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Abstract
Background  Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in the PKHD1 gene. The 
clinical spectrum is often more variable than previously considered. We aimed to analyze the clinical features of genetically 
diagnosed ARPKD in the Japanese population.
Methods  We conducted a genetic analysis of patients with clinically diagnosed or suspected ARPKD in Japan. Moreover, 
we performed a minigene assay to elucidate the mechanisms that could affect phenotypes.
Results  PKHD1 pathogenic variants were identified in 32 patients (0–46 years). Approximately one-third of the patients 
showed prenatal anomalies, and five patients died within one year after birth. Other manifestations were detected as follows: 
chronic kidney disease stages 1–2 in 15/26 (57.7%), Caroli disease in 9/32 (28.1%), hepatic fibrosis in 7/32 (21.9%), sys-
temic hypertension in 13/27 (48.1%), and congenital hypothyroidism in 3 patients. There have been reported that truncating 
mutations in both alleles led to severe phenotypes with perinatal demise. However, one patient without a missense mutation 
survived the neonatal period. In the minigene assay, c.2713C > T (p.Gln905Ter) and c.6808 + 1G > A expressed a transcript 
that skipped exon 25 (123 bp) and exon 41 (126 bp), resulting in an in-frame mutation, which might have contributed to the 
milder phenotype. Missense mutations in cases of neonatal demise did not show splicing abnormalities.
Conclusion  Clinical manifestations ranged from cases of neonatal demise to those diagnosed in adulthood. The minigene 
assay results indicate the importance of functional analysis, and call into question the fundamental belief that at least one 
non-truncating mutation is necessary for perinatal survival.
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Introduction

Autosomal recessive polycystic kidney disease (ARPKD) 
is an inherited cilia-related disorder characterized by the 
association of bilateral renal cystic disease and congenital 
hepatic fibrosis. The polycystic kidney and hepatic disease 
1 (PKHD1) gene has been identified as the causative gene 
for ARPKD [1, 2], with 590 types of pathogenic mutation 
reported in The Human Gene Mutation Database to date 
(http://​www.​hgmd.​cf.​ac.​uk, HGMD). PKHD1, extending 
over a genomic segment of at least 470 kb on chromo-
some 6p12, is one of the largest disease-causing genes in 
the human genome. The longest PKHD1 transcript con-
tains 67 exons that encodes a protein comprising 4074 
amino acids. PKHD1 encodes a single-transmembrane 
protein, called polyductin/fibrocystin, which is mainly 
expressed in the kidneys and liver. Fibrocystin localizes 
in the ciliary membrane, and it may be involved in regulat-
ing cell to cell adhesion and proliferation; it also acts as 
a membrane-bound receptor [1–3]. However, the detailed 
function of PKHD1 and the onset mechanism of ARPKD 
are still unknown. Recently, mutations in DAZ interacting 
protein 1-like (DZIP1L) have been reported in patients 
with ARPKD, suggesting that ARPKD is not a homoge-
neous disorder and DZIP1L may also be involved in its 
pathogenesis [4], however, whether there is a causative 
relationship between DZIP1L and ARPKD requires further 
investigation [5].

The clinical spectrum of the disease is often more vari-
able than previously considered [6–8]. Most cases have 
been identified either in utero or at birth. Approximately 
30–50% of affected neonates die shortly after birth due 
to severe pulmonary hypoplasia and secondary respira-
tory insufficiency [9, 10]. In contrast, those who survive 
through the perinatal period express variable disease 
phenotypes, and some elderly patients with ARPKD are 
only moderately affected [8, 9]. A genotype–phenotype 
correlation has been reported in which patients with bial-
lelic truncating mutations in PKHD1 show a severe phe-
notype with perinatal demise, while children surviving 
the postnatal period carry at least one missense mutation 
[9]. However, some patients with missense mutations can 
present with a phenotype that is as severe as that associ-
ated with truncating mutations, suggesting that complex 
transcriptional alterations may play a role in defining the 
phenotype [11].

To date, no multi-center study has described the geno-
type and phenotype of genetically diagnosed ARPKD 
patients in Japanese populations. Therefore, we aimed to 
analyze the clinical features of patients who were referred 
to our institute for gene testing and genetically diagnosed 
with ARPKD. Additionally, we conducted a functional 

analysis using a minigene assay to reveal the existence of 
aberrant splicing caused by six mutations detected in our 
study to further investigate the genotype–phenotype cor-
relation. One patient without a missense mutation survived 
the neonatal period, and this result was contradictory to 
previous reports. Thus, we aimed to elucidate the under-
lying mechanism that led to the milder phenotype despite 
the absence of a missense mutation. Additionally, three 
patients with one missense mutation died soon after birth. 
We aimed to evaluate whether these missense mutations 
affected splicing.

Materials and methods

Study design

We conducted gene testing using next-generation sequenc-
ing (NGS) in patients with clinically diagnosed or suspected 
ARPKD at Japanese hospitals between April 2016 and April 
2021. We analyzed cases in which two or more PKHD1 or 
DZIP1L variants were considered pathogenic. Detailed 
information regarding clinical features was obtained from 
the referring clinician or hospital records of patients.

Genetic analysis

DNA was isolated from peripheral blood samples using a 
QuickGene Mini 80 system (Wako Pure Chemical Indus-
tries, Ltd., Tokyo, Japan) according to the manufacturer’s 
instructions. Direct sequencing or targeted sequencing using 
NGS was performed on the genes responsible for inherited 
renal diseases. For NGS, we used a HaloPlex HS or SureSe-
lect (Agilent Technologies, Santa Clara, CA, USA) accord-
ing to the manufacturer’s instructions, and sequencing was 
performed using the MiSeq platform (Illumina, San Diego, 
CA, USA). HaloPlex HS was used for targeted sequencing 
of 128 (version 2, Supplementary Table 1), 172 (version 
4, Supplementary Table 2), 159 (version 5, Supplementary 
Table 3), 164 (version 6, Supplementary Table 4), and 181 
(version 7, Supplementary Table 5) genes, and SureSelect 
was used for the targeted sequencing of 203 (version 8, Sup-
plementary Table 6) and 193 genes (version 9, Supplemen-
tary Table 7) associated with congenital anomalies of the 
kidney and urinary tract, and various cystic kidney diseases, 
including ARPKD, autosomal dominant polycystic kid-
ney disease, and nephronophthisis, as cataloged in OMIM 
(https://​www.​omim.​org) or PubMed (https://​pubmed.​ncbi.​
nlm.​nih.​gov) database.

Data were analyzed using SureCall 4.0 (Agilent Tech-
nologies), a software for end-to-end NGS data analysis. 
The cDNA reference numbers of PKHD1 and DZIP1L 
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were NM_138694.3 and 173,543.2, respectively. Patho-
genicity predictions were performed in accordance with 
the guidelines of the American College of Medical Genet-
ics (Supplementary Table 8). Several websites, including 
CADD (https://​cadd.​gs.​wa shington.edu/), PROVEAN 
(http://​prove​an.​jcvi.​org/​index. php), SIFT (https://​sift.​
bii.a-​star.​edu.​sg/), PolyPhen-2 (http://​genet​ics.​bwh.​
harva​rd.​edu/​pph2/), and Mutation Taster (http://​www.​
patho​genic varianttaster.org/) were used to predict vari-
ant pathogenicity (Supplementary Table 9). The splice 
sites of each variant were predicted using Human Splic-
ing Finder (https://​hsf.​genom​nis.​com/​home). Pair analy-
sis using SureCall was used to determine the changes in 
copy number relative to a reference [12]. Changes in copy 
number were confirmed by multiplex ligation and probe 
amplification (MLPA) using SALSA P341-B4/P342-C1 
PKHD1 (MRC-Holland, Amsterdam, the Netherlands), 
as suggested by the manufacturer. The MLPA test was 
performed twice to confirm abnormal changes.

Minigene assay

We conducted in vitro analysis using a minigene assay 
for the following: missense mutations, c.9533G > T 
(p.Gly3178Val) in SC293, c.3944 T > G (p.Leu1315Arg) 
in SC324, and c.983G > A (p.Arg328Gln) in SC589; 
splice site mutations, c.8555-2A > C in SC324 and 
c.6808 + 1G > A in SC499; and nonsense mutation, 
c.2713C > T(p.Gln905Ter) in SC499. To create hybrid 
minigene constructs, we used the previously developed 
H492 vector, which is based on the pcDNA 3.0 mamma-
lian expression vector (Invitrogen, Carlsbad, CA, USA) 
[13]. We cloned DNA fragments from both wild-type and 
patient peripheral leukocytes containing exons and introns 
around the target variants in PKHD1 gene using In-Fusion 
cloning methods with the HD Cloning Kit (Takara Bio 
Inc., Kusatsu, Japan) according to manufacturer’s instruc-
tions (Supplementary Fig. 1). Primers used for cloning in 
the minigene assay for each mutation are listed in Supple-
mentary Table 10. The hybrid minigenes were confirmed 
by sequencing, and they were transfected into HEK293T 
cells using Lipofectamine® 2000 (Thermo Fisher Scien-
tific, Waltham, MA, USA). Total RNA was extracted from 
cells after 24 h using the RNeasy Plus Mini Kit (QIAGEN, 
Hilden, Germany). Total RNA was reverse-transcribed 
using ReverTra Ace (Toyobo, Osaka, Japan). PCR was 
performed using a forward primer corresponding to a seg-
ment upstream of exon A and reverse primer complemen-
tary to a segment downstream of exon B, as previously 
described. PCR products were analyzed via electropho-
resis on a 1.5% agarose gel using a DNA ladder, and this 
was followed by direct sequencing.

Results

Patient characteristics

PKHD1 pathogenic variants were identified in 32 patients 
from 31 families. The DZIP1L mutation was not detected 
in any patient. There were 9 men and 23 women, and the 
median age of patients at the time of gene testing was 5 years 
(0–46 years) (Table 1). The patients were recruited from 26 
hospitals in Japan.

PKHD1 mutations

In total, 64 mutations were identified. SC481 and her elder 
brother harbored the same mutations, and two patients 
(SC746 and SC756) had homozygous mutations; thus, we 
analyzed 60 variants, of which, 58 were detected via NGS 
and confirmed via direct sequencing, and two were detected 
via MLPA. Among the 60 variants, 34 missense mutations 
(56.7%), 17 nonsense mutations (28.3%), four disruption 
of a conserved splice site (6.7%), three frameshift muta-
tions (5.0%), and two large deletions (3.3%) were detected. 
Among the point mutations, 20 variants were novel muta-
tions in HGMD, dbSNP, and ClinVar (Table 2). c.5174G > C 
(p.Trp1725Ser), c.6794A > T (p.His2265Leu), c.7867delT 
(p.Try2623Thrfs*44), and c.9533G > T (p.Gly3178Val) 
genes were detected in multiple patients (Table 2, Supple-
mentary Table 9).

Clinical features

Ten of the 32 patients (31.3%) showed prenatal anoma-
lies with oligohydramnios (n = 9/10), kidney enlargement 
(n = 5/10), cystic kidney (n = 3/10), or increased renal echo-
genicity (n = 3/10). Three of these patients (SC293, SC324, 
and SC589) died soon after birth due to respiratory failure, 
and two patients (SC697 and SC746) died within the first 
year of life. Two patients were suspected to have ARPKD 
soon after birth following the detection of respiratory failure 
and enlarged kidneys. The remaining patients were primar-
ily diagnosed or suspected incidentally after the neonatal 
period, especially through medical checkups for infants or 
at school (n = 3), or workplace (n = 3) and school urinary 
screening (n = 2). Another reason for the initial visit to doc-
tors was urinary tract infection (n = 2). The most common 
manifestation leading to diagnosis in pediatric cases was 
enlarged kidneys while in all the four adult cases, kidney 
dysfunction led to a diagnosis. The occasions for consulta-
tion and manifestations are presented in Table 2.

More than half of the patients (n = 15/26) at the ana-
lyzed visit showed native kidney function in chronic kidney 

https://cadd.gs.wa
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disease (CKD) stage 1 or 2. Four patients underwent peri-
toneal dialysis, and three of them were required to undergo 
hemodialysis during the neonatal period. None of the 
patients underwent kidney transplantation at the time of 
genetic analysis. The distribution between patients’ age and 
kidney functions, classified by the mutation type, is shown 
in Fig. 1.

Among the 27 surviving cases, imaging findings via 
ultrasonography and/or CT scan detected Caroli disease in 
8 of 27 patients (29.6%) and hepatic fibrosis in 6 patients 
(22.2%). One patient underwent liver transplantation at the 
age of 14 years (SC619). Thrombocytopenia and splenomeg-
aly due to portal hypertension were detected in one patient 
(SC272). Almost half of the pediatric patients (n = 12/23) 
showed systemic hypertension while one of the four adult 

patients did. Congenital hypothyroidism was observed in 
three patients in the neonatal mass-screening test, and treat-
ment with levothyroxine was required.

Genotype–phenotype correlation in PKHD1

Nine patients harbored missense mutations on both alleles, 
and all of them survived the neonatal period, although one 
patient (SC746) died at the age of 5 months. Additionally, 21 
patients had one missense mutation, and three of them died 
during the neonatal period due to respiratory failure (SC293, 
SC324, and SC589). Three patients had no missense muta-
tions (SC432, SC499, and SC697), and all patients were 
diagnosed at an early stage in their life (Fig. 1).

Table 1   Patient characteristics

CKD chronic kidney disease, GA gestational age, NT non-truncating mutation, T truncating mutation, w 
weeks
a Only the number of evaluable patients is shown

Patients (n = 32) T/T T/NT NT/NT

Age at suspected diagnosis
 Median 4 months
 Range GA 25w – 36 years

Age at genetic diagnosis
 Median 5 years
 Range 0 day–46 years

Gender
 Male 9 1 5 3
 Female 23 2 15 6

Kidney function*
 CKD stage 1 9/26 (34.6%) 5 4
 CKD stage 2 6/26 (23.1%) 4 2
 CKD stage 3 5/26 (19.2%) 5
 CKD stage 4 2/26 (7.7%) 2
 CKD stage 5 0/26 (0%)
 Renal replacement therapy 4/26 (15.44%) 2 2

Hepatic diseasea

 Caroli disease 9/32 (28.1%) 2 5 2
 Hepatic fibrosis 7/32 (21.9%) 3 4
 Hepatic cysts 2/32 (6.2%) 1 1

Other manifestationsa

 Hypertension (children) 12/23 2 7 3
 Hypertension (adult) 1/4 1
 Respiratory failure at birth 7 2 4 1
 Urinary tract infection 4 4
 Congenital hypothyroidism 3 1 2
 Urolithiasis 2 2
 Thrombocytopenia 1 1
 Splenomegaly 1 1
 Vesicoureteral reflux 1 1
 Perthes disease, inguinal hernia 1 1
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Functional analysis via minigene assay

Assays using the minigene system were performed using 
gDNA fragments from four patients (SC293, SC324, 
SC499, and SC589). The electrophoresis results of mini-
gene transcripts for each mutation are shown in Fig. 2. 
Additionally, the in silico analysis and clinical course of 
each patient are shown in Table 3. The inserted sequences 
for each case are shown in Supplementary Fig. 2, and 
direct sequencing of the minigene transcript of each muta-
tion is shown in Supplementary Fig. 3. For both mutations 
in SC499, which had no missense mutation (c.2713C > T, 
c.6808 + 1G > A), both minigenes expressed a transcript 
that skipped an exon, in which the number of base pairs 
was a multiple of three, accompanied by multiple tran-
scripts similar to the wild type transcript size, in smaller 
amounts. On the other hand, for SC293, SC324, and 
SC589, with one missense mutation associated with peri-
natal demise, every minigene expressed a normal tran-
script similar to the wild type. Additionally, for the splice 
site mutation (c.8555-2A > C) in SC 324, each minigene 
expressed a transcript that skipped exon 55.

Discussion

This is the first multicenter report of genetically diagnosed 
ARPKD in the Japanese population. Although large-scale 
studies on ARPKD have been conducted in Europe and 
North America [7–10, 14], no study has been reported 
from Japan. In this study, 6 cases (19.4%) were suspected 
to have ARPKD prenatally while the others were suspected 
or diagnosed after birth in various situations, mostly inci-
dentally, which is in accordance with previous studies 
reporting that postnatal accidental finding is the most com-
mon reason for the initial visit [7, 8]. Screening urinalysis 
at school is performed every year in Japan, and this system 
enabled the diagnosis of ARPKD in two patients (SC498 
and SC772). Almost half of the patients at the analyzed 
visit showed kidney functions within CKD stages 1 or 2 
while four patients underwent renal replacement therapy. 
This finding suggests that the surviving patients show 
various phenotypes in the kidney, as previously described 
[9]. With the improvement of prognosis and advancement 
of renal insufficiency management, hepatobiliary disease 
is likely to become more prevalent. Caroli disease was 
observed in almost one-third of the patients, which is in 
accordance with previous reports [8, 10, 15]. In two cases 
of cholangitis, one patient underwent liver transplanta-
tion because of recurrent episodes, and another infant died 
due to suspected cholangitis at the age of two months. 
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According to previous reports, up to 80% of the children 
suffered from systemic hypertension [9, 10]. In our study, 
almost 50% of the pediatric patients showed systemic 
hypertension, and among two of them hypertension was 
the first manifestation. Thus, it is essential to consider 
ARPKD as a differential diagnosis while examining pedi-
atric patients with hypertension.

Congenital hypothyroidism was detected in three patients 
(SC488, SC528, and SC574) via newborn mass screening. 
To the best of our knowledge, only one case of ARPKD 
with congenital hypothyroidism has been reported [16]. In 
Japan, nearly 100% of newborns undergo mass screening, 
and the incidence of congenital hypothyroidism is approxi-
mately 1/4000 [17]. Considering the incidence of both 
diseases, it is unlikely that these two diseases co-occurred 
incidentally. Elevation in thyroid-stimulating hormone levels 
was observed in all three patients; thus, the patients were 
diagnosed with primary congenital hypothyroidism rather 
than central congenital hypothyroidism. Primary congenital 
hypothyroidism is traditionally subdivided into thyroid dys-
genesis and dyshormonogenesis [18]. Dyshormonogenesis 
was presumed to be the cause of hypothyroidism in three 
patients because normal ultrasonography findings of the 
thyroid were observed. ARPKD is a cilia-related disease, 
and polyductin/fibrocystin localizes in the primary cilia and 
basal bodies of the cell. Primary cilia have been found in the 
thyrocytes of humans [19], and a direct relationship between 
ciliogenesis and thyroid follicle activity has been revealed 
in the functional pathology of the thyroid gland [20]. RNA 

expression of the PKHD1 gene in the thyroid gland was low 
but detectable; therefore, we assumed that the dysfunctions 
of primary cilia due to PKHD1 gene mutation might lead to 
decreased follicular activity in the thyroid, which resulted 
in congenital hypothyroidism. More studies on primary cilia 
are needed to confirm the relationship between PKHD1 and 
congenital hypothyroidism. Additionally, we need to care-
fully observe whether levothyroxine treatment of patients 
can be discontinued in the future.

In this study, we conducted a minigene assay to evalu-
ate the splicing of PKHD1. Studies in large-scale cohorts 
revealed genotype–phenotype correlations for PKHD1; two 
truncating mutations display a severe phenotype associated 
with perinatal or neonatal death, and at least one missense 
mutation has been thought to be indispensable for survival 
during the neonatal period [9, 14]. However, the SC499 
patient survived the neonatal period, and did not need renal 
replacement therapy until the age of six months, although 
she did not harbor a missense mutation. Only a few reports 
have described milder cases with no missense mutations 
[21, 22]. Both the nonsense and splice site variants in the 
minigene assay mainly expressed a transcript that skipped 
an exon with a multiple of three, resulting in in-frame muta-
tions in both alleles. It has been suggested that nonsense-
mediated mRNA decay (NMD) may play a role in defining 
the phenotype of patients with ARPKD [21]. It can be specu-
lated that exon skipping in exons 25 and 41, which leads 
to in-frame mutations, may lead to the circumvention of 
NMD and contribute to neonatal survival. Additionally, an 

Fig. 1   The table shows eGFR of each case with the available data. 
Kidney functions varied among pediatric patients, and four patients 
underwent peritoneal dialysis while adult patients showed severe 
kidney dysfunction. Two patients with truncating mutations in both 
alleles underwent peritoneal dialysis. Six of eight patients with 

two missense mutations were at CKD stage 1 or 2, but two of them 
needed renal replacement therapy from a young age. T truncating 
mutation, N/T non-truncating mutation, CKD chronic kidney disease, 
eGFR estimated glomerular filtration rate
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appropriate management during the neonatal period might 
have contributed to patient survival. Our results highlight 
the importance of functional analysis. Moreover, we call into 
question the fundamental belief that at least one missense 
mutation is necessary for survival through the perinatal or 
neonatal period.

On the other hand, three patients (SC293, SC324, and 
SC589) suffered from neonatal demise, and all of them had 
one missense mutation. One missense mutation does not 
guarantee perinatal and neonatal survival [14], and some 
studies have reported that missense mutations alter a splice 
enhancer motif that disrupts exon splicing, leading to 
aberrant PKHD1 splicing [11]. We conducted a minigene 
assay for three cases to elucidate the mechanism involved 
in splicing that led to a severe phenotype. Nonsense muta-
tions were detected in another allele of SC293 and SC589, 
and splice-site mutations were detected in SC324, which 

expressed a transcript that skipped exon 55 (88 bp), result-
ing in a truncating mutation. However, the minigene assay 
revealed that each missense mutation did not affect splic-
ing. In SC324-1, a transcript with full-length exon 32 was 
not observed, but the splicing pattern was the same as that 
of the wild type; thus, we concluded that this mutation 
did not affect splicing. This is one of the limitations of 
minigene assays. Bergmann et al. demonstrated that the 
phenotypes due to PKHD1 mutations cannot be explained 
on the basis of the genotype alone, but may also depend 
on the background of other genes, epigenetic factors, and 
environmental influences [9, 14]. Our minigene assay 
results support this idea. Although the lack of mutational 
hotspots and variety phenotypes in PKHD1 hampers fur-
ther analysis for genotype–phenotype correlations, more 
studies are needed to investigate the mechanism involved 
in severe phenotypes.

Fig. 2   Reverse transcription-polymerase chain reaction amplified 
products of minigene transcripts. a c.2713C > T (SC499-1) minigene 
expressed a full-length transcript in WT and a transcript that skipped 
exon 25 in MT. b c.6808 + 1G > A (SC499-2) minigene expressed a 
full-length transcript in WT, and a transcript that skipped exon 41 
in MT. c c.9533G > T (SC293-2) minigene mainly expressed a full-
length transcript, and a few transcripts exhibiting 646 bp deletion in 
exon 58 in both WT and MT. d c.3944  T > G (SC324-1) minigene 

mainly expressed a transcript exhibiting 1343  bp deletion in exon 
32, exon 32 skipping, and multiple thin bands that could not be 
sequenced in both WT and MT. e c.8555-2A > C (SC324-2) mini-
gene expressed a full-length transcript in WT, and a transcript exhib-
iting exon 55 skipping in MT. f) c.983G > A (SC589-2) minigene 
expressed a full-length transcript in both WT and MT. WT, wild type. 
MT mutant



151Clinical and Experimental Nephrology (2022) 26:140–153	

1 3

This study had some limitations. This analysis was based 
on cases referred to our institute for gene testing from hospi-
tals in Japan, not a nationwide registry in Japan. Therefore, 
the number of included patients was relatively small, and 
we could not obtain patient information with a long follow-
up period. Not all patients were able to undergo parental 
analysis for clinical reasons; therefore, some “uncertain 
significance” variants were included in this study (Sup-
plementary Table 8). In addition, in vivo analyses, such as 
RNA sequencing, were not performed for the evaluation of 
alternative splicing because sufficient and high-quality RNA 
samples could not be obtained. As mentioned, in the mini-
gene assay, a normal splicing pattern was not observed in 
wild-type SC324-1.

In conclusion, this is the first multicenter report of genet-
ically diagnosed ARPKD in the Japanese population. We 
detected 20 novel mutations in PKHD1. Clinical manifesta-
tions ranged from cases that died in the neonatal period to 
those incidentally found in adulthood. The complication of 
congenital hypothyroidism might be associated with dys-
hormonogenesis in the thyroid due to PKHD1 gene muta-
tions. From the minigene assay, we propose the importance 

of functional analysis, and call into question the fundamental 
belief that at least one missense mutation is necessary for 
survival during the perinatal or neonatal period.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10157-​021-​02135-3.
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