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SUMMARY

SARS-CoV-2 infections mostly lead to mild or even asymptomatic infections in children, but the reasons
for this are not fully understood. More efficient local tissue responses, better thymic function, and cross-
reactive immunity have all been proposed to explain this. In rare cases of children and young people, but
very rarely in adults, post-infectious hyperinflammatory syndromes can develop and be serious. Here, I
will discuss our current understanding of SARS-CoV-2 infections in children and hypothesize that a life
history and energy allocation perspective might offer an additional explanation to mild infections, viral
dynamics, and the higher incidence of rare multisystem inflammatory syndromes in children and young
people.
INTRODUCTION

Early after the new severe acute respiratory syndrome coronavi-

rus 2 (SARS-CoV-2) was first described in the Hubei province of

China, it became clear that children were underrepresented

among patients presenting to local hospitals with severe corona-

virus disease 2019 (COVID-19) (Guan et al., 2020). This demo-

graphic pattern has been replicated as the virus spread across

the planet (Brodin, 2020; Preston et al., 2021). New variants

with greater transmissibility, like delta (B.1.617.2) (Delahoy

et al., 2021) and omicron, infect many, but fortunately do not

seem to give rise to more severe disease in children. Infections

with the relatedMiddle Eastern Respiratory virus (MERS) (Thabet

et al., 2015) and SARS-CoV (Zhong and Wong, 2004) have pre-

viously been shown to cause milder disease in children as

compared with adults, but the underlying reasons for

these differences remain elusive. Other infections by herpes

family viruses Varicella Zoster and Epstein-Barr virus as well as

the flavivirus Dengue (Thai et al., 2011) are more likely to be

mild or even asymptomatic in young children as compared

with primary infections occurring in adolescents and adults.

Not all respiratory viral infections are mild in children and respi-

ratory syncytial virus (RSV), influenza viruses, rhinoviruses, and

metapneumovirus can all cause severe disease and are among

the leading causes of death in children under 5 years of age (Tre-

goning and Schwarze, 2010). These viruses also give rise to se-

vere infections in adults although immunity from prior infections

offers important protection to many. Multiple hypotheses have

been proposed to explain the differences in COVID-19 diseases

severity in the young versus the elderly, and in this perspective

article, I aim to summarize these different ideas and discuss

the evidence for and against each of these. I also discuss alter-

native disease manifestations and their possible disease mech-

anisms and conclude with a hypothesis based on life history and

resource allocation theory that could explain widely different
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clinical consequences of SARS-CoV-2 infections in children

and young people.

SEVERE COVID-19 IN YOUNG INDIVIDUALS

In individuals under 50 years old who developed life-threatening

COVID-19, researchers within the COVID Human Genetic Effort

consortium (https://www.covidhge.com/) uncovered an enrich-

ment of inborn errors of immunity involving the viral sensor Toll-

like receptor 3 (TLR3) or the gene IRF7, a key inducer of Type I

interferon (IFN) (Zhang et al., 2020a). Also, patients with defi-

ciencies in the type-I IFN receptor IFNAR1 was reported, and

additional patients have since been identified (Khanmohammadi

et al., 2021), underscoring the importance of TLR3 and IRF7-

dependent type-I IFN responses in determining COVID-19

severity (Zhang et al., 2020b). A different group of researchers

failed to replicate such enrichment of patients with inborn errors

of type-I IFN immunity (Povysil et al., 2021), a result that could

be explained by differences in the age, ancestries, and definition

of severe COVID-19 between the cohorts as well as the use of the

general population (Povysil et al., 2021) versus asymptomatic/

paucisymptomatic COVID-19 cases as controls (Zhang et al.,

2021). Also, deficiencies in the X-linked viral sensor TLR7 have

been reported in patients with severe COVID-19 (Abolhassani

et al., 2021; Asano et al., 2021; Fallerini et al., 2021; Kosmicki

et al., 2021; van derMadeet al., 2020), and someof these variants

have been shown to impair SARS-CoV-2 recognition and induc-

tion of IFN-I responses in vitro (Asano et al., 2021). Observations

from patients with known inborn errors of immunity infected with

SARS-CoV-2 provide additional clues about the determinants of

disease severity. Patients with defects in adaptive immune cells,

either B cells, T cells, or both, mostly develop mild to asymptom-

atic COVID-19 (Meyts et al., 2021). Patients with secondary T cell

deficiency due toCalcineurin-inhibitor treatment after solid-organ

transplantation exhibit mortality rates comparable with the
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Figure 1. Immune responses in mild and
severe COVID-19
Characteristic differences between patients
developing mild versus severe COVID-19 disease
with delayed and imbalanced IFN-I responses,
lymphopenia, and uncontrolled viral replication.
Typical signs of mild versus severe COVID-19 in
terms of cytokine production, inflammasome
activation, and coagulopathy, as seen a number of
population studies (Carvalho et al., 2021).
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general population, despite significant co-morbidity (Raja et al.,

2021). All in all, these observations indicate that robust antiviral

type-I IFN immunity early after infection is the most critical deter-

minant of COVID-19 disease severity.

One group of children with inborn errors of immunity that

develop very severe COVID-19 is patients with autoimmune poly-

endocrine syndrome type 1 (APS-1) caused by mutations in the

AIRE gene (Bastard et al., 2021a; Beccuti et al., 2020). Such pa-

tients carry neutralizing autoantibodies to various cytokines,

including type-I IFNs and IL-17 cytokines. To investigate whether

neutralizing autoantibodies could phenocopy inborn errors of

IFN-I and give rise to severe COVID-19, Bastard and colleagues

screened sera from patients with severe COVID-19 and found

�2.6% of females and 12.5% of male patients had such neutral-

izing autoantibodies to IFN-I (Bastard et al., 2020). In a larger

cohort, autoantibodies to IFN-I were found to increase with age

and were present in >6% of individuals above 80 years of age

and explain �20% of cases of fatal COVID-19 (Bastard et al.,

2021b). Children with APS-1 infected with SARS-CoV-2 can be

saved by plasma exchange removing neutralizing anti-IFN-I auto-

antibodies (Bastard et al., 2021a; Lemarquis et al., 2021) or sup-

portedby treatmentwithmonoclonalanti-SARS-CoV-2antibodies

(Ferré et al., 2021). The SARS-CoV-2 virus encodes multiple pro-

teins that interfere with the same IFN-I responses (Lei et al.,

2020), which further indicates their importance. Severe COVID-

19 thus develop when early IFN-I and/or IFN-III responses fail to

control viral replication, leading to imbalanced immune activation

and systemic hyperinflammation and immunopathology (Brodin,

2021; Carvalho et al., 2021) (Figure 1A). Inborn errors of type I

IFN immunity explain severe COVID-19 pneumonia mostly in

young adults, while neutralizing autoantibodies to type I IFN are

seen at increasing frequency with age and explain around 20%

of total fatal COVID-19 cases (Bastard et al., 2021b). Despite

high rates of infections and low rates of vaccination among chil-

dren, the incidence of fatal COVID-19 remains low,�2 per million

individuals <18 years of age according to a recent national survey

in theUK (Smith et al., 2021).Considering themanypossible cases
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of unrecognized immunodeficiencies in

such children, the spectrum of susceptibil-

ity is likelyquite narrowas indicated alsoby

COVID-19 presentations in patients with

known inborn errors of immunity (Bucciol

et al., 2021).

LOCAL AIRWAY IMMUNE
RESPONSES TO SARS-CoV-2

The immune system of young children
encounters many new microbes. After an initial period of pro-

tection from maternal antibodies providing passive immunity

(Pou et al., 2019), the infant immune system must respond to

these novel challenges. In SARS-CoV-2-infected children,

innate immune responses in the upper airways have been

reported as more pronounced as compared with those in in-

fected adults. This includes both type-I and type-II IFN-re-

sponses and inflammasome-dependent pathways (Koch

et al., 2021; Loske et al., 2021; Pierce et al., 2021). Differences

in basal antiviral gene expression in epithelial cells and differ-

ences in tissue immune cell composition between children

and adults indicate that airways of young children are better

prepared to manage viral infections locally (Loske et al.,

2021). It is important to note that the ages of children in these

studies were on average 2, 6, and 9 years, respectively, and

that airway responses might be different in younger children

<6 month of age given the increased susceptiblility to several

respiratory viruses, RSV, and influenza in such young children

(Tregoning and Schwarze, 2010). The reasons for the differ-

ences between adult and pediatric local airway immunity are

not known but could be a consequence of more frequent viral

infections, local microbiome differences (Reyman et al., 2021),

more recent vaccinations, and epigenetic adaptations in innate

immune cells, i.e., trained immunity (Zimmermann and Curtis,

2020). Further studies will be needed to explore the relative

contribution of these local tissue responses in explaining

COVID-19 disease severity among the young and old.

ADAPTIVE IMMUNITY TO SARS-CoV-2 IN CHILDREN

The innate immune response is usually not sufficient to clear

SARS-CoV-2 viruses, and the virus persists for months in

immunocompromised individuals, especially those with severe

T cell deficiencies (Avanzato et al., 2020; Nakajima et al.,

2021). In a mouse model, CD8+ T cells are required and suffi-

cient to clear SARS-CoV-2 viruses, while neutralizing anti-

bodies offer protection from re-infection (Israelow et al., 2021)



Figure 2. Viral dynamics in the young and
old
Relative viral load (arbitrary units, a.u.) over time
(days from diagnosis) as determined by PCR from
either nasopharyngeal or stool samples. A sche-
matic model summarizing the results of multiple
studies showing prolonged shedding of viral nu-
cleic acid from stool, particularly in children.
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in line with human data (Addetia et al., 2020). Adaptive immune

responses in severe versus mild COVID-19 are characterized

by more pronounced T cell lymphopenia and bystander activa-

tion of T cells, yet robust B cell activation and production of

higher titer neutralizing antibodies as compared with mild dis-

ease (Carvalho et al., 2021) (Figures 1A and 1B). In adults

with severe COVID-19, SARS-CoV-2-specific immunoglobulin

A (IgA)-antibodies that activate neutrophils have been reported,

and these were absent in children with mild COVID-19 (Bartsch

et al., 2021). The gradual increase in severe COVID-19 with

age, even during adulthood, has inspired some researchers

to propose that thymic involution might explain this result

(Palmer et al., 2021). The known pace of thymic involution cor-

relates well with increased COVID-19 severity beyond 20 years

of age but cannot explain the added protection in children

below 20 years of age (Palmer et al., 2021). There has been

much written about the role of B and/or T cells specific for

common cold coronaviruses in offering some level of protection

from, or modulation of, SARS-CoV-2 infections and COVID-19

disease. T cells that react to SARS-CoV-2 peptides can be

found in samples collected prior to 2019 (Mateus et al.,

2020), and cross-reacting cytotoxic T cells are predominantly

found in tonsils and not blood (Niessl et al., 2021). As primary

infection with several human CoVs (HCoVs) typically occur

early in childhood, and children are frequently reinfected with

common cold coronaviruses (HCoVs), one could imagine

more cross-reactive T cells in children. Niessl and co-workers

found relatively low functional responses by tonsillar SARS-

CoV-2 cross-reactive T cells from unexposed individuals, with

slightly more polyfunctionality in cells from children as

compared with adults (Niessl et al., 2021). Cross-reactive anti-

bodies have also been reported, mostly against the S2 domain

of the spike-protein, which is more conserved among HCoVs,

and titers of such antibodies increase upon SARS-CoV-2 infec-

tion (Röltgen et al., 2021). Recent HCoV infection is associated

with milder COVID-19 (Sagar et al., 2021). Some have inter-

preted the decline in antibody titers after adult HCoV infection

to mean that immunity is short-lived, yet in a human challenge

study, protection from symptomatic disease upon viral chal-

lenge was maintained for at least one year in adult volunteers
(Callow et al., 1990), and reinfections

are common (Hamady et al., 2021). As

both adults and young people carry im-

mune memory to HCoV, it is difficult to

attribute the milder COVID-19 in young

people to this factor, although subtle dif-

ferences in the quantity or quality of

cross-reactive immunity might modulate

disease course differently in young and
old individuals. Importantly, there is no evidence suggesting

that cross-reactive immunity would lead to worse COVID-19

disease through antibody-mediated enhancement (Arvin

et al., 2020).
VIRAL DYNAMICS IN CHILDREN AND ADULTS

Upon infection, the virus quickly replicates in the airway epithelial

cells and reaches high copy numbers in both children and adults.

Most studies performed use quantitative PCR methods to infer

viral load rather than performing gold standard plaque assays,

but with this weakness inmind, the available data suggest similar

viral loads in children and adults at the time of presentation

(Jones et al., 2021). Several studies have assessed the dynamics

of viral replication, shedding, and clearance from different body

fluids. One study found culturable virus from lungs and upper air-

ways, but not from stool, despite rather high amounts of stool

RNA (Wölfel et al., 2020). Other studies have suggested persis-

tence of virus in lung tissue after mild to moderate COVID-19

(Ceulemans et al., 2021) as well as in the small intestine (duo-

denum and terminal ileum) (Gaebler et al., 2021). Interestingly,

a meta-analysis of 37 studies concluded that in adults, the

average time to viral clearance was 14 days for the respiratory

tract and 19 days in stool samples (Morone et al., 2020). A couple

of smaller studies have analyzed viral persistence in samples

from children. Du et al. (2020) found that the average time to viral

clearance was 9 days for the respiratory tract and 34 days for

stool samples, and Xing et al. (2020) reported three children hav-

ing positive airway samples 10–15 days, while stool samples re-

mained positive for 23–34 days post diagnoses (Figure 2). SARS-

CoV-2 infect apical enterocytes but is inactivated when released

into the lumen (Zang et al., 2020), making it difficult to extrapolate

findings using stool samples to viral dynamics within the intesti-

nal epithelium. Clearly, more studies analyzing virus-infected in-

testinal cells collected over time would be needed to confirm

these findings, but these preliminary results do imply more

extended viral persistence in children as compared with adults,

despite comparable levels of virus in the respiratory tract at

diagnosis.
Immunity 55, February 8, 2022 203
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MULTISYSTEM INFLAMMATORY SYNDROME IN
CHILDREN AND YOUNG ADULTS (MIS-C/A)

In the spring of 2020, as pediatricians, we began seeing cases of

children bearing resemblance with Kawasaki disease, a postin-

fectious inflammation of medium-sized arteries such as the cor-

onaries (Shulman and Rowley, 2015). Cases of Kawasaki dis-

ease are seen every winter in the US and Europe with an

incidence of 10–20 cases per 100, 000 children, while the inci-

dence is 10–30 times higher in northeast Asia (Kim, 2019). The

cases of suspected Kawasaki disease seen in the spring of

2020 in Europe were atypical in presentation and occurred at a

much increased frequency compared with previous years (Ri-

phagen et al., 2020; Toubiana et al., 2020; Verdoni et al., 2020;

Whittaker et al., 2020). Immunological analyses revealed a hy-

perinflammatory syndrome, distinct from Kawasaki disease

and different from the cytokine storm seen in severe, acute

COVID-19 (Consiglio et al., 2020; Rodriguez et al., 2020). The

condition is now termed multisystem inflammatory syndrome

in children, MIS-C (and MIS-A in adults) and is a rare disorder

following an often asymptomatic or paucisymptomatic SARS-

CoV-2 infection in children and young adults with a delay of 1–

2 months. The condition also bears clear resemblance with toxic

shock syndrome and is treated with steroids and immunoglobu-

lins (McArdle et al., 2021) and, in some cases, targeted immuno-

modulators such as IL-1RA and anti-TNF. The condition is asso-

ciated with broadly specific autoantibodies targeting various

tissue antigens (Consiglio et al., 2020; Gruber et al., 2020; Ram-

aswamy et al., 2021), much like what is seen in some acute

COVID-19 patients (Wang et al., 2021). To explain the broad im-

mune activation and dysregulation, Cheng and colleagues

searched for, and found, a superantigen motif in the SARS-

CoV-2 spike protein not found in other related HCoVs and with

an ability to bind and cross-link and activate T cells with partic-

ular T cell receptor (TCR)-b chains (Cheng et al., 2020). Following

this initial study, expansion of T cells carrying the TRBV11-2

gene, in combination with variable alpha chains, a hallmark of

superantigen-mediated T cell activation, has been reported in

several studies of patients with MIS-C (Hoste et al., 2022; Mor-

eews et al., 2021; Porritt et al., 2021; Ramaswamy et al., 2021).

But if this condition is caused by superantigen-mediated activa-

tion, why does it occur in children and young people and not in

the elderly, and why only in a small fraction of infected young-

sters? One possibility is that an additional pathogen carrying a

superantigen motif is required in conjunction with the SARS-

CoV-2 infection in order to trigger MIS-C. If this pathogen is

exclusive to children and young people, that could explain the

lack of MIS-C among the elderly. An alternative hypothesis is

that the initial immune response triggered by SARS-CoV-2would

differ between children and adults, creating the necessary con-

dition for subsequent superantigen-mediated MIS-C only in chil-

dren and young people. This will be discussed further below.

The fact thatMIS-C only occurs in small fraction of infected chil-

dren could be explained by additional genetic requirements for

disease (Sancho-Shimizu et al., 2021), and one such clue comes

from HLA-class I genes recently associated with MIS-C (Porritt

et al., 2021). Intriguing observations of MIS-C being very rare in

countries such as Japan (Fukuda et al., 2021), despite many re-

ported cases of pediatric COVID-19, is further suggestive of
204 Immunity 55, February 8, 2022
such genetic requirements for MIS-C apart from the necessary

age-associated differences. The delayed presentation of MIS-C

differs from other superantigen-mediated diseases and could be

explained by the requirement for a coinfecting pathogen, yet the

precise timing after initial infection is puzzling. Another recent hy-

pothesis to explain this delay states that the gut, rather than the

airway mucosa, is the source of superantigens in MIS-C (Yonker

et al., 2021). The evidence discussed in the previous section of

prolonged viral shedding in the intestines of children, possibly

beyond what is seen in adults, together with a recent study

showing that the integrity of the intestinal barrier is disrupted in

MIS-C patients, collectively provides a possible explanation to

these puzzling facts (Yonker et al., 2021). As most children with

MIS-C have intestinal symptoms and often show inflammation

of the terminal ileum (Morparia et al., 2021), SARS-CoV-2 virus

could then be persisting in the intestine of children more so than

in adults and, in genetically susceptible individuals, give rise to

local superantigen-mediated T cell activation and inflammation,

loss of intestinal barrier integrity, and release of superantigens

into the bloodstream. This could then potentially explain the sys-

temic hyperinflammatory responses seen in children and young

people with MIS-C.

AN ENERGY ALLOCATION PERSPECTIVE ON COVID-19
IN CHILDREN

One major physiological difference between children and adults

is physical growth. Humans are born immature and defenseless,

and there is strong evolutionary pressure promoting rapid

growth early in life (Hochberg, 2011). Consequently, energy allo-

cation trade-offs between immune defenses and growth will

likely favor the latter unless the pathogen represents a serious

threat to the survival and fitness of the child (Stearns, 1992). Dis-

ease tolerance is an immune defense strategy used when

the immune response to a pathogen is more damaging than

the pathogen itself (Medzhitov et al., 2012). The decision to resist

or tolerate a particular pathogen is likely to be different in a

growing child as compared with an adult, and I hypothesize

that growing children aremore likely to choose disease tolerance

to avoid systemic inflammatory response whenever possible.

The energy requirements of children from birth to 20 years of

age show a steady decreasing trend with a slightly higher energy

requirement in boys versus girls (Figure 3A). Of all immune sys-

tem processes, the systemic inflammatory response is the cost-

liest and often lead to weight loss in children during infectious

episodes with fever, muscle ache, and other signs of systemic

inflammation. Regarding SARS-CoV-2 infections, the highest

rates of asymptomatic COVID-19 are seen in children with high-

est energetic requirements (Leidman et al., 2021) (Figure 3B).

Also, other infections such as primary Epstein-Barr virus are

mostly asymptomatic in infants but often severe in adolescents,

and this is linked to stronger systemic inflammatory responses

and bystander activation of T cells (Jayasooriya et al., 2015).

Possibly, these phenomena are linked to the propensity of

choosing disease tolerance over resistance, a decision coupled

to resource allocation trade-offs between growth and immune

defense. Mild and asymptomatic COVID-19 in children leads to

seroconversion, the development of neutralizing antibodies,

and specific T cells but is not associated with systemic



Figure 3. An energy allocation theory to explain mild COVID-19 and MIS-C in children based on disease tolerance and viral persistence
(A) Energy requirement (kcal/kg) decreasewith age in US children and is slightly higher in boys than girls (adapted fromTorun, 2005). The fraction of asymptomatic
children among SARS-CoV-2 PCR+ children across the indicated age groups (Leidman et al., 2021), MIS-C incidence in the US per 100,000 children across
indicated age groups (Belay et al., 2021), and MIS-C incidence per 1 million cases of COVID-19 across the indicated age groups (Payne et al., 2021).
(B) In growing children, the threshold for energy-expenditure on system inflammatory responses are higher, leading to disease tolerance inmost cases andmild to
asymptomatic COVID-19, while in the elderly, the obese, and individuals with inadequate type-I IFN-respones, systemic inflammation is triggered, driving
bystander T cell activation and immunopathology.
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inflammation or bystander activation of T cells (Figure 3C).

Because T cell mediated responses are important for viral clear-

ance, it is tempting to think that less bystander T cell activation

and a milder systemic inflammatory response might increase

the likelihood for viral persistence. In support of this, Cotugno

and colleagues recently reported similar adaptive T and/or B

cell responses but reduced cytokine responses in blood of

asymptomatic as compared with symptomatic children infected

with SARS-CoV-2 (Cotugno et al., 2021). Given the hypothesis

formulated by Yonker et al. (2021) that MIS-C arises because

of viral persistence in the gut and subsequent superantigen-

mediated T cell activation, the determinants of viral persistence

might also be linked to the probability of developing MIS-C. If

children and young people are more likely to choose disease

tolerance versus resistance because of energy allocation toward

growth, this might explain why MIS-C is mostly seen in children
and young adults. To illustrate this further, I extracted incidence

estimates from two recent reports showing that children with the

highest energy requirement also have a higher propensity for

asymptomatic infection and the highest incidence of MIS-C

(Figure 3B). Boys have a slightly higher energy requirement

than girls throughout childhood (Figure 3A), and this should

translate into a higher propensity for disease tolerance and

more frequent mild or asymptomatic infections among boys ac-

cording to the energy allocation theory proposed herein. Hospi-

talization rates are difficult to interpret because they are strongly

influenced by co-morbidities and other risk factors, but among

children hospitalized with COVID-19, a slight overrepresentation

of girls has been reported (Preston et al., 2021). For MIS-C, the

opposite is true, and a small, yet reproducible overrepresenta-

tion of boys has been reported in several cohorts (Abrams

et al., 2021; Feldstein et al., 2021; Kahn et al., 2021; McArdle
Immunity 55, February 8, 2022 205
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et al., 2021). Clearly, additional explanations are required, given

that only a small fraction of infected children will ever develop

MIS-C despite the majority experiencing mild infections, and

this is likely the result of rare genetic determinants in combina-

tion with viral characteristics and other environmental factors

(Sancho-Shimizu et al., 2021).
CONCLUDING REMARKS

There is strong evolutionary pressure on young children to grow,

and energy allocation trade-offs are likely to favor growth over

expensive systemic inflammatory responses whenever possible.

By choosing disease tolerance over maximal resistance, children

are more likely to present with mild and even asymptomatic dis-

ease but might also be less efficient at viral clearance and, conse-

quently, be more prone to some level of viral persistence and

possibly others conditions linked to such viral persistence such

assuperantigen-mediated immuneactivation inMIS-C (Figure3D).

Apart from mild to severe COVID-19 and MIS-C, another

outcome after SARS-CoV-2 infection is long COVID or post-

acute COVID-19 syndrome (PACS), defined as a multiorgan dis-

ease syndrome lasting beyond 12 weeks after initial infection

(Brodin, 2021). This poorly understood condition merits further

investigation in both children and adults, yet too little is known

to date to speculate around long COVID in relation to the energy

allocation hypothesis I have described. Also, a careful literature

review has found that long COVID in children is likely to be less

frequent and less severe as compared with what is reported in

adults (Behnood et al., 2021; Nalbandian et al., 2021). The sug-

gestion herein that the propensity for disease tolerance and/or

resistance is linked to energy allocation tradeoff between growth

and immune defense is not only applicable to growing children,

but also to individuals with altered metabolic states. Obesity is

associated with more severe COVID-19, which has been attrib-

uted to the low-grade inflammation (Brodin, 2021), but could

also be explained by higher propensity for systemic inflamma-

tory responses associated with severe COVID-19, as suggested

by the energy allocation hypothesis.

As we learn more about the variable disease presentation

upon SARS-CoV-2 infection in children and older people, we

also learn important unique features of immune systems in chil-

dren and young people that will help us also understand other

diseases that involve the immune system andwith different man-

ifestations across the age spectrum. Taking on a physiological

and life history perspective will make the unique aspects of im-

mune systems in children more understandable in relation to

the demands associated with different phases of life.
ACKNOWLEDGMENTS
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