the divergence of blue and green lines at
r = 0.56. This ability of CUTIE to not label FN scatter-
plots as false correlations is an important benefit of our
method over Cook’s D.

When CUTIE is presented with data simulating TP and
TN correlations, CUTIE correctly prioritizes the stronger
correlations as true in both the initially not significant
and initially significant set of correlations (Figure 2C).
However, because the removal of a point reduces the
significance of a correlation (as the power of the test
has diminished), CUTIE arrives at the seemingly contra-
dictory result that a weaker correlation (e.g., r = 0.28) is
a ‘true’ correlation (a FN), whereas a stronger correla-
tion (r = 0.29) is a ‘false’ correlation (a FP) (Figure 2C).
Although this is a caveat of subsampling, CUTIE is still
able to identify correctly the majority of TP and TN cor-
relations as such (nearly 100% at r < 0.15 and r > 0.4). To
help address this issue, CUTIE includes an optional fold-
value parameter (see Methods) by requiring a specified
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Figure 1. Visual description of CUTIE algorithm and correlation classes. A, CUTIE performs leave-one-out validation by recomputing a new P value
when each point is removed. Starting with the example scatterplot (left), non-outlier points will not induce a large change in P value when removed, but
CUTIEs (FPs) will have a large increase in P value (right) when the outlier is removed. B, Conceptual illustration of the four major classes of correlations.
A correlation that is initially significant (P < 0.05) can be considered heuristically ‘true’ (TP) or ‘false’ (FP). Similarly, a correlation that is initially non-
significant (P > 0.05) can be classified as ‘true’ (FN, or FN) or ‘false’ (TN). C, Flowchart of analysis; both statistically significant and non-significant
correlations are evaluated for the presence of outliers. D, Conceptual illustration of reverse-sign correlations; CUTIE is able to detect reverse-sign
correlations, where the omission of a single point induces a sign change in the correlation coefficient, even though the resultant correlation remains
statistically significant.

factor change in the new resampled P value to be clas-
sified as a FP. Of note, although Cook’s D avoids border
cases at both P < 0.05 and P > 0.05 (green and purple lines
are flat, respectively), we observed that Cook’s D has a
drop in accuracy when presented with perfectly corre-
lated data (r = 1), an issue that does not affect CUTIE.

When comparing CUTIE and Cook’s D to DFFITS and
DSR, we noticed that DFFITS and DSR appear to be widely
inaccurate (Supplementary Figure 2). In comparison to
Cook’s D (reproduced in Supplementary Figure 2A), both
DFFITS (Supplementary Figure 2A) and DSR (Supplemen-
tary Figure 2C) incorrectly classify the majority of ini-
tially significant correlations as false (green line nearly
flat at 0) and the majority of initially non-significant
correlations as true (purple line approaches 1).

Non-parametric statistics and effect
of sample size
We next compared the performance of CUTIE against
non-parametric methods. We found in simulations of TP
and TN correlations, Spearman and Kendall are inconsis-
tent with respect to a fixed Pearson correlation strength.

In particular, examining the window between r = 0.2 and
r = 0.5, Spearman and Kendall correlation coefficients
may or may not be statistically significant, as seen by
the overlapping blue and red lines in Supplementary
Figure 3A. Moreover, it can be shown that Spearman
and Kendall fail to protect against FPs in highly skewed
datasets: simulations of FPs where all points located at
(x, y) and one single point at (x + a, y + b) will have r = 1,
and although Spearman and Kendall will incorrectly tag
those as significant (Supplementary Figure 3B), CUTIE
can correctly identify and filter such cases. In the case
of FN correlations, we can see that CUTIE combined
with Spearman and Kendall are able to rescue some
correlations, but less accurately than CUTIE with Pear-
son (Supplementary Figure 3C). Complete analysis of all
simulations across different sample sizes with both P
value and effect size threshold criterion can be found in
Supplementary Data.

We further analyzed the impact of varying sample
size on CUTIE’s performance (Supplementary Figure 4A).
As a larger sample size lowers the effect size needed
to induce statistical significance, the curves shift to the
left of the power plot as sample size increases while
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Figure 2. CUTIE can identify FP correlations and rescue FN correlations. A–C, Power curves for simulated scatterplots; correlation strength on the x-axis
and a fraction of correlations on the y-axis indicating if the correlation is true (1) or false (0). The blue line represents initially significant correlations
(P < 0.05), red statistically non-significant (P > 0.05). Each line is annotated with representative scatterplots, with influential points highlighted using
solid red arrows. Dashed arrows indicate the correlation strength on the power curve that each scatterplot represents. In (a), CUTIE perfectly avoids
classifying FP correlations as true and in (b), CUTIE rescues the strongest FN correlations. In (c), we can observe the loss of power associated with the
removal of a point (blue line), and similarly a stochastic increase of statistical significance that results from omission of a point (red line) as r approaches
the significance threshold of 0.28 (for this sample size).

maintaining their overall shape. For instance, at n = 25,
due to the lower sample size, a stronger correlation coef-
ficient (around 0.35) is needed for statistical significance,
whereas with n = 50 the threshold lies around 0.3 and at
n = 100 the threshold decreases to 0.2. This is visualized

in the graphs by where the line transitions from red
to blue. Given the sensitivity of the P value to sample
size, CUTIE can also be run using correlation coefficient
instead of P value as a decision threshold when perform-
ing resampling. As expected, increasing the sample size
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Figure 3. Proportion of TP, FP, TN and FN correlations in three representative real-world datasets as identified by CUTIE. a, Comparison of CUTIE with
Cook’s D in all three datasets. The colors correspond to the fraction of total pairwise correlations belonging to each class (purple = TN, blue = TP, red = FP
and green = FN) according to CUTIE. The total number of correlations computed in each dataset are 279 378, 499 500, and 62 481 from left to right. b,
Examples of correlations from each domain where CUTIE and Cook’s D disagree in terms of classifying FPs. c, The number of correlations belonging to
each class for each dataset using three different measures of correlation (Pearson, Spearman, and Kendall), with and without FDR-adjustment.

tightens the power curve with respect to the threshold
value chosen, with r = 0.5 by default; this metric was
chosen based on an agreed-upon convention that r = 0.5
is a ‘medium’ effect size (Supplementary Figure 4B) [19].
For example, at n = 25, all correlations with r < 0.2 are
classified as false and r > 0.75 are classified as true, but
this range changes to r < 0.4 and r > 0.55 at n = 100.

Application to omics datasets uncovers the
prevalent effect of influential observations
To demonstrate the prevalence of influential obser-
vations in real datasets and the usefulness of CUTIE
to identify them, we analyzed previously published
data representative of three different domains: micro-
biome [20], microarray gene expression [21], and health
statistics from the World Health Organization (WHO)

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab482#supplementary-data
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Figure 4. Boxplots indicating the distribution of positive, false discovery and false omission rates per statistic and per data type. Each panel shows for a
given statistic (column) the distribution of a particular rate (rows). a, Positive rates i.e., the fraction of total correlations with P < 0.05 for each data type
using Pearson, Spearman and Kendall (left to right). b, FDRs (FP/P) and c, False omission rates (FN/N) according to CUTIE. Microbiome data exhibits the
lowest positive rates and highest FDRs consistently across statistics.

[22]. For each dataset, we first used Pearson’s r to obtain
a set of candidate positive (i.e., statistically significant,
P < 0.05) and negative (i.e., statistically non-significant,
P > 0.05) correlations. We then ran each dataset through
CUTIE and compared the results obtained versus those
using Cook’s D. Figure 3A shows the absolute number of
correlations belonging to each class and for each dataset.
In the microbiome dataset (279,378 total possible correla-
tions), 96% of the correlations were initially statistically
non-significant (purple and green bars combined, i.e.
TN and FN, respectively), while the remaining 4% were
statistically significant (blue and red bars combined, i.e.
TP and FP, respectively). However, when assessing the
proportion of those 4% that were FPs, CUTIE flagged
89% (FP/FP+TP, or size of the red bar divided by the
combined size of the blue and red bars) of the initially

significant correlations as false positives (Fig. 3A, left;
10,722 correlations tagged as FP by CUTIE). Cook’s D
performed similarly to CUTIE in this dataset, identifying
97% of the initially significant correlations (blue and red
bars) as false positives (red bar only). Among the 96% of
the total correlations that were initially non-significant
correlations (purple and green bars combined), CUTIE
identified 3% (FN/FN+TN, or green bar as a fraction of
green and purple combined) of them (8,804 correlations)
as false negatives. Cook’s D is not traditionally used to
identify false negative correlations, and so only false
positives are shown in the plot. Applying this analogous
analysis to other data types, we found that in the gene
expression data (499,500 correlations), CUTIE identified
14% of the initial significant correlations as FPs (i.e.
the red bar is 14% of the blue and red combined)
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and 19% of the initially non-significant correlations
as FNs (the green bar is 19% of the green and purple
combined), while Cook’s D could only identify 3.4%
as false positives (Fig. 3A, center). In the WHO data
(62,481 correlations), CUTIE tagged 15% of the initially
significant correlations as FPs and 22% of the initially
non-significant correlations as FNs (Fig. 3A, right). Cook’s
D, on the other hand, labeled 21% of the putative positive
correlations as false. Importantly, in all three datasets,
we identified cases where Cook’s D falsely labeled a
visually strong correlation as a FP, and in two of the three
datasets, we identified cases where Cook’s D did not flag
a FP that was correctly labeled with CUTIE (Figure 3B).
There were no cases where CUTIE tagged a correlation
as FP but Cook’s D did not. We then tested whether the
proportion of CUTIEs would change based on the statistic
used (Pearson versus Spearman/Kendall) and whether a
multiple adjustments tool [false discovery rate (FDR] was
used. Complete analyses of three representative datasets
across all statistics with and without FDR-adjustment
are shown in Figure 3C (see Supplementary Data for raw
values).

The effect of influential observations
is domain-dependent
Because data types generated from different fields often
have distinctive characteristics, we then analyzed 19
datasets broadly belonging to different research areas:
microbiome [20, 22–25], gene expression [5, 22, 26–28],
multiomic studies that include more than one assay/data
type [20, 29, 30], and an ‘other’ category including
epidemiological measures and baseball metrics, and
airline delay statistics [22, 31]. These datasets contain on
the order of thousands of variables, resulting in millions
of correlations, and sample sizes ranging from the dozens
to thousands. Barplots illustrating the distribution of
classes of correlations are shown in Supplementary
Figure 5. We compare the data types by plotting the
positive (P) rate (Figure 4A), FDR (FDR = FP/P, Figure 4B),
and false omission rate (FOR = FN/N, Figure 4C) values
for each statistic across the datasets, grouping datasets
by the data type from which they originate. We found
that gene expression and health statistics tend to have
the largest proportion of positives regardless of statistic,
whereas microbiome and multiomic studies exhibit the
lowest positive rates (Figure 4A). This low rate of positives
is exacerbated by the relatively high FDRs (Figure 4B) and
low false omission rates (Figure 4C) for microbiome and
multiomic studies compared with the other two data
types. For the panels describing Pearson, P < 0.005 via
analysis of variance, complete data for generation of
these barplots are presented in Supplementary Data.

We next assessed the degree of overlap of different
statistics in identifying specific correlations as CUTIEs.
In Supplementary Figure 6, we present UpSetR [32] plots
illustrating the overlap (or lack thereof) of correlations
classified as FP and FN in four representative datasets
from each category from the meta-analysis above. We

found that Pearson generally had the largest number of
FPs and FNs. Additionally, Spearman and Kendall were
largely concordant, which is perhaps unsurprising as
they are both rank-based non-parametric statistics. It is
notable that Pearson and these non-parametric statistics
share little overlap. This indicates that statistic choice
has a large influence on the results and thus careful
attention should be paid to the distribution of the data
and the assumptions of the metric used.

These overall trends observed in large-scale analysis
are also noticeable in specific datasets and have
potentially important consequences for experimental
validation of biological targets. For example, Kristensen
et al. [26] analyzed the correlation between microRNAs
and downstream genes in a study of spatial expression
in colon cancer cells, and found, among others, a positive
significant correlation between ciRS-7 [CDR1as] and
PIK3CD (r = 0.40, P = 0.02). A re-analysis using CUTIE,
however, tagged this correlation as a FP (Figure 5A).
Importantly, CUTIE can also identify ‘missed’ corre-
lations in this same analysis thanks to its ability to
find FNs: circSLC8A1 is significantly associated with
PIK3CD if a single point was dropped from the analysis
(Figure 5B). We were also able to identify potentially
misleading correlations in an epidemiological study of
socioeconomic determinants with respect to COVID-19
[31]. In Table 2 of their paper, Roy and Khalse present
Pearson correlations between COVID-19 cases and
socioeconomic metrics of countries. The authors iden-
tified three significant relationships, stating that COVID-
19 cases were positively correlated with GDP expense
on health care, population density, as well as critical-
care beds per capita. We show that two of the three
significant correlations are in fact CUTIEs (FPs)—both
GDP expense on health care and critical-care beds per
capita were considered FPs in terms of their association
with COVID-19 cases, and interestingly these were the
two most significant correlations in the initial analysis
(Figure 5C and D). Further analysis using CUTIE’s sample
diagnostic (see ‘Variable and Sample Diagnostics’ below)
indicates that the influential observation in both these
FPs is the United States, which in this case is more likely
to be considered a high-leverage point as opposed to an
outlier due to the lack of samples with similar x-axis
values (see Discussion section regarding outliers versus
high-leverage points). Although the small sample size
of this study clearly impacts these findings, CUTIE is
nonetheless able to distinguish these two correlations
from the remaining TPs.

Reverse sign correlations and variable and
sample diagnostics
On top of its ability to distinguish true and false correla-
tions, CUTIE can also identify a previously not described
scenario that results in a reversal of the correlation
(Figure. 1D). CUTIE found 19 such cases in the gene
expression data and 33 in the WHO data. Supplementary
Figure 7 presents two specific examples: Supplementary
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Figure 5. CUTIE identifies biologically impactful correlations in published
studies. A, Putative FP correlation from Kristensen et al. (Figure 4A) and
B, putative FN correlation. C and D, Putative FP correlations warranting
further analysis as identified by CUTIE on the correlation coefficients and
P values from Roy and Khalse, Table 2.

Figure 7A shows a reverse sign correlation between
‘Imports Unit Value’ and ‘Agriculture Contribution to
Economy,’ which changes from positive to negative
upon the removal of a sample (the country Togo),
whereas Supplementary Figure 7B presents a change
from negative to positive correlation between ‘Number of
Dentistry Personnel’ and ‘Trade Balance between Goods
and Services’, with the influential point being the United
States. Although the nature of the relation between these
variables depends on specific research questions, it is
important to note that without CUTIE they would have
been incorrectly considered of opposite sign.

Further, CUTIE can also provide information on what
samples or variables contribute most substantially to the
set of FP or FN correlations. An example of this function-
ality is shown in Supplementary Figure 8. Here, sample
number 192 (orange) contributes to a disproportionate
number of FPs—this sample corresponds to the country
United States (Supplementary Figure 8A). Examining the
analogous plot for variables instead of samples (Supple-
mentary Figure 8B), we find ‘Number of laboratory health
workers’ contributes to the most number of FPs (83).

CUTIE works synergistically with data
transformations
Oftentimes, data are transformed prior to correlation
and other analyses to reduce the FDRs. For example,
the variance stabilizing transformation (VST), part of
the DESeq2 package [33, 34], improves homoskedastic-
ity of count data. This approach has traditionally been
applied to gene expression data, although it can be also

used for microbiome data [35]. In addition, the centered
log-ratio (CLR) has been a long-standing method origi-
nally proposed by Aitchison [36] to address the simplex
constraint of compositional data and enables standard
correlation analysis performed in Euclidian space to be
applied to compositional data, such as in microbiome
studies. Supplementary Figure 9 compares the results
of CUTIE before and after CLR and VST transformations
in two microbiome datasets (Supplementary Figure 9A
and B) and one gene expression dataset (Supplementary
Figure 9C; VST only, since the data is non-compositional).
Although the proportion of FP and FN change before
and after transformation, CUTIE is still able to identify
substantial amounts of correlations driven by influential
observations in both cases, suggesting that CUTIE works
synergistically with these transformations and both can
be used to reduce FDRs overall. In Supplementary Fig-
ure 9D–F, we show the Jaccard Index (number of cor-
relations in the intersection divided by the number of
correlations in the union) for each pair of categories (pre-
transformation, CLR and VST) as applied to the three
datasets above. In the first microbiome dataset (LungC,
Supplementary Figure 9A), the Jaccard Indices are great-
est for CLR-VST compared with pre-CLR and pre-VST.
CLR and VST exhibit the greatest overlap in the FP and TP
they identify; for the FP, the Jaccard Index 0.31, compared
with 0.13 and 0.26 for the Pre-CLR and Pre-VST, respec-
tively; and for the TP, 0.31 compared with 0.03 and 0.10
for pre-CLR and pre-VST in the TP. This is likely due to
the nature of transformation applied to the data. Similar
trends were observed for the PLOS microbiome dataset
(Supplementary Figure 9B), with a CLR-VST Jaccard Index
of 0.13 and 0.15 for FP and TP, respectively (Supplemen-
tary Figure 9E). In the gene expression dataset (Spatial,
Supplementary Figure 9C), we observed a Jaccard Index
of 0.58 among the TP and 0.18 for the FP (Supplementary
Figure 9F). Importantly, based on these Jaccard Indices, a
significant number of correlations not shared among all
three methods, again suggesting that these approaches
are orthogonal in how they reduce the FDR.

Discussion
Because correlation analysis is often the first step for
more complex downstream approaches, such as network
analysis or feature selection [4], it is fundamental to
identify potentially misleading correlations. As shown in
our simulations, CUTIE can effectively filter out FP and
rescue FN correlations. Moreover, it outperforms current
methods used to identify influential observations, such
as Cook’s distance, DFFITS and DSR. This likely has to
do with the default thresholds and lack of tuning with
these other methods, as they have been repurposed to
identify FPs and FNs, but were not originally designed
to do so. With regards to non-parametric statistics such
as Spearman and Kendall, we demonstrate that they
exhibit reduced power to detect correlations as signif-
icant given a fixed Pearson correlation coefficient, and
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that in specific cases, these statistics still require CUTIE
to avoid FPs. Although CUTIE cannot distinguish between
correlations driven by influential observations and those
which are not when they are of similar effect size (as
seen in the simulations), these appear to be the least
number. Importantly, CUTIE is still able to drastically
reduce the number of those correlations, which would
need to be further inspected. To help address this short-
coming, we implement a fold-value constraint on the
summary statistic (P value or r value) that can be set by
the user.

When assessing correlations classified by CUTIE as
FP or FNs, it is important to distinguish between out-
liers versus high-leverage points. In traditional regression
analysis, we define an outlier as a point whose inde-
pendent (x-axis) variable value is within the observed
range but exhibits an unusually deviant dependent (y-
axis) variable value. In contrast, a high-leverage point is
a sample whose ‘x’ and ‘y’ values are many deviations
outside of the observed values in that dataset. Thus, it
is difficult to conclude whether a high-leverage point is
an outlier, or if we simply do not have sufficient data to
characterize the behavior of variable ‘y’ with respect to
‘x’ when ‘x’ takes very large values. CUTIE does not make
a distinction between outliers and high-leverage points
in its analysis, as it makes no assumption about which
variable is dependent and which is independent, but
rather seeks to identify sets of correlations that warrant
further examination, prioritizing correlations for which
there is statistical support (TP and FN) above correlations
that lack such support (FP and TN).

In drawing conclusions from real datasets, it is helpful
to note that CUTIE serves as a tool to help prioritize cor-
relations heuristically, i.e., to identify those correlations
that are deemed poorly supported by the underlying
data. Our results demonstrate that influential observa-
tions affect a significant number of correlations in real
datasets, and that CUTIE can identify the contribution of
these points to not only FPs, but also FN and reverse sign
correlations. We show in a variety of domains, ranging
from microbiome to gene expression to multiomic stud-
ies and health statistics, that CUTIE can detect FPs and
FNs more effectively than other metrics. Additionally,
we show a discordance between parametric and non-
parametric statistics (i.e., Pearson versus Spearman and
Kendall) in terms of the correlations identified as FP,
further confirming our simulation results. Moreover, we
find examples of reverse-sign correlations in the WHO
dataset, which could not be detected via any previous
approach. Identifying these correlations is critical, since
otherwise an incorrect inference would be made on the
direction of the relationship between two variables (such
as ‘Number of Dentistry Personnel’ and ‘Trade Balance
Between Goods and Services’). Interestingly, ‘Trade Bal-
ance between Goods and Services’ appears in 32 of the
33 reverse sign correlations tagged by CUTIE, suggesting
that conclusions drawn from correlations involving this
variable should be treated with caution.

To help identify samples and variables involved in a
large number of correlations driven by influential obser-
vations, CUTIE can produce a plot showing the contribu-
tion of each sample and variable to the number of FPs
and FNs characterized. The ability to identify and esti-
mate the number of false correlations associated with
samples or variables can help uncover systematic errors,
e.g., incorrect calibration of measurements, contamina-
tion or other artifacts in an experimental setting. In the
WHO dataset we observed that the United States con-
tributes to more CUTIEs than any other sample, which
might be expected to be an outlier due to the unique
economic and developmental history of the United States
and its transition to a service-based economy post-World
War II [37, 38]. We also observed the variable ‘Number
of laboratory health workers’ contributed to a dispropor-
tionate number of FPs, which is likely due to its skew-
ness in distribution. Note that variables with more than
50 contributions to FPs do not include ‘Trade Balance
between Goods and Services,’ which contributes to only
13 FPs. This suggests that both features of CUTIE—the
ability to detect reverse sign correlations, and the ability
to enumerate number of FPs or FNs per sample—are
essential for assessing the validity of correlations.

Our meta-analysis of various omics studies detected
influential observations across all domains, but micro-
biome data (and multiomic studies that involve micro-
biome data) tend to exhibit the lowest positive rates
and false omission rates but the highest FDRs, which
is likely due to the high skewness in microbiome data
[39]. Although some methods have been developed to
lower the number of false correlations in microbiome
studies [4, 40, 41], these tools are used only in the context
of compositional data analysis and can only address
bacterial correlations. Moreover, we show that even using
VST and CLR transformations on the data prior to cor-
relation analysis, CUTIE can still identify correlations
driven by influential observations, suggesting that CUTIE
has a synergistic role with these methods. Importantly,
other types of correlation analysis, including heatmaps
and networks, are still generally performed using non-
compositionality-aware statistics (such as Spearman) [5,
6, 23, 25–30], indicating that CUTIE fills in an important
gap for robust data analysis.

Finally, we demonstrate that CUTIE not only identi-
fies FPs and FNs broadly, but can also uncover cases in
which key conclusions from published results would be
impacted. In Kristensen et al. [26], we identified a FP (ciRS-
7 [CDR1as] and PIK3CD), which the authors had men-
tioned and discussed as a bona fide correlation. We also
found a FN correlation (circSLC8A1 and PIK3CD), which
was missing from their results despite PIK3CD having
been previously identified. Similarly, in the COVID-19 epi-
demiological study by Roy and Khalse [31], we identified
two potentially misleading correlations, with important
implications for any policy or decision making that might
result from conclusions based on analysis not validated
by CUTIE. Importantly, we show that these correlations
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can be present even among those with the strongest
uncorrected P values (before applying CUTIE), which sug-
gests that simply filtering by significance values would
lower the power of the analysis and yet false correlations
could be deemed of importance.

The final decision on whether a correlation represents
a true association between variables cannot be assessed
by any statistical approach alone. Rather than relying
only on P value or r value to determine, which corre-
lations are meaningful, CUTIE adds a layer of robust-
ness via resampling to check for potential FPs, i.e., cor-
relations that could potentially be misleading (either
due to outliers, high-leverage points, or other reasons).
Moreover, rather than discarding non-significant corre-
lations—which may harbor significant amounts of FNs—
we suggest reexamining this initially non-significant set
can potentially uncover novel findings that would have
been missed otherwise. In this manner, CUTIE aims to
prioritize correlations and aid analysis by identifying
correlations, samples and variables that merit further
investigation.

Methods
CUTIE
Let (xi,k, xj,k) be the observations for samples k � [1,2, . . . ,n]
and for all pairs of variables (Xi,Xj) � X with a defined
correlation θ i,j (Pearson, Spearman, Kendall or otherwise).
For each correlation (θ i,j) that is significant at Pi,j < α,
where Pi, is the P value of the correlation between (Xi,Xj)
and α is the significance threshold, CUTIE then computes
a new correlation statistic for each resampling where
point k is removed, yielding Pi,j,k for k in [1,2, . . . ,n]. If
there exists a k such that Pi,j,k > α, that correlation is
then flagged as a FP. All remaining correlations that
were initially significant are considered to be TP. FDR,
Bonferroni and Family-Wise Error Rate adjustments are
available should the user wish to modify the threshold
using multiple corrections.

In addition to its ability to detect TP and FP, CUTIE can
also be applied to the set of initially non-significant cor-
relations (Pi,j > α) and determine if a single point is caus-
ing an otherwise valid correlation to be non-significant.
Let (xi,k, xj,k) be the observations for k in [1,2, . . . ,n] and for
all pairs of variables (Xi,Xj) � X with a defined correlation
θ i,. For each correlation that is ‘not’ significant, i.e., Pi,j > α,
CUTIE then computes a new correlation statistic for each
resampling, where the kth sample is removed, yielding
Pi,j,k for k in [1,2, . . . ,n]. If there exists a k such that
the P,j,k <α, then that correlation is flagged as a FN.
All remaining correlations that were initially statistically
non-significant are considered to be TNs.

Reverse sign correlations
In the process of computing each resampling, CUTIE
also checks the sign of the resampled P value and flags
correlations in which the sign of the correlation changes
(from negative to positive or vice versa).

CUTIE using effect size
CUTIE can be adapted to use effect size (correlation
coefficient) instead of P value as a decision boundary
for classifying correlations when performing resampling.
The procedure is identical to the one noted above with
the following modifications: r is used instead of P, the
α threshold is replaced by R (0.5 by default), and the
direction of the inequality is reversed (i.e., a FP is where
ri,j,k < R),

Influence metrics
Cook’s Distance, DFFITS and DSR were computed using
statsmodels 0.12.1, with the thresholds drawn from
default parameters, and documentation as well.

Simulated datasets
Three sets of simulated datasets were generated to test
CUTIE’s performance. (i) TP and TN correlations were
generated by drawing n points from a bivariate normal
distribution with μ = [0,0] and � = ([1, r], [r, 1]). (ii) FP
correlations consisting of n − 1 points drawn from an
independent bivariate normal with μ= [0,0] and � = 2 ×
2 identity matrix with an additional point added at (20,
y), chosen arbitrarily to induce the desired correlation,
where y was determined by iteration from eq with q � [−4,
−3.99, . . . , 10] until the lowest value of q was obtained
that made the resultant correlation within 0.01 of the
desired r. (iii) FN correlations consist of n − 1 points
drawn from a bivariate normal distribution with μ = [0,0]
and � = ([1, r],[r, 1]) and an additional point added at
(−3,3), again chosen arbitrarily to induce the desired
correlation. Negative correlations were not included as
they are analogous to the positive correlations, i.e., any
negative correlation can be obtained via rotation from
the positive scatterplot. The value of r was iterated from
0 to 1 in step sizes of 0.01.

Power curves
To assess the accuracy of CUTIE on simulated data as a
function of correlation strength, we compute the propor-
tion of correlations classified as true (TP when assessing
correlations of P < α, or FN if P > α). Each point in the
line plots (e.g., in Figure 2A, middle panel) represents the
fraction of 100 scatterplots at a particular correlation
strength (r from 0 to 1) classified as true.

Fold-value change to address border cases
In using α as the sole criterion for classifying a corre-
lation as TP versus FP (or TN versus FN) several of the
correlations flagged as FP are border cases, in which the P
value changes less than 1 order of magnitude, which can
be enough to push that correlation into the FN/FP class.
To adjust for this, we introduce an optional parameter fv
(fold value), which imposes a requirement of Pk > fv ∗ P
in addition to Pk > α (where Pk is the resampled P value
when a given sample k is removed and P is the original
P value). CUTIE provides the distributions of the fold P
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value changes within FP’s and TP’s, should the user seek
to define a particular threshold.

Key Points

• Influential observations bias the significance of
correlation analyses with both parametric and
non-parametric measures.

• Correlation analysis in large datasets requires
an automated method for detecting influential
observations where visual validation is not pos-
sible.

• CUTIE identifies both FPs and, novelly, FNs and
reverse sign correlations better than previously
existing methods.

Supplementary Data
Supplementary data are available online at https://acade
mic.oup.com/bib.

Code availability
CUTIE is available at https://github.com/clemente-lab/
CUTIE. Accompanying data and scripts used to generate
simulations, analyze real-world datasets and produce
figures can be found at https://github.com/clemente-la
b/cutie-analysis.
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