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Abstract

Background Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in the PKHDI gene. The
clinical spectrum is often more variable than previously considered. We aimed to analyze the clinical features of genetically
diagnosed ARPKD in the Japanese population.

Methods We conducted a genetic analysis of patients with clinically diagnosed or suspected ARPKD in Japan. Moreover,
we performed a minigene assay to elucidate the mechanisms that could affect phenotypes.

Results PKHDI pathogenic variants were identified in 32 patients (0—46 years). Approximately one-third of the patients
showed prenatal anomalies, and five patients died within one year after birth. Other manifestations were detected as follows:
chronic kidney disease stages 1-2 in 15/26 (57.7%), Caroli disease in 9/32 (28.1%), hepatic fibrosis in 7/32 (21.9%), sys-
temic hypertension in 13/27 (48.1%), and congenital hypothyroidism in 3 patients. There have been reported that truncating
mutations in both alleles led to severe phenotypes with perinatal demise. However, one patient without a missense mutation
survived the neonatal period. In the minigene assay, c.2713C > T (p.GIn905Ter) and ¢.6808 + 1G > A expressed a transcript
that skipped exon 25 (123 bp) and exon 41 (126 bp), resulting in an in-frame mutation, which might have contributed to the
milder phenotype. Missense mutations in cases of neonatal demise did not show splicing abnormalities.

Conclusion Clinical manifestations ranged from cases of neonatal demise to those diagnosed in adulthood. The minigene
assay results indicate the importance of functional analysis, and call into question the fundamental belief that at least one
non-truncating mutation is necessary for perinatal survival.
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Introduction

Autosomal recessive polycystic kidney disease (ARPKD)
is an inherited cilia-related disorder characterized by the
association of bilateral renal cystic disease and congenital
hepatic fibrosis. The polycystic kidney and hepatic disease
1 (PKHDI) gene has been identified as the causative gene
for ARPKD [1, 2], with 590 types of pathogenic mutation
reported in The Human Gene Mutation Database to date
(http://www.hgmd.cf.ac.uk, HGMD). PKHD1, extending
over a genomic segment of at least 470 kb on chromo-
some 6pl2, is one of the largest disease-causing genes in
the human genome. The longest PKHD] transcript con-
tains 67 exons that encodes a protein comprising 4074
amino acids. PKHDI encodes a single-transmembrane
protein, called polyductin/fibrocystin, which is mainly
expressed in the kidneys and liver. Fibrocystin localizes
in the ciliary membrane, and it may be involved in regulat-
ing cell to cell adhesion and proliferation; it also acts as
a membrane-bound receptor [1-3]. However, the detailed
function of PKHD1 and the onset mechanism of ARPKD
are still unknown. Recently, mutations in DAZ interacting
protein 1-like (DZIPIL) have been reported in patients
with ARPKD, suggesting that ARPKD is not a homoge-
neous disorder and DZIPIL may also be involved in its
pathogenesis [4], however, whether there is a causative
relationship between DZIP1L and ARPKD requires further
investigation [5].

The clinical spectrum of the disease is often more vari-
able than previously considered [6—8]. Most cases have
been identified either in utero or at birth. Approximately
30-50% of affected neonates die shortly after birth due
to severe pulmonary hypoplasia and secondary respira-
tory insufficiency [9, 10]. In contrast, those who survive
through the perinatal period express variable disease
phenotypes, and some elderly patients with ARPKD are
only moderately affected [8, 9]. A genotype—phenotype
correlation has been reported in which patients with bial-
lelic truncating mutations in PKHDI show a severe phe-
notype with perinatal demise, while children surviving
the postnatal period carry at least one missense mutation
[9]. However, some patients with missense mutations can
present with a phenotype that is as severe as that associ-
ated with truncating mutations, suggesting that complex
transcriptional alterations may play a role in defining the
phenotype [11].

To date, no multi-center study has described the geno-
type and phenotype of genetically diagnosed ARPKD
patients in Japanese populations. Therefore, we aimed to
analyze the clinical features of patients who were referred
to our institute for gene testing and genetically diagnosed
with ARPKD. Additionally, we conducted a functional

analysis using a minigene assay to reveal the existence of
aberrant splicing caused by six mutations detected in our
study to further investigate the genotype—phenotype cor-
relation. One patient without a missense mutation survived
the neonatal period, and this result was contradictory to
previous reports. Thus, we aimed to elucidate the under-
lying mechanism that led to the milder phenotype despite
the absence of a missense mutation. Additionally, three
patients with one missense mutation died soon after birth.
We aimed to evaluate whether these missense mutations
affected splicing.

Materials and methods
Study design

We conducted gene testing using next-generation sequenc-
ing (NGS) in patients with clinically diagnosed or suspected
ARPKD at Japanese hospitals between April 2016 and April
2021. We analyzed cases in which two or more PKHDI or
DZIPIL variants were considered pathogenic. Detailed
information regarding clinical features was obtained from
the referring clinician or hospital records of patients.

Genetic analysis

DNA was isolated from peripheral blood samples using a
QuickGene Mini 80 system (Wako Pure Chemical Indus-
tries, Ltd., Tokyo, Japan) according to the manufacturer’s
instructions. Direct sequencing or targeted sequencing using
NGS was performed on the genes responsible for inherited
renal diseases. For NGS, we used a HaloPlex HS or SureSe-
lect (Agilent Technologies, Santa Clara, CA, USA) accord-
ing to the manufacturer’s instructions, and sequencing was
performed using the MiSeq platform (Illumina, San Diego,
CA, USA). HaloPlex HS was used for targeted sequencing
of 128 (version 2, Supplementary Table 1), 172 (version
4, Supplementary Table 2), 159 (version 5, Supplementary
Table 3), 164 (version 6, Supplementary Table 4), and 181
(version 7, Supplementary Table 5) genes, and SureSelect
was used for the targeted sequencing of 203 (version 8, Sup-
plementary Table 6) and 193 genes (version 9, Supplemen-
tary Table 7) associated with congenital anomalies of the
kidney and urinary tract, and various cystic kidney diseases,
including ARPKD, autosomal dominant polycystic kid-
ney disease, and nephronophthisis, as cataloged in OMIM
(https://www.omim.org) or PubMed (https://pubmed.ncbi.
nlm.nih.gov) database.

Data were analyzed using SureCall 4.0 (Agilent Tech-
nologies), a software for end-to-end NGS data analysis.
The cDNA reference numbers of PKHDI and DZIPIL
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were NM_138694.3 and 173,543.2, respectively. Patho-
genicity predictions were performed in accordance with
the guidelines of the American College of Medical Genet-
ics (Supplementary Table 8). Several websites, including
CADD (https://cadd.gs.wa shington.edu/), PROVEAN
(http://provean.jcvi.org/index. php), SIFT (https://sift.
bii.a-star.edu.sg/), PolyPhen-2 (http://genetics.bwh.
harvard.edu/pph2/), and Mutation Taster (http://www.
pathogenic varianttaster.org/) were used to predict vari-
ant pathogenicity (Supplementary Table 9). The splice
sites of each variant were predicted using Human Splic-
ing Finder (https://hsf.genomnis.com/home). Pair analy-
sis using SureCall was used to determine the changes in
copy number relative to a reference [12]. Changes in copy
number were confirmed by multiplex ligation and probe
amplification (MLPA) using SALSA P341-B4/P342-C1
PKHD1 (MRC-Holland, Amsterdam, the Netherlands),
as suggested by the manufacturer. The MLPA test was
performed twice to confirm abnormal changes.

Minigene assay

We conducted in vitro analysis using a minigene assay
for the following: missense mutations, ¢.9533G > T
(p-Gly3178Val) in SC293, ¢.3944 T > G (p.Leul315Arg)
in SC324, and ¢.983G > A (p.Arg328Gln) in SC589;
splice site mutations, ¢.8555-2A > C in SC324 and
c.6808+ 1G> A in SC499; and nonsense mutation,
c.2713C > T(p.GIn905Ter) in SC499. To create hybrid
minigene constructs, we used the previously developed
H492 vector, which is based on the pcDNA 3.0 mamma-
lian expression vector (Invitrogen, Carlsbad, CA, USA)
[13]. We cloned DNA fragments from both wild-type and
patient peripheral leukocytes containing exons and introns
around the target variants in PKHD] gene using In-Fusion
cloning methods with the HD Cloning Kit (Takara Bio
Inc., Kusatsu, Japan) according to manufacturer’s instruc-
tions (Supplementary Fig. 1). Primers used for cloning in
the minigene assay for each mutation are listed in Supple-
mentary Table 10. The hybrid minigenes were confirmed
by sequencing, and they were transfected into HEK293T
cells using Lipofectamine® 2000 (Thermo Fisher Scien-
tific, Waltham, MA, USA). Total RNA was extracted from
cells after 24 h using the RNeasy Plus Mini Kit (QIAGEN,
Hilden, Germany). Total RNA was reverse-transcribed
using ReverTra Ace (Toyobo, Osaka, Japan). PCR was
performed using a forward primer corresponding to a seg-
ment upstream of exon A and reverse primer complemen-
tary to a segment downstream of exon B, as previously
described. PCR products were analyzed via electropho-
resis on a 1.5% agarose gel using a DNA ladder, and this
was followed by direct sequencing.

@ Springer

Results
Patient characteristics

PKHDI pathogenic variants were identified in 32 patients
from 31 families. The DZIP1L mutation was not detected
in any patient. There were 9 men and 23 women, and the
median age of patients at the time of gene testing was 5 years
(046 years) (Table 1). The patients were recruited from 26
hospitals in Japan.

PKHD1 mutations

In total, 64 mutations were identified. SC481 and her elder
brother harbored the same mutations, and two patients
(SC746 and SC756) had homozygous mutations; thus, we
analyzed 60 variants, of which, 58 were detected via NGS
and confirmed via direct sequencing, and two were detected
via MLPA. Among the 60 variants, 34 missense mutations
(56.7%), 17 nonsense mutations (28.3%), four disruption
of a conserved splice site (6.7%), three frameshift muta-
tions (5.0%), and two large deletions (3.3%) were detected.
Among the point mutations, 20 variants were novel muta-
tions in HGMD, dbSNP, and ClinVar (Table 2). ¢.5174G>C
(p.-Trp1725Ser), c.6794A > T (p.His2265Leu), c.7867delT
(p-Try2623Thrfs*44), and ¢.9533G>T (p.Gly3178Val)
genes were detected in multiple patients (Table 2, Supple-
mentary Table 9).

Clinical features

Ten of the 32 patients (31.3%) showed prenatal anoma-
lies with oligohydramnios (n=9/10), kidney enlargement
(n=5/10), cystic kidney (n=3/10), or increased renal echo-
genicity (n=3/10). Three of these patients (SC293, SC324,
and SC589) died soon after birth due to respiratory failure,
and two patients (SC697 and SC746) died within the first
year of life. Two patients were suspected to have ARPKD
soon after birth following the detection of respiratory failure
and enlarged kidneys. The remaining patients were primar-
ily diagnosed or suspected incidentally after the neonatal
period, especially through medical checkups for infants or
at school (n=3), or workplace (n=3) and school urinary
screening (n=2). Another reason for the initial visit to doc-
tors was urinary tract infection (n=2). The most common
manifestation leading to diagnosis in pediatric cases was
enlarged kidneys while in all the four adult cases, kidney
dysfunction led to a diagnosis. The occasions for consulta-
tion and manifestations are presented in Table 2.

More than half of the patients (n=15/26) at the ana-
lyzed visit showed native kidney function in chronic kidney
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Table 1 Patient characteristics Patients (n=32) /T T/NT NT/NT
Age at suspected diagnosis
Median 4 months
Range GA 25w — 36 years
Age at genetic diagnosis
Median 5 years
Range 0 day—46 years
Gender
Male 9 1 5 3
Female 23 2 15
Kidney function*
CKD stage 1 9/26 (34.6%) 5 4
CKD stage 2 6/26 (23.1%) 4 2
CKD stage 3 5/26 (19.2%) 5
CKD stage 4 2/26 (71.7%) 2
CKD stage 5 0/26 (0%)
Renal replacement therapy 4/26 (15.44%) 2 2
Hepatic disease®
Caroli disease 9/32 (28.1%) 2 5 2
Hepatic fibrosis 7/32 (21.9%) 3
Hepatic cysts 2/32 (6.2%) 1
Other manifestations®
Hypertension (children) 12/23 2 7 3
Hypertension (adult) 1/4 1
Respiratory failure at birth 7 2 4 1
Urinary tract infection 4 4
Congenital hypothyroidism 3 1 2
Urolithiasis 2 2
Thrombocytopenia 1 1
Splenomegaly 1 1
Vesicoureteral reflux 1 1
Perthes disease, inguinal hernia 1 1

CKD chronic kidney disease, GA gestational age, NT non-truncating mutation, 7" truncating mutation, w

weeks

4Only the number of evaluable patients is shown

disease (CKD) stage 1 or 2. Four patients underwent peri-
toneal dialysis, and three of them were required to undergo
hemodialysis during the neonatal period. None of the
patients underwent kidney transplantation at the time of
genetic analysis. The distribution between patients’ age and
kidney functions, classified by the mutation type, is shown
in Fig. 1.

Among the 27 surviving cases, imaging findings via
ultrasonography and/or CT scan detected Caroli disease in
8 of 27 patients (29.6%) and hepatic fibrosis in 6 patients
(22.2%). One patient underwent liver transplantation at the
age of 14 years (SC619). Thrombocytopenia and splenomeg-
aly due to portal hypertension were detected in one patient
(SC272). Almost half of the pediatric patients (n=12/23)
showed systemic hypertension while one of the four adult

patients did. Congenital hypothyroidism was observed in
three patients in the neonatal mass-screening test, and treat-
ment with levothyroxine was required.

Genotype-phenotype correlation in PKHD1

Nine patients harbored missense mutations on both alleles,
and all of them survived the neonatal period, although one
patient (SC746) died at the age of 5 months. Additionally, 21
patients had one missense mutation, and three of them died
during the neonatal period due to respiratory failure (SC293,
SC324, and SC589). Three patients had no missense muta-
tions (SC432, SC499, and SC697), and all patients were
diagnosed at an early stage in their life (Fig. 1).
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St o Functional analysis via minigene assay
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L 2= % O S o B s O = = 9ty P d
T3 z | 2 ié = 25‘5 éE, % i g1 =555 for each case are shown in Supplementary Fig. 2, and
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Fig.1 The table shows eGFR of each case with the available data.
Kidney functions varied among pediatric patients, and four patients
underwent peritoneal dialysis while adult patients showed severe
kidney dysfunction. Two patients with truncating mutations in both
alleles underwent peritoneal dialysis. Six of eight patients with

According to previous reports, up to 80% of the children
suffered from systemic hypertension [9, 10]. In our study,
almost 50% of the pediatric patients showed systemic
hypertension, and among two of them hypertension was
the first manifestation. Thus, it is essential to consider
ARPKD as a differential diagnosis while examining pedi-
atric patients with hypertension.

Congenital hypothyroidism was detected in three patients
(SC488, SC528, and SC574) via newborn mass screening.
To the best of our knowledge, only one case of ARPKD
with congenital hypothyroidism has been reported [16]. In
Japan, nearly 100% of newborns undergo mass screening,
and the incidence of congenital hypothyroidism is approxi-
mately 1/4000 [17]. Considering the incidence of both
diseases, it is unlikely that these two diseases co-occurred
incidentally. Elevation in thyroid-stimulating hormone levels
was observed in all three patients; thus, the patients were
diagnosed with primary congenital hypothyroidism rather
than central congenital hypothyroidism. Primary congenital
hypothyroidism is traditionally subdivided into thyroid dys-
genesis and dyshormonogenesis [18]. Dyshormonogenesis
was presumed to be the cause of hypothyroidism in three
patients because normal ultrasonography findings of the
thyroid were observed. ARPKD is a cilia-related disease,
and polyductin/fibrocystin localizes in the primary cilia and
basal bodies of the cell. Primary cilia have been found in the
thyrocytes of humans [19], and a direct relationship between
ciliogenesis and thyroid follicle activity has been revealed
in the functional pathology of the thyroid gland [20]. RNA

(n=26)
A TIT
® T/NT
x NT/NT
[
[ ]
[
Age
30 40 50 (Years)

two missense mutations were at CKD stage 1 or 2, but two of them
needed renal replacement therapy from a young age. T truncating
mutation, N/T non-truncating mutation, CKD chronic kidney disease,
eGFR estimated glomerular filtration rate

expression of the PKHD1 gene in the thyroid gland was low
but detectable; therefore, we assumed that the dysfunctions
of primary cilia due to PKHDI gene mutation might lead to
decreased follicular activity in the thyroid, which resulted
in congenital hypothyroidism. More studies on primary cilia
are needed to confirm the relationship between PKHD1 and
congenital hypothyroidism. Additionally, we need to care-
fully observe whether levothyroxine treatment of patients
can be discontinued in the future.

In this study, we conducted a minigene assay to evalu-
ate the splicing of PKHD1. Studies in large-scale cohorts
revealed genotype—phenotype correlations for PKHD1; two
truncating mutations display a severe phenotype associated
with perinatal or neonatal death, and at least one missense
mutation has been thought to be indispensable for survival
during the neonatal period [9, 14]. However, the SC499
patient survived the neonatal period, and did not need renal
replacement therapy until the age of six months, although
she did not harbor a missense mutation. Only a few reports
have described milder cases with no missense mutations
[21, 22]. Both the nonsense and splice site variants in the
minigene assay mainly expressed a transcript that skipped
an exon with a multiple of three, resulting in in-frame muta-
tions in both alleles. It has been suggested that nonsense-
mediated mRNA decay (NMD) may play a role in defining
the phenotype of patients with ARPKD [21]. It can be specu-
lated that exon skipping in exons 25 and 41, which leads
to in-frame mutations, may lead to the circumvention of
NMD and contribute to neonatal survival. Additionally, an
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(@) sc499-1 PKHD1 c.2713C>T p.GIn905Ter (Exon 25)

® I Exon A |Exon25 I Exon B | 319bp

@ | ExonA | ExonB | 196bp
%
—

Exon 25 (123bp)
skipping

1353bp-

603bp-
310bp-

(€) SC293-2 PKHD1 c.9533G>T p.Gly3178Val (Exon 58)

WT MT

1353bp- e -

o @ (B B oeme] 0o

646bp skipping

603bp-
310bp-

(e) sc324-2 PKHD1 ¢.8555-2A>C (Intron 54)

® I Exon A I ExonSS I Exon B | 284bp

1353bp- [R—
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Fig.2 Reverse transcription-polymerase chain reaction amplified
products of minigene transcripts. a ¢.2713C>T (SC499-1) minigene
expressed a full-length transcript in WT and a transcript that skipped
exon 25 in MT. b ¢c.6808 +1G > A (SC499-2) minigene expressed a
full-length transcript in WT, and a transcript that skipped exon 41
in MT. ¢ ¢.9533G>T (SC293-2) minigene mainly expressed a full-
length transcript, and a few transcripts exhibiting 646 bp deletion in
exon 58 in both WT and MT. d ¢.3944 T>G (SC324-1) minigene

appropriate management during the neonatal period might
have contributed to patient survival. Our results highlight
the importance of functional analysis. Moreover, we call into
question the fundamental belief that at least one missense
mutation is necessary for survival through the perinatal or
neonatal period.

On the other hand, three patients (SC293, SC324, and
SC589) suffered from neonatal demise, and all of them had
one missense mutation. One missense mutation does not
guarantee perinatal and neonatal survival [14], and some
studies have reported that missense mutations alter a splice
enhancer motif that disrupts exon splicing, leading to
aberrant PKHD1 splicing [11]. We conducted a minigene
assay for three cases to elucidate the mechanism involved
in splicing that led to a severe phenotype. Nonsense muta-
tions were detected in another allele of SC293 and SC589,
and splice-site mutations were detected in SC324, which

@ Springer
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(b) SC499-2 PKHD1 c.6808+1G>A (IVS 41)

O] ] Exon A l Exond1 | Exon B l 322bp

1353bp-
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skipping

(d) sC324-1 PKHD1 c.3944T>G p.Leu1315Arg (Exon32)

WT MT

@ | Exon A |Excn32 | Exon B l 370bp

1353bp-
1343bp deletion

<2 @ 196bp
=3

Exon 32 (1608bp)
skipping

603bp-
310bp-

(f) SC589-1 PKHD1 c.983G>A p.Arg328GlIn (Exon 14)

@ | Exon A l Exonl4 | Exon B l 338bp

mainly expressed a transcript exhibiting 1343 bp deletion in exon
32, exon 32 skipping, and multiple thin bands that could not be
sequenced in both WT and MT. e ¢.8555-2A>C (SC324-2) mini-
gene expressed a full-length transcript in WT, and a transcript exhib-
iting exon 55 skipping in MT. f) c.983G>A (SC589-2) minigene
expressed a full-length transcript in both WT and MT. WT, wild type.
MT mutant

expressed a transcript that skipped exon 55 (88 bp), result-
ing in a truncating mutation. However, the minigene assay
revealed that each missense mutation did not affect splic-
ing. In SC324-1, a transcript with full-length exon 32 was
not observed, but the splicing pattern was the same as that
of the wild type; thus, we concluded that this mutation
did not affect splicing. This is one of the limitations of
minigene assays. Bergmann et al. demonstrated that the
phenotypes due to PKHD1 mutations cannot be explained
on the basis of the genotype alone, but may also depend
on the background of other genes, epigenetic factors, and
environmental influences [9, 14]. Our minigene assay
results support this idea. Although the lack of mutational
hotspots and variety phenotypes in PKHDI hampers fur-
ther analysis for genotype—phenotype correlations, more
studies are needed to investigate the mechanism involved
in severe phenotypes.
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Table 3 Results of minigene assay and in silico analysis, and clinical course of patients with mutations conducted for minigene assay

Case cDNA Amino acid Exons Mutation Results of minigene In silico analysis by Clinical course
assay human splicing Finder
SC499-1 ¢.2713C>T p.GIn905Ter 25 Nonsense Exon 25 skipping No significant impact on Incubation after
(123 bp) splicing signals birth. Extubation
SC499-2 ¢.6808+1G>A - IVS 41 Splice site  Exon 41 skipping Alteration of the WT at 5 months. Right
(126 bp) donor site, most prob-  Nephrectomy at
ably affecting splicing 6 months, and follow-
ing this, peritoneal
dialysis was initiated.
Left nephrectomy at
1 year and 4 months
SC293-1 c.7113T>G p.-Tyr2371Ter 45 Nonsense — Significant alteration of Died due to respiratory
ESE/ESS motifs ratio failure at day 2
Activation of a cryptic
acceptor site. Potential
alteration of splicing
SC293-2 ¢.9533G>T p.Gly3178Val 58 Missense  Same transcript as wild ~ Significant alteration of
type ESE/ESS motifs ratio.
Activation of a cryptic
acceptor site. Potential
alteration of splicing
SC324-1 ¢.3944T>G p.Leul315Arg 32 Missense  Same transcript as wild  No significant impact on Died due to respiratory
type splicing signals failure at day 2
SC324-2 ¢.8555-2A>C - IVS 54 Splice site Exon 55 skipping Alteration of the WT
(88 bp) acceptor site, most
probably affecting
splicing
SC589-1 ¢.983G>A p-Arg328Gln 14 Missense  Same transcript as wild ~ No significant impact on Died due to respiratory
type splicing signals failure at day O
SC589-2 ¢.8011C>T p-Arg2671Ter 50 Nonsense — Significant alteration of

ESE/ESS motifs ratio

ESE exonic splicing enhancer, ESS exonic splicing silencer, WT wild type

This study had some limitations. This analysis was based
on cases referred to our institute for gene testing from hospi-
tals in Japan, not a nationwide registry in Japan. Therefore,
the number of included patients was relatively small, and
we could not obtain patient information with a long follow-
up period. Not all patients were able to undergo parental
analysis for clinical reasons; therefore, some “uncertain
significance” variants were included in this study (Sup-
plementary Table 8). In addition, in vivo analyses, such as
RNA sequencing, were not performed for the evaluation of
alternative splicing because sufficient and high-quality RNA
samples could not be obtained. As mentioned, in the mini-
gene assay, a normal splicing pattern was not observed in
wild-type SC324-1.

In conclusion, this is the first multicenter report of genet-
ically diagnosed ARPKD in the Japanese population. We
detected 20 novel mutations in PKHD1. Clinical manifesta-
tions ranged from cases that died in the neonatal period to
those incidentally found in adulthood. The complication of
congenital hypothyroidism might be associated with dys-
hormonogenesis in the thyroid due to PKHDI gene muta-
tions. From the minigene assay, we propose the importance

of functional analysis, and call into question the fundamental
belief that at least one missense mutation is necessary for
survival during the perinatal or neonatal period.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10157-021-02135-3.
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