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Abstract
Pseudomonas aeruginosa isolates were consecutively collected from patients with pneumonia in 29 medical centers in 2020 
and susceptibility tested by broth microdilution method. Ceftazidime-avibactam (95.5% susceptible), imipenem-relebactam 
(94.3% susceptible), and ceftolozane-tazobactam (93.3% susceptible) were the most active compounds after colistin (99.5% 
susceptible). Susceptibility rates for the β-lactam/β-lactamase inhibitor combinations (BL/BLIs) varied against isolates 
resistant to piperacillin-tazobactam, meropenem, imipenem, and/or ceftazidime. Ceftazidime-avibactam was the most active 
BL/BLI against resistant subsets from Western Europe, whereas imipenem-relebactam was slightly more active than other 
BL/BLIs against resistant subsets from Eastern Europe. Susceptibility rates were markedly lower in Eastern Europe than 
Western Europe.
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Introduction

The initial antimicrobial therapy of patients with pneumonia 
is frequently empirical, and the most appropriate empiri-
cal regimen is determined mainly by understanding causa-
tive pathogens and the antimicrobial susceptibility of these 
organisms. Moreover, the implementation of timely and 
effective antimicrobial therapy is critical to decrease com-
plications and mortality [1–3].

Pseudomonas aeruginosa is one of the most common 
organisms isolated from respiratory samples of patients 
with pneumonia in European medical centers [3, 4] and rep-
resents a serious therapeutic challenge because it exhibits 
intrinsically decreased susceptibility to a range of antimicro-
bials and possesses a great ability to acquire and/or develop 
a diversity of resistant traits that can affect one or multiple 
antimicrobial agents [5, 6]. P. aeruginosa carries an induc-
ible AmpC cephalosporinase, which can cause resistance 

to anti-pseudomonal cephalosporins and piperacillin-tazo-
bactam when its production is significantly increased. Fur-
thermore, upregulation of MexA-MexB-OprM and the loss 
of OprD are considered the most prevalent mechanisms of 
carbapenem resistance in P. aeruginosa; these mechanisms 
are usually associated with AmpC hyperproduction [7]. It is 
also important to note that infections caused by multidrug-
resistant (MDR) P. aeruginosa strains and a delay in appro-
priate antimicrobial therapy for serious P. aeruginosa infec-
tions are associated with longer hospital stays and increased 
mortality [8].

The most prominent group of new antimicrobial agents 
with broad spectrum activity is the β-lactam/β-lactamase 
inhibitor combinations (BL/BLI). Four such combinations 
have been approved in recent years: ceftazidime-avibactam, 
ceftolozane-tazobactam, meropenem-vaborbactam, and 
imipenem-relebactam. Many others are currently in differ-
ent stages of development and approval [9]. In this study, 
we evaluated the in vitro activity of these 4 most recently 
approved BL/BLIs against P. aeruginosa isolates recovered 
from respiratory samples of patients hospitalized with pneu-
monia in European hospitals in 2020.
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Materials and methods

Bacterial isolates were collected via the SENTRY Antimi-
crobial Surveillance Program and sent to JMI Laboratories 
(North Liberty, IA, USA) for susceptibility testing [10]. 
Each participating center was asked to collect 100 consec-
utive bacterial isolates from respiratory specimens deter-
mined to be significant by local criteria as the reported 
probable cause of pneumonia. Qualified sputum samples 
and isolates from invasive sampling, such as transtracheal 
aspiration, bronchoalveolar lavage, and protected brush 
samples, were accepted.

A total of 2,793 bacterial isolates were collected in 
2020, including the 583 P. aeruginosa evaluated in this 
study. Isolates were collected from 29 medical centers 
located in Western Europe (W-EU; n = 401; 21 centers in 
10 countries [Belgium, France, Germany, Ireland, Italy, 
Portugal, Spain, Sweden, Switzerland, and the UK]) and 
the Eastern European and Mediterranean region (E-EU; 
n = 182; 8 centers in 8 countries [Czech Republic, Greece, 
Hungary, Israel, Poland, Romania, Slovenia, and Turkey]). 
Species identification was confirmed by using standard 
biochemical tests and/or a MALDI Biotyper (Bruker Dal-
tonics, Billerica, MA, USA), when necessary.

All isolates were susceptibility tested using the refer-
ence broth microdilution method at a monitoring labo-
ratory (JMI Laboratories, North Liberty, IA, USA) as 
described by the CLSI [11]. Ceftazidime-avibactam, cef-
tolozane-tazobactam, imipenem-relebactam, and piperacil-
lin-tazobactam were tested with the β-lactamase inhibitor 
at fixed concentration of 4 mg/L; meropenem-vaborbactam 
was tested with vaborbactam at fixed concentration of 
8 mg/L [11, 12]. MIC results were interpreted according 
to EUCAST breakpoint criteria [13].

Results

Overall, ceftazidime-avibactam (MIC50/90, 2/8  mg/L; 
95.5% susceptible), imipenem-relebactam (MIC50/90, 
0.25/2 mg/L; 94.3% susceptible), and ceftolozane-tazo-
bactam (MIC50/90, 0.5/2 mg/L; 93.3% susceptible) were the 
most active compounds against P. aeruginosa isolates after 
colistin (99.5% susceptible; Table 1). All four newer BL/
BLIs were active against > 90% of P. aeruginosa isolates 
from W-EU. According to current EUCAST breakpoints 
criteria, ceftazidime-avibactam (MIC50/90, 2/4  mg/L) 
showed the highest susceptibility rate (97.2%) against 
isolates from W-EU, followed by imipenem-relebactam 
(MIC50/90, 0.25/1 mg/L; 94.5% susceptible), ceftolozane-
tazobactam (MIC50/90, 0.5/2 mg/L; 94.3% susceptible), 

and meropenem-vaborbactam (MIC50/90, 0.5/8  mg/L; 
91.0% susceptible; Table 1). It is important to note that 
the higher susceptibility rates of meropenem-vaborbactam 
in comparison with meropenem is a result of the differ-
ent breakpoints applied to the 2 compounds (≤ 2 mg/L for 
meropenem and ≤ 8 mg/L for meropenem/vaborbactam) 
rather than a substantial improvement in activity, as evi-
denced by the near-identical MIC50/90 and percentage of 
resistance values (Table 1).

In general, susceptibility rates were slightly lower among 
isolates from E-EU, and the highest susceptibility rate was 
shown by imipenem-relebactam (MIC50/90, 0.25/2 mg/L; 
94.0% susceptible), followed by ceftazidime-avibactam 
(MIC50/90, 2/8  mg/L; 91.8% susceptible), ceftolozane-
tazobactam (MIC50/90, 0.5/4 mg/L; 91.2% susceptible), and 
meropenem-vaborbactam (MIC50/90, 0.5/16 mg/L; 83.5% 
susceptible; Table 1). The most active comparator agents 
were colistin (99.7% and 98.9% susceptible in W-EU and 
E-EU, respectively), amikacin (94.0% and 87.9% susceptible 
in W-EU and E-EU, respectively), and tobramycin (91.8% 
and 84.6% susceptible in W-EU and E-EU, respectively; 
Table 1).

Susceptibility rates for the BL/BLIs varied more broadly 
against isolates resistant to piperacillin-tazobactam, mero-
penem, imipenem, or ceftazidime (Table 2). Ceftazidime-
avibactam was the most active BL/BLI against these resist-
ant subsets from W-EU, with susceptibility rates ranging 
from 92.6% when tested against imipenem-resistant isolates 
to 87.8% against ceftazidime-resistant strains. Imipenem-
relebactam was slightly more active than the other BL/BLIs 
against resistant subsets from E-EU. Imipenem-relebactam 
susceptibility rates against resistant subsets from E-EU 
ranged from 81.4% against imipenem-resistant isolates to 
64.5% against meropenem-resistant strains (Table 2). More-
over, ceftazidime-avibactam retained activity against 81.2% 
of W-EU isolates resistant to piperacillin-tazobactam, imi-
penem, meropenem, and ceftazidime, whereas ceftolozane-
tazobactam, imipenem-relebactam, and meropenem-vabor-
bactam were active against 59.0%, 53.8%, and 7.7% of these 
isolates, respectively (Table 2). Imipenem-relebactam was 
the most active agent against E-EU isolates resistant to these 
4 β-lactam compounds, inhibiting 64.5% at the EUCAST 
susceptible breakpoint of ≤ 2 mg/L (Table 2).

Discussion

The treatment of P. aeruginosa pneumonia represents a great 
challenge for physicians. P. aeruginosa is an organism for 
which very few therapeutic options are clinically available, 
and resistance to tractional anti-pseudomonal β-lactams, 
such as piperacillin-tazobactam, ceftazidime, cefepime, 
imipenem, and meropenem, is elevated in many geographic 
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regions. Moreover, non-β-lactam agents that are active 
against P. aeruginosa, such as aminoglycosides, colistin, 
and fosfomycin, are limited in their efficacy, safety profile, 
and/or by the emergence of resistance [2, 7, 8].

Novel BL/BLIs represent valuable new therapeutic 
options for P. aeruginosa infections, for which limited treat-
ment options were available [9]. In the present study, we 
evaluated the antimicrobial susceptibility of contemporary 
(2020) isolates of P. aeruginosa recovered from respiratory 
samples of patients with pneumonia. Our results comple-
ment the results of other surveillance programs by provid-
ing comparative results for the four BL/BLIs most recently 
approved for the treatment of P. aeruginosa pneumonia 
in Europe [14–17]. Other surveillance networks, like the 

European Antimicrobial Resistance Surveillance Network 
(EARS-NET), evaluates the antimicrobial susceptibility of 
P. aeruginosa in many European countries and publishes 
valuable data periodically, but the activities of these new 
BL/BLIs are not evaluated in EARS-NET or other large sur-
veillance programs [18, 19].

The results of this investigation showed that, besides 
colistin, the new BL/BLIs were the most active compounds 
against P. aeruginosa, with susceptibility rates similar to the 
aminoglycosides tobramycin and amikacin. Our results also 
showed that these new BL/BLIs, especially ceftazidime-avi-
bactam, imipenem-relebactam, and ceftolozane-tazobactam, 
retained good activity against P. aeruginosa isolates resistant 
to β-lactams currently used to treat P. aeruginosa infections.

Another interesting finding was the regional variation of 
the activity of these BL/BLIs within Europe. Ceftazidime-
avibactam was the most active agent against isolates from 
W-EU with 97.2% susceptibility, followed by imipenem-
relebactam (94.5% susceptible) and ceftolozane-tazobactam 
(94.3% susceptible). Imipenem-relebactam was the most 
active BL/BLI against isolates from E-EU (94.0% suscepti-
ble), followed by ceftazidime-avibactam (91.8% susceptible) 
and ceftolozane-tazobactam (91.2% susceptible; Table 1). 
Regional differences on the activities of these BL/BLIs 
reflect the variety of resistance mechanisms expressed by P. 
aeruginosa and illustrate how these mechanisms may have 
different impacts on each of these compounds. Mechanisms 
of resistance to these new BL/BLIs are usually very com-
plex and caused by the presence and interaction of multiple 
mutation-driven resistance mechanisms [20, 21]. Therefore, 
the activity of these compounds, and especially the rates of 
cross-resistance between them, may vary widely depending 
on selective pressure due to previous antibiotic usage.

The limitations of the study should be considered when 
interpreting the results and conclusions. First, the criteria 
used to categorize a bacterial isolate as clinically significant 
were not defined in the study protocol and were based on 
local algorithms. Second, due to the lack of clinical informa-
tion available, this study could not exclude the possibility 
that some organisms were colonizers. Third, a limited num-
ber of isolates and/or medical centers were surveyed in some 
European countries; thus, the results presented here may not 
represent the overall picture from those European regions.

In conclusion, the recently approved BL/BLIs demon-
strated potent activity and broad coverage against P. aer-
uginosa isolated from patients with pneumonia in European 
medical centers. Based on the current EUCAST breakpoints, 
ceftazidime-avibactam, ceftolozane-tazobactam, and imipe-
nem-relebactam showed similar overall coverage (% sus-
ceptible) against P. aeruginosa, while susceptibility rates 
were lower for meropenem-vaborbactam, especially against 
resistant subsets. Moreover, susceptibility rates were mark-
edly lower in E-EU compared to W-EU.

Table 2   Antimicrobial activity of ceftazidime-avibactam, ceftolo-
zane-tazobactam, meropenem-vaborbactam, imipenem-relebactam, 
and comparators against resistant subsets of P. aeruginosa isolates 
from patients with pneumonia in European hospitals in 2020

a Isolates resistant to piperacillin-tazobactam (MIC > 16 mg/L), mero-
penem (MIC > 8  mg/L), imipenem(MIC > 4  mg/L), and ceftazidime 
(MIC > 8 mg/L) per EUCAST criteria [13]
Abbreviations: W-EU Western Europe, E-EU Eastern Europe

Resistant phenotype % Susceptible per EUCAST 
(no. of isolates)

W-EU E-EU All isolates

Piperacillin-tazobactam-resistant 
(MIC > 16 mg/L)

(102) (51) (153)

 Ceftazidime-avibactam 91.2 70.6 84.3
 Ceftolozane-tazobactam 78.4 70.0 75.7
 Imipenem-relebactam 83.3 78.4 81.7
 Meropenem-vaborbactam 69.6 49.0 62.7

Meropenem-resistant (MIC > 8 mg/L) (39) (31) (70)
 Ceftazidime-avibactam 81.6 54.8 69.9
 Ceftolozane-tazobactam 59.0 54.8 57.1
 Imipenem-relebactam 53.8 64.5 58.6
 Meropenem-vaborbactam 7.7 3.2 5.7

Imipenem-resistant (MIC > 4 mg/L) (96) (59) (155)
 Ceftazidime-avibactam 92.6 78.0 87.0
 Ceftolozane-tazobactam 84.4 78.0 81.9
 Imipenem-relebactam 77.1 81.4 78.7
 Meropenem-vaborbactam 63.5 52.5 59.4

Ceftazidime-resistant (MIC > 8 mg/L) (90) (39) (129)
 Ceftazidime-avibactam 87.8 61.5 79.8
 Ceftolozane-tazobactam 75.6 61.5 71.3
 Imipenem-relebactam 81.1 74.4 79.1
 Meropenem-vaborbactam 72.2 46.2 64.3
β-lactam-resistanta (16) (9) (25)
 Ceftazidime-avibactam 81.2 33.3 64.0
 Ceftolozane-tazobactam 43.8 55.6 48.0
 Imipenem-relebactam 43.8 55.6 48.0
 Meropenem-vaborbactam 6.2 0.0 4.0
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