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RNA profiles reveal signatures of future 
health and disease in pregnancy

Morten Rasmussen1 ✉, Mitsu Reddy1, Rory Nolan1, Joan Camunas-Soler1, Arkady Khodursky1, 
Nikolai M. Scheller2, David E. Cantonwine3, Line Engelbrechtsen4, Jia Dai Mi5, Arup Dutta6, 
Tiffany Brundage1, Farooq Siddiqui1, Mainou Thao1, Elaine P. S. Gee1, Johnny La1, 
Courtney Baruch-Gravett7, Mark K. Santillan8, Saikat Deb6,9, Shaali M. Ame9, Said M. Ali9, 
Melanie Adkins10, Mark A. DePristo11, Manfred Lee1, Eugeni Namsaraev1, 
Dorte Jensen Gybel-Brask12,13, Lillian Skibsted12, James A. Litch7, Donna A. Santillan8, 
Sunil Sazawal6, Rachel M. Tribe5, James M. Roberts14, Maneesh Jain1, Estrid Høgdall13, 
Claudia Holzman10, Stephen R. Quake15,16,17, Michal A. Elovitz1,18 ✉ & Thomas F. McElrath3 ✉

Maternal morbidity and mortality continue to rise, and pre-eclampsia is a major driver 
of this burden1. Yet the ability to assess underlying pathophysiology before clinical 
presentation to enable identification of pregnancies at risk remains elusive. Here we 
demonstrate the ability of plasma cell-free RNA (cfRNA) to reveal patterns of normal 
pregnancy progression and determine the risk of developing pre-eclampsia months 
before clinical presentation. Our results centre on comprehensive transcriptome data 
from eight independent prospectively collected cohorts comprising 1,840 racially 
diverse pregnancies and retrospective analysis of 2,539 banked plasma samples. The 
pre-eclampsia data include 524 samples (72 cases and 452 non-cases) from two diverse 
independent cohorts collected 14.5 weeks (s.d., 4.5 weeks) before delivery. We show 
that cfRNA signatures from a single blood draw can track pregnancy progression at 
the placental, maternal and fetal levels and can robustly predict pre-eclampsia, with a 
sensitivity of 75% and a positive predictive value of 32.3% (s.d., 3%), which is superior 
to the state-of-the-art method2. cfRNA signatures of normal pregnancy progression 
and pre-eclampsia are independent of clinical factors, such as maternal age, body 
mass index and race, which cumulatively account for less than 1% of model variance. 
Further, the cfRNA signature for pre-eclampsia contains gene features linked to 
biological processes implicated in the underlying pathophysiology of pre-eclampsia.

The period from conception to delivery represents the most rapid 
growth and development in an individual’s life. The ability to support 
this development requires dramatic and poorly understood alterations 
in maternal physiology. Research into human pregnancy has clear 
ethical constraints, and the unique character of human gestation has 
limited deeper understanding of the physiology and pathophysiol-
ogy of pregnancy3. Haemochorial placentation is found among many 
mammalian species; however, in humans, it involves a unique degree of 
trophoblastic invasion4,5, and because pre-eclampsia occurs predomi-
nantly in humans, conventional animal models are of limited value6,7. 
Pre-eclampsia, a condition marked by maternal endothelial dysfunction 
and associated new-onset maternal hypertension, complicates up to  

1 in 12 pregnancies and is a significant cause of maternal morbidity and 
higher lifetime risk of cardiovascular disease1.

Here we demonstrate the ability of cfRNA transcripts to establish 
the normative responses of both maternal and fetal tissues character-
istic of normal pregnancy progression. By implication, deviation from 
normative cfRNA expression patterns should allow the prediction of 
impending pathology before its presentation. We demonstrate the use 
of cfRNA to characterize women at risk of pre-eclampsia months before 
diagnosis. Notably, the cfRNA profiles identify risk solely through 
molecular mechanisms common to pre-eclampsia and are therefore 
exclusive of clinical variables such as race, body mass index (BMI), 
maternal comorbidities and/or obstetrical history.
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In this study, we gather the largest and most diverse dataset of mater-
nal transcriptomes to date. Samples were drawn from eight prospec-
tively collected cohorts that provided n = 2,539 plasma samples from 
n = 1,840 pregnancies for women of multiple ethnicities, nationalities, 
geographic locations and socioeconomic contexts, while covering a 
range of gestational ages (Fig. 1a). The broad sociodemographic spec-
trum of our data (Table 1 and Supplementary Table 1) enabled us to test 
the applicability of maternal transcriptomes at one gestational time 
point. A detailed description of each cohort and the methodology is 
available in the Supplementary Information.

RNA signal independent of clinical factors
Ultrasound-based gestational age has long been used as a surrogate 
measure of pregnancy progression. Here, we show that a cfRNA 
signature is as accurate a measure of gestational age while also pro-
viding insights into the biology of pregnancy progression. As a first 
step to develop a machine learning model, we divided our data from 
all full-term pregnancies without complications into a training set 
(n = 1,908 samples) and a test set (n = 474 samples), stratified by gesta-
tional age so that all age strata were represented proportionally. Before 
modelling, we standardized the means of gene counts across all cohorts 
(Methods and Extended Data Fig. 5). A Lasso linear model was fitted to 
predict gestational age in the training set, with a test set performance 
of a mean absolute error of 14.7 days (Fig. 1b, Extended Data Fig. 6 
and Supplementary Data 1), referencing to first-trimester fetal ultra-
sound biometry. Overall, the error of our model is equivalent to that of 

second-trimester ultrasound and superior to that with third-trimester 
ultrasound8, and could provide an alternative dating procedure for 
women who start prenatal care later in pregnancy.

Next, we explored whether inclusion of clinical variables altered 
model performance. By analysis of variance (ANOVA), we showed that 
the model was driven almost entirely by information from the cfRNA 
transcripts, with BMI, maternal age and race accounting for less than 
1% of variance (Fig. 1c). Rebuilding the gestational age model includ-
ing maternal race, BMI and age provided no improvement in accuracy 
(0.07 days, not significant by bootstrap test).

Fetal signatures in maternal circulation
As the cfRNA signatures for gestational age demonstrated a dynamic 
change in transcripts as pregnancy progresses, we then explored 
whether transcripts found in the maternal circulation during preg-
nancy could be linked to their tissue of origin. Specifically, we sought 
to ascertain whether the molecular status of the placenta, fetal organs 
and/or maternal tissues (cervix and/or uterus) could be assessed by 
examining cfRNA profiles. While fetal cells are known to pass into the 
maternal circulation9,10, individual transcripts from the fetus or fetal cell 
types are relatively rare in maternal plasma; thus, we investigated these 
signals by analysing gene sets from Gene Ontology11 or the Molecular 
Signatures Database12,13. Using longitudinal data from cohort H covering 
93 women sampled four times during pregnancy (Supplementary Infor-
mation), we first confirmed that we could identify pregnancy-related 
sets such as those for gonadotropin and oestrogen pathways (Extended 
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Fig. 1 | Overview of plasma sampling and cohorts and gestational age 
modelling. a, Cohorts are labelled A–H (Table 1). Circles represent plasma 
samples from liquid biopsies (n = 2,539). Colours represent the race of the 
maternal donor. b, Model predictions from the hold-out test (n = 474) using 

cfRNA transcript data in the Lasso linear model versus ultrasound-predicted 
gestational age. The dark grey zone represents 1 s.d., and the light grey zone 
represents 2 s.d. c, Variance explained from ANOVA.

Table 1 | Sample overview

Cohort A B C D E F G H

Blood draws (n) 201 385 69 186 353 793 140 412

Pregnancies (n) 197 219 68 186 352 592 120 106

% Asian 10.7 10.0 1.5 10.2 0.0 0.5 0.0 0.0

% Black 18.3 4.6 0.0 25.3 45.2 48.5 100.0 0.0

% Hispanic 24.4 17.8 14.7 0.0 0.0 0.0 0.0 0.0

% White 40.1 56.6 83.8 61.3 54.8 44.3 0.0 100.0

% Unknown or multiracial 6.6 11.0 0.0 3.2 0.0 6.8 0.0 0.0

Gestational age at blood draw 
(weeks)

12.0–27.9 5.6–38.2 8.9–28.1 12.2–23.8 16.9–26.8 4.9–40.2 8.0–38.7 11.4–34.8

BMI (kg m−2)* 28.1 ± 7.4 26.9 ± 6.2 33.3 ± 9.0 26.4 ± 6.2 28.6 ± 8.2 28.9 ± 7.6 24.5 ± 5.1 25.4 ± 6.1

Maternal age (years)* 32.4 ± 5.7 30.1 ± 5.1 29.8 ± 5.2 32.7 ± 5.4 26.5 ± 5.7 24.0 ± 4.5 28.8 ± 6.3 30.5 ± 4.7

*Variation shown as s.d. 
Blood draw and pregnancy count, breakdown of ethnicity and race, and clinical factors.
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Data Fig. 1) and that the signal from the gestational age model increased 
with gestational age as did signal from the placenta (Fig. 2a, b and  
Methods). We show that hundreds of independently identified gene sets 
in maternal blood mirror the maternal and fetal physiological changes 
expected during pregnancy. Specifically, using single-cell RNA-seq 
data from adult and fetal organs (Supplementary Table 2), we were 
able to confirm changes in fetal gene sets, including those involved 
in fetal heart development, in maternal blood (Fig. 2c). Furthermore, 
the cfRNA profiles reflect expected changes in maternal tissues, such 
as the uterus and cervix, with progressively increasing expression of 
collagen and extracellular matrix gene sets14 (Fig. 2d). Extended Data 
Fig. 2 shows additional examples of fetal gene sets, including those 
of nephron progenitor cells for which expression become less abun-
dant with gestational age in accordance with a decrease in the nephro-
genic zone width15,16 and those in the gastrointestinal tract, where the 
oesophagus develops early with associated gene expression decreasing 
later versus small intestine where associated gene expression shows 
a steady increase17.

To test whether the identified gene sets were uniquely associated with 
pregnancy progression, we next compared the observed gestational age 
collection time labels to a set of randomly permuted collection time 
labels. This comparison verified that all selected gene sets were asso-
ciated with pregnancy progression (Extended Data Fig. 3). The direc-
tional signals could be confirmed in three independent cohorts (n = 351 
women) for which longitudinal data were available (Fig. 2e–h). In all cases, 
the slopes for the gestational age coefficients were distinct from 0 at a  
0.05 confidence level. In total, we tested 793 gene sets from single-cell 
analyses12,13, comprising 384 gene sets from adult and 409 gene sets from 
fetal tissues. Of these, 129 gene sets (55 fetal) were significantly correlated 
with gestational age, of which 99 gene sets (40 fetal) showed increased 
signal and 30 gene sets (15 fetal) showed decreased signal as a function 
of gestational age at collection in cohort H, and were confirmed in at 
least two other cohorts with longitudinally sampled individuals (Sup-
plementary Data 2). As changes in these predefined gene sets were only 
significant in the context of gestational age across at least three cohorts 

with longitudinal information, we present here a non-invasive window 
into maternal–fetal development from a maternal blood sample.

Early prediction of pre-eclampsia
Having established that cfRNA profiles can reveal and characterize 
molecular changes in the maternal–placental–fetal unit over gestation, 
it is likely that disruption of these pathways might identify women at 
risk for adverse pregnancy outcomes such as pre-eclampsia.

We evaluated the ability of cfRNA signatures in maternal blood, 
during the second trimester (16–27 weeks), to predict the develop-
ment of pre-eclampsia. Maternal blood draws occurred, on average,  
14.5 weeks (s.d., 4.5 weeks) before delivery (Fig. 3a); in contrast to work 
by Munchel et al.18 where plasma was collected at the time of diagnosis, 
the gestational age time points in our analysis correspond to timepoints 
where women are asymptomatic. A case–control study with 72 cases 
of pre-eclampsia and 452 non-cases selected from two independent 
cohorts (cohorts A and E) was performed (Supplementary Information).  
Cohort E included 31 controls with chronic hypertension and 19 
controls with gestational hypertension and both cohorts included 
spontaneous preterm birth samples along with the normotensive 
term controls. Pre-eclampsia was defined by criteria consistent with 
those from the 2013 Task Force on Hypertension in Pregnancy (ACOG 
2013), and each case was adjudicated by two board-certified physicians.  
As before, a cohort correction was applied before modelling.

Two-sided Spearman correlation tests identified signatures that 
separated the cases and controls; in each round of cross-validation, 
we retained features with an adjusted P value below 0.05 (Methods) 
and consistently identified seven genes: CLDN7, PAPPA2, SNORD14A, 
PLEKHH1, MAGEA10, TLE6 and FABP1 (Fig. 3b).

Four of the genes selected for modelling have functions rel-
evant to pre-eclampsia or placental development. PAPPA2, encoding 
pregnancy-associated plasma protein 2, is expressed in the placenta19, 
specifically in trophoblast cells. It has previously been linked to the 
development of pre-eclampsia and has been associated with inhibition 
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Fig. 2 | Temporal profiles of pregnancy pathways for gene sets from the 
gestational age model and independently identified gene sets for 
placenta, developing fetal heart and collagen extracellular matrix known 
to be involved in uterus and cervix growth over gestation. a–d, Maternal 
plasma transcriptome fractions for gene sets averaged across all samples in 
each collection window. Gestational age model (a), placenta (b), developing 
heart (c) and collagen extracellular matrix (ECM) (d). Error bars correspond to 
the 95% confidence interval around the mean. CPM, counts per million. n = 93 

for each time point and gene set. e–h, Signal across all cohorts with 
longitudinal data: gestational age model (e), placenta (f), developing heart  
(g) and collagen ECM (h). Linear fits are shown of transcriptome fractions for 
all samples across corresponding gestational ages recorded at collection 
times. The band around the solid line corresponds to the 95% confidence 
interval. All slopes for the gestational age coefficients are distinct from 0 at a 
confidence level of 0.05. Cohort is indicated by colour.
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of trophoblast migration, invasion and tube formation20,21. Claudin 7 
(CLDN7) is involved in tight cell junction formation and blastocyst 
implantation; in healthy pregnancies, expression of CLDN7 is reduced 
in response to oestrogen at the time of implantation22,23. Similarly, TLE6 
has also been linked to preimplantation and early embryonic lethality24. 
Fatty acid-binding protein 1 (FABP1) was first purified from human cyto-
trophoblasts and is known to be highly expressed in the fetal liver; it is 
critical for fatty acid uptake and transport25 and is upregulated threefold 
when cytotrophoblasts differentiate to syncytiotrophoblasts at implan-
tation26. The other three genes that make up the pre-eclampsia cfRNA 
signature (SNORD14A, PLEKHH1 and MAGEA10) have been associated with 
pre-eclampsia through bioinformatic analyses, although their function is 
less well understood27,28. Two of the identified genes, PAPPA2 and FABP1, 
were also identified in the gestational age model and highlight the imbal-
ance in cfRNA signatures between pregnancy progression and pathology.

On the basis of these identified gene features, a logistic regression 
model in a leave-one-out cross-validation set-up was used to estimate 
the probability of pre-eclampsia. This model framework was chosen 

on the basis of learning curve analyses (Methods and Extended Data 
Fig. 7). At a sensitivity of 75%, our cfRNA model achieved a positive predic-
tive value (PPV) of 32.3% (s.d., 3%) given a prevalence of pre-eclampsia 
of 13.7% in our study, superior to PPVs reported from current clinical 
state-of-the-art models, which are driven largely by maternal factors2 ;  
the area under the curve (AUC) for the model was 0.82 (95% confidence 
interval, ±0.06; Fig. 3c). Consistent with our findings with the gestational 
age model, inclusion of clinical variables (maternal BMI, age and race) had 
no effect on performance, as the classifier assigns zero weight to these 
clinical variables and they explain <1% of the variance based on ANOVA 
analyses. The lack of contribution to cfRNA profiles from clinical factors 
highlights the generalizability of these profiles to diverse populations.

When comparing gestational age at delivery between test-positive 
and test-negative individuals, a significant shift was found in the timing 
of delivery, with the test-positive population delivering earlier during 
gestation (P < 2 × 10–7; Fig. 3d). A positive test correctly identified 73% 
of individuals destined to have a medically indicated preterm birth 
over 3 months in advance of the onset of clinical symptoms or delivery.
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To further understand molecular signature changes and how they 

might reflect the pathophysiology driving pre-eclampsia, we performed 
pathway analysis. The top upregulated pathways were dominated by 
structural cell functions, including placental blood vessel develop-
ment, artery morphogenesis and embryonic placental development 
(Extended Data Fig. 4a), while the majority of downregulated pathways 
were related to immune pathways (Extended Data Fig. 4b). Both the 
upregulated and downregulated gene sets aligned with the accepted 
mechanism of pathogenesis for pre-eclampsia29.

In cohort E, the non-case group contained both normotensive women 
(n = 263) and women with chronic (n = 31) or gestational (n = 19) hyper-
tension. Genes identified through comparison of the groups with 
chronic or gestational hypertension with the normotensive group 
showed no overlap with genes significant for pre-eclampsia (two-sided 
Spearman correlation test, P < 0.05). Additionally, no genes were dif-
ferentially expressed in the chronic or gestational hypertensive groups 
when compared with the normotensive group. While others have pub-
lished studies designed to determine the effect of hypertension more 
generally on gene expression (e.g., Zeller et al.30), here, we demonstrate 
that the signal for pre-eclampsia is specific to hypertension driven by a 
placental disorder and the signature is independent of signals associ-
ated with chronic hypertension. Clinically, it can be quite challenging to 
differentiate superimposed pre-eclampsia in women with pre-existing 
hypertension from exacerbation of baseline chronic hypertension. 
This difference is important, as one requires delivery for cure while 
the other usually does not.

As pre-eclampsia and spontaneous preterm birth are theorized to 
have some overlapping molecular pathways31,32, we tested whether 
excluding non-case samples with deliveries before gestational week 
37 (n = 85) would affect test prediction. Removal of spontaneous pre-
term delivery samples did not alter the performance of the model 
(AUC = 0.79; 95% confidence interval, ±0.06), suggesting that inclu-
sion of spontaneous preterm birth samples in the non-case group does 
not affect the pre-eclampsia classifier.

We report a standalone molecular predictor that has the potential 
to be an early detector of pre-eclampsia with a PPV of 32% that is based 
entirely on transcripts and is exclusive of clinical variables. This predic-
tor contrasts with state-of-the-art methods, which are dependent on 
clinical factors and achieve a PPV of 4.4%2.

Discussion
While other studies have looked at circulating biomarkers, a recent 
comprehensive review33 concluded that more data early in pregnancy 
are needed to support clinical value. Here, we reveal the ability of cfRNA 
transcripts to provide comprehensive molecular profiles of pregnancy 
progression by including signals from the placenta and the fetus. We 
have shown that novel transcript signatures from a single blood sam-
ple can (1) accurately track pregnancy progression independently of 
clinical factors and (2) reliably identify women at risk of developing 
pre-eclampsia months before presentation of the disease. Given the 
large sample size and diversity in our study population, it is noteworthy 
that race has a negligible effect on the expression patterns of gestational 
age estimates and pre-eclampsia risk evaluation. These findings allow 
for the development of personalized assessments for pregnancy.

Equally important, our work allows for the assessment of maternal 
risk independently of clinical factors, such as race, that are fraught 
with bias. The inclusion of race in clinical assessments results in 
miscalculation of patient risk and underdiagnoses34–36. While we 
acknowledge that, within specific subpopulations, the prevalence of 
complications such as pre-eclampsia may be higher, the evaluation of 
cfRNA transcripts directly exposes the developing pathophysiology. 
Further research will be needed to identify drivers of the identified 
pathophysiological pathways; the focus on molecular mechanisms 
allows stratification of risk without the need for enrichment of 

‘pretest’ probabilities based on maternal sociodemographic char-
acteristics. Further, an understanding of the maternal–fetal–placental 
transcriptome also represents a vehicle by which comprehension of 
the biological underpinnings of maternal–fetal development can be 
improved and provides novel insights into interactions across the 
maternal–fetal dyad. This holds the promise of precision therapeutic 
interventions that can target molecular subtypes of pre-eclampsia 
and preterm birth.

Improvement in maternal outcomes has been limited by the inability 
to access pregnancy tissues and a lack of understanding of the specific 
molecular phenotypes that identify those at risk before onset of symp-
toms. Our findings can now be leveraged to more accurately provide 
information on future maternal and fetal health and disease. Thus, 
our approach opens new therapeutic windows to effectively decrease 
maternal and neonatal morbidity and mortality.
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Methods

The Mirvie RNA technology
cfRNA isolation. Plasma samples received on dry ice from our collabo-
rators were stored at –80 °C until further processing. Total circulating 
nucleic acid was extracted from plasma ranging in volume from ~215 µl 
to 1 ml, using a column-based commercially available extraction kit, 
following the manufacturer’s instructions (Plasma/Serum Circulating 
and Exosomal RNA purification kit, Norgen, 42800).

Following extraction, cfDNA was digested using Baseline-ZERO 
DNase (Epicentre) and the remaining cfRNA was purified using an RNA 
Clean and Concentrator-5 kit (Zymo, R1016) or an RNeasy MinElute 
Cleanup kit (Qiagen, 74204).

RT–qPCR assay. We performed PCR with reverse transcription (RT–
qPCR) analysis to assess the relative amount of cfRNA extracted from 
each sample. We measured and compared the threshold cycle (Ct) 
values from each RNA sample using a three-colour multiplex qPCR 
assay from the TaqPath 1-Step Multiplex Master Mix kit (ThermoFisher 
Scientific, A28526) and a Quant Studio 5 system. We also measured the 
Ct values for an endogenous housekeeping gene (ACTB; ThermoFisher 
Scientific, 4351368).

cfRNA library preparation. cfRNA libraries were prepared using the 
SMARTer Stranded Total RNAseq-Pico Input Mammalian kit (Takara, 
634418) following the manufacturer’s instructions, except that we 
did not use ribo depletion. Library quality was assessed by RT–qPCR 
following the method described for assessing RNA measurements and 
fragment analysis on a Fragment Analyzer 5300 (Agilent Technologies).

Enrichment and sequencing. Libraries were normalized before pool-
ing for target capture. We used a SureSelect Target Enrichment kit 
(Agilent Technologies, 5190-8645) and followed the manufacturer’s 
instructions for hybrid capture. Samples were quantified, and 50-bp, 
paired-end sequencing was performed on a Novaseq S2. Between 96 
and 144 samples were pooled and sequenced per sequencing run.

Analysis for outliers. qPCR of ACTB as well as MultiQC sequencing 
metrics were monitored to eliminate sample outliers before performing 
gene expression analyses. Individual samples more than 3 s.d. from the 
mean were removed as outliers. A total of 193 of 2,732 samples (7.1%) 
were removed following this filtering.

Read processing. Reads were processed following a similar proto-
col to that reported in Ngo et al.37. Briefly, raw sequencing reads were 
trimmed using trimmomatic38 and then mapped to hg38 using the STAR 
aligner39. After removing duplicates using Picard tools, gene counts 
were generated with htseq40.

Cohort correction and feature normalization
For each gene, its relationship to total counts per sample was measured 
and corrected using linear model residuals. Extended Data Fig. 5a, b 
shows what this looks like for the gene ACTB.

We also sought to correct the genes such that each cohort had the 
same mean value for each gene. However, the cohorts came from dif-
ferent parts of the gestational age spectrum. Therefore, only cohort 
effects orthogonal to the gestational age effect were corrected. This 
is shown in Extended Data Fig. 5c, d for the gene CAPN6. Each cohort 
was given its own colour.

Cohort E (bright yellow) had unusually low counts for its gestational 
age range before correction, and this effect was removed by correction.

Using principal-component analysis (PCA) to compress the 
high-dimensional space of all genes, the correction could be seen to 
clarify the separation of samples by gestational age as indicated by the 
colour gradient (Extended Data Fig. 5e, f).

Linear correction algorithm
1. In the training, correct for (remove the effect of) the variable(s) of 
interest (e.g., gestational age) using linear model residuals.
2. Learn the required correction for the variables you wish to correct 
for in this corrected training data.
3. The residuals of that model (in the raw training and testing data) are 
your corrected data.

Note: the correction was learned entirely in the training data and 
the variable of interest in the testing data was never used, negating 
the possibility of a data leak.

Lasso linear model for gestational age prediction and ANOVA
The Lasso model used in the gestational age model had its param-
eters chosen via 10-fold cross-validation in the training set. The 
largest cross-validation score within one standard error of the best 
cross-validation score was chosen (Breiman strategy). We limited our 
feature space by excluding pseudogenes and non-coding genes, as well 
as genes with median expression greater than zero, leaving a total of 
13,208 features to evaluate. A final Lasso with this was then trained on 
the whole training set and evaluated in the test set. This was all done 
with the glmnet R package using the cv.glmnet() function.

The model uses 674 of the available gene features (Supplementary 
Data 1), although this includes a long tail of features with low contribu-
tion. We tested performance for the 50 most informative features from 
the model and obtained a mean absolute error of 15.4 days. The continued 
reduction in error as we reached our complete training set of n = 1,908 
samples indicated that model learning was not exhausted and that 
additional samples would have increased performance (Extended Data 
Fig. 6). Notably, as seen in Extended Data Fig. 6, the similar performance 
in cross-validation and on the independent held-out test data indicated 
that the model was not overfit with the 674 gene features. To determine 
how far the model could be extrapolated, a final model was built using all 
data; this gave a mean absolute error of 13 days across the entire dataset.

Gestational age learning curve
The main gestational age modelling was done with an 80/20 train/
test split. To assess model performance after decreasing amounts of 
training data, one can repeat analyses with 70/30 splits, 60/40 splits 
and so on (doing so repeatedly with different random splits to quantify 
uncertainty). In this way, one builds a learning curve (Extended Data 
Fig. 6) with different training set sizes on the x axis and model perfor-
mance on the y axis.

Gestational age model without cohort correction
For this approach, we selected all samples from healthy pregnancies 
and split the dataset into a training set (80% of data) and a test set (20% 
of data), in which samples were stratified by cohort. Samples that did 
not pass quality-control filtering based on basic sequencing metrics had 
been previously excluded from analysis. We trained a Lasso model to 
predict the gestational age at collection for each sample using the mean 
absolute error as an optimization metric and 10-fold cross-validation 
in the training set. We used all genes with mean log2(counts per million 
(CPM)  + 1)  > 1 (12,921 genes) plus a set of sequencing metrics as features 
for training. Modelling was performed in log2(CPM + 1) space, and all 
data were centred and scaled before modelling using the training set 
statistics. This led to a model with a mean absolute error of 15.9 days 
in the withheld test set using 487 transcriptomic features. We then 
selected the top 53 features of this model and retrained the Lasso using 
the same approach described above, achieving a mean absolute error 
of 16.6 days in the held-out test set.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA)11,41 was done with the fast GSEA 
algorithm42 using Bioconductor’s fgsea package43. Gene sets were 



compiled from the Molecular Signatures Database (MSigDB)11,12 using 
the CRAN msigdbr v7.2 API and directly from c8.all.v7.3.symbols.gmt. 
We focused on two collections of gene sets: the Gene Ontology (GO) 
subcollection of the ontology gene sets, C5:GO, and the cell type signa-
ture gene sets, C8 v7.3. Genes were ranked on the basis of their shrunken 
log-transformed fold change values and associated Wald test P values 
obtained from analysis of differential expression using Bioconductor’s 
DESeq2 (ref. 44), represented as –log10(P value)  × shrunkenLFC. GSEA 
was carried out on 372 samples from cohort H collected from 93 women 
with healthy pregnancies over four draw intervals during pregnancy, 
11.4−14 weeks, 18−21 weeks, 22.8−27.8 weeks and 29.2–34.8 weeks. 
Shrunken log-transformed fold change values and corresponding  
P values were obtained from all six pairwise contrasts between the four 
draws. We used 102 fetal gene sets that were significantly enriched (Ben-
jamini–Hochberg adjusted P < 0.01) in at least one pairwise comparison 
(Supplementary Table 2) in downstream analyses, including analysis of 
plasma transcriptome partitioning and set-specific longitudinal trends.

Using a GO collection of gene sets, we validated our approach and 
identified seven pregnancy-related sets that were significantly enriched 
in the comparison between early- and late-pregnancy samples (Extended 
Data Figure 1). Three gene sets in the gonadotropin and oestrogen path-
ways exhibited significant changes consistent with known physiology45.

Evaluating changes in plasma transcriptome partitioning
The plasma transcriptome can be phenomenologically viewed as being 
partitioned into characteristic sets of genes. We assessed this partition-
ing in each cfRNA sample by converting raw gene counts to CPM and 
summing CPM over all genes in each of the sets. The resulting cumulative 
CPM score, which is a relative measure of the abundance of each gene 
set in the overall transcriptome, was used to directly compare gene sets 
across collection time points. Cumulative CPM scores for all gene sets 
significantly enriched between collections 1 and 4 were calculated for 
every cfRNA sample. The scores for each sample were regressed onto the 
recorded gestational age (in weeks) using a linear model. Gene sets with 
an adjusted P  value for the gestational age coefficient <0.01 were consid-
ered as having a significant (positive or negative) trend in their relative 
abundance. The association of these trends with the time component in 
the data was further verified by scrambling the temporal structure and 
re-examining the trends along the original time variable. For each mother, 
we also evaluated the monotonicity of the cumulative CPM score function 
along the collection times. Because there are 24 possible permutations 
of order for the four collection times and only one of those permutations 
allows for a monotonic upward trend (with one for a downward trend), we 
were able to analytically assess the significance of the observed number 
of monotonic trends among 93 mothers using a chi-squared test.

Pre-eclampsia analysis and learning curve
CIs for AUCs and sensitivity, specificity and PPV were all found via 
bootstrapping. PPV was calculated as PPV = (sensitivity × prevalence)/
((sensitivity × prevalence) + ((1 – specificity) × (1 – prevalence))).

To build the learning curve (Extended Data Fig. 7), we increased the 
size of the training set going from two- to ninefold cross-validation 
with a constant model: logistic regression with gene features chosen 
by Spearman correlation tests with an adjusted P-value threshold of 
0.05. The point on the right connected to the learning curve via a dashed 
line is the leave-one-out cross-validation result shown in the main text.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data are available with a signed data use agreement to protect identifi-
able data; please contact research@mirvie.com.

Code availability
Code is available as three packages in the following repositories: 
mirmisc, https://doi.org/10.5281/zenodo.5604683; mirmodels, https://
doi.org/10.5281/zenodo.5593282; and mirr, https://doi.org/10.5281/
zenodo.5593280.
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Extended Data Fig. 1 | Temporal profiles of pregnancy-related endocrine 
signatures during pregnancy. Seven pregnancy-related gene ontology term 
signatures identified as highly significantly enriched (α=0.01) were profiled 
across collection times using cumulative CPM. Plasma transcriptome fractions 

for each gene set were averaged across all samples in each collection window 
with error bars corresponding to the 95% confidence interval around the mean. 
Panels correspond to different ranges of CPM, for the ease of comparison. 
CPM, counts per million. N=93 for each timepoint and gene set.



Extended Data Fig. 2 | Temporal profiles of fetal gene sets from developing 
kidney and gastrointestinal tract. a-c, Maternal plasma transcriptome 
fractions for gene sets averaged across all samples in a given collection 
window. Error bars correspond to the 95% confidence interval around the 
mean. CPM, counts per million. N=93 for each timepoint and gene set.  

d-f, signal across all cohorts with longitudinal data. Linear fits of transcriptome 
fractions for all samples across corresponding gestational ages recorded at the 
collection times. The band around the solid line corresponds to the 95% CI. All 
slopes for the gestational age coefficient are distinct from 0 at a confidence 
level of 0.05. Cohort is indicated by color.
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Extended Data Fig. 3 | Bootstrapping with and without time-scrambling. a-d, for each of the significantly enriched gene sets, the trends were evaluated by 
bootstrapping (B=1,000) the original data (blue lines) and time-scrambled data (grey lines) obtained by reshuffling collection times.



Extended Data Fig. 4 | Gene set enrichment analysis of preeclampsia for gene ontology (GO) gene sets. a, Top-20 significantly upregulated gene sets.  
b, Top-20 significantly downregulated gene sets. Color gradient for adjusted p-value. NES, absolute normalized enrichment score.
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Extended Data Figure 5 | Effect of correcting for total count and cohort. 
Counts for ACTB as a function of total counts for the sample before (a) and after 
(b) correction. Counts for CAPN6 as a function of gestational age for all 

samples used in the gestational age model before (c) and after (d) cohort 
correction. Plot of first two principal components before (e) and after  
(f) cohort correction.



Extended Data Fig. 6 | Learning curve for gestational age model. Model for 
gestational age is trained with increasing sample size, error is plotted for both 
training set (Cross-validated, purple) and held-out test set (green). Error bars 
are 1 standard deviation.
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Extended Data Fig. 7 | Learning curve for preeclampsia model. Model performance as a function of training set size. Error bars are 1 standard deviation.
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privacy and consent and information and obligations to third parties.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. 

Data exclusions qPCR of ACTB as well as MultiQC sequencing metrics were monitored to eliminate sample outliers before performing gene expression 
analyses. Individual samples more than 3 standard deviations from the mean were removed as outliers. A total of 193 of 2,732 samples (7.1%) 
were removed following this filtering.

Replication Each sample is a single aliquot of human plasma and volume only allows for one extraction, so sample reproducibility cannot be confirmed

Randomization For gestational age analyses samples were split into 80% training and 20% test sets. These were stratified by gestational age to ensure even 
distribution in both training and held-out test set. 

Blinding Sample labels were not blinded to analyses team. In a leave-one-out cross-validation blinding is not possible.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics We intentionally targeted a diverse racial and ethnic composition of our samples and globally have 3.8% Asian, 32.6% Black, 
5.4% Hispanic, 55.1% White and 3.1% mixed/unknown/not reported. For most samples we have data on maternal age, pre-
pregnancy BMI, and preeclampsia status. 

Recruitment This is a retrospective study of prospectively collected samples from 8 different cohorts. We selected cohorts based on 
literature search of pregnancy cohorts with EDTA plasma stored at -80C. Recruitment criteria for individual cohorts are 
reported in the literature.

Ethics oversight All cohorts have previously been published on, references to relevant IRB approvals for individual cohorts available through 
references in supplementary text. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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