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Abstract

Evidence suggests that Helicobacter pylori plays a role in gastric cancer initiation. However, 

epidemiologic studies on the specific role of other bacteria in the development of gastric cancer 

are lacking. We conducted a case-control study of 89 cases with gastric intestinal metaplasia 

(IM) and 89 matched controls who underwent upper gastrointestinal endoscopy at three sites 
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affiliated with NYU Langone Health. We performed shotgun metagenomic sequencing using 

oral wash samples from 89 case-control pairs and antral mucosal brushing samples from 55 

case-control pairs. We examined the associations of relative abundances of bacterial taxa and 

functional pathways with IM using conditional logistic regression with and without elastic-net 

penalty. Compared with controls, oral species Peptostreptococcus stomatis, Johnsonella ignava, 

Neisseria elongata, and Neisseria flavescens were enriched in cases (odds ratios [ORs] = 1.29–

1.50, P = 0.004–0.01) while Lactobacillus gasseri, Streptococcus mutans, S. parasanguinis, and S. 
sanguinis were under-represented (ORs = 0.66–0.76, P = 0.006–0.042) in cases. Species J. ignava 
and Filifactor alocis in the gastric microbiota were enriched (ORs = 3.27 and 1.43, P = 0.005 and 

0.035, respectively), while S. mutans, S. parasanguinis, and S. sanguinis were under-represented 

(ORs = 0.61–0.75, P = 0.024–0.046), in cases compared with controls. The lipopolysaccharide and 

ubiquinol biosynthesis pathways were more abundant in IM, while the sugar degradation pathways 

were under-represented in IM. The findings suggest potential roles of certain oral and gastric 

microbiota, which are correlated with regulation of pathways associated with inflammation, in the 

development of gastric precancerous lesions.
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Introduction

Gastric cancer (GC) is the fifth most common cancer and the fourth leading cause of 

cancer deaths worldwide, with over 1 million new cases and 769,000 deaths in 20201. 

Histologically the major type of GC is the intestinal type of non-cardia GC that occurs via 

a predictable progression from chronic gastritis to atrophic gastritis, intestinal metaplasia 

(IM), dysplasia, and gastric adenocarcinoma2. Helicobacter pylori (H. pylori), which causes 

mucosal inflammation and progressive destruction of the hydrochloric acid-secreting glands 

of the stomach, plays a crucial role in the initial steps of the carcinogenesis cascade3. 

However, only 3% of H. pylori+ individuals develop GC4, implying that there are other 

risk factors. In addition, colonization of H. pylori decreases (and is eventually lost) under 

achlorhydric condition in the precancerous and cancerous lesions5,6. The loss of H. pylori 
and impairment of acid secretion in later steps of carcinogenesis may allow the stomach to 

be colonized by oral and intestinal microbes that are not ordinarily present under its normal 

acidic condition.

Oral health conditions and selected periodontal pathogens have been related to GC and 

precancerous lesions7,8, suggesting that the oral microbiome may also contribute to the onset 

and progression of GC. In addition, oral bacteria can reach the stomach through swallowed 

saliva, nutrients, and drinks and change its microbiota and possibly immune defenses9. 

However, studies investigating the role of specific oral bacteria in GC development are 

limited.

Mechanistic studies have suggested that the presence of other bacteria following H. pylori 
infection promotes GC development10,11. Several studies also have provided evidence that 
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gastric microbiota other than H. pylori is altered during the progression from a healthy 

gastric mucosa to GC12–14. However, existing studies were mostly based on genetic analysis 

of 16S rRNA which is limited in characterizing the underlying microbial species and genes 

that might be involved in carcinogenesis15. Shotgun metagenomic sequencing provides 

higher-level taxonomic and functional resolution by targeting the entire genomic content of a 

sample16.

In the present study, we performed shotgun metagenomics on the oral and gastric 

microbial communities to comprehensively evaluate the compositional and functional 

changes associated with gastric IM, an established precancerous lesion for GC with shared 

risk factors17.

Materials and Methods

Study population and sample collection

We invited individuals who were scheduled for upper gastrointestinal endoscopy for 

clinically indicated reasons at three sites affiliated with NYU Langone Health, including 

Bellevue Hospital Center, a private group practice at New York City, and NYU Langone 

Gastroenterology Associates between 2009–2019, following protocols similar to those used 

in the Bellevue Hospital Center7,8. Exclusion criteria include: 1) prior gastric surgery, 2) 

use of antimicrobial agents within the prior 2 months, 3) current use of anticoagulants, 

4) active gastrointestinal bleeding, and 5) having had or suspected to have esophageal 

varices. Information on demographic and lifestyle factors was collected with structured 

questionnaires administered by a trained interviewer. We collected biopsies from the antrum, 

cardia, corpus, and fundus of the stomach for standard pathology review, blinded to 

questionnaire data.

We collected stimulated saliva samples from participants recruited between 2009 and 2011, 

and oral wash samples from those recruited in later years. Briefly, participants were asked 

to chew a piece of paraffin wax to stimulate saliva production and to gently expectorate 2–5 

mL of saliva directly into a sterile sample collection tube, on ice8. Participants recruited 

in later years were asked to swish with 10 ml saline and to expectorate into a sterile 

sample collection tube. Both saliva and oral wash samples were vortex-mixed thoroughly, 

immediately placed into a container with ice, transferred to the laboratory within 1 h, and 

stored at −80°C for further processing. In 2016, we started to collect a mucosal brushing 

sample from the gastric antrum during the endoscopy, using an endoscopic cytology brush.

A total of 1198 eligible individuals were approached, and 675 (56%) were recruited, 

including 348 from the Bellevue Hospital Center, 246 from the private group practice, and 

81 from the NYU Langone Gastroenterology Associates. The most common reasons for 

declining participation and comparison on the distribution of sex, age, and race between 

participants and non-participants are described in detail in the Supplementary Material. We 

recruited a total of 125 cases with newly diagnosed IM in the gastric antrum or body/fundus 

and 550 non-cases with normal gastric histology or superficial gastritis without any atrophy, 

according to the pathologic review results. Saliva or oral wash samples were collected from 
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82%, serum samples from 91%, of the participants recruited. Antral brushing samples were 

collected from 91.5% of those recruited since 2016.

For the 106 IM cases with saliva/oral wash samples, we selected controls that were 

individually matched on sex, recruitment site, and sample types (stimulated saliva or oral 

wash), and frequency-matched on age categories (<35, 35–49, 50–64, 65+ years) and 

recruitment year (± 3 years). Based on the matching criteria, we finalized the selection 

of 89 IM cases (antrum: n = 84, body/fundus: n = 5) and 89 controls, and antral brushing 

samples were available for 55 case-control pairs.

H. pylori and CagA seropositivity measurements

Serum samples were available for 170 subjects in the 89 case-control pairs for determination 

of H. pylori/cytotoxin-associated gene A (CagA) seropositivity using enzyme-linked 

immunosorbent assay, as described18,19 with slight modification. Briefly, IgG antibodies 

to H. pylori whole cell antigens or to a recombinant CagA fragment were tested in duplicate 

and in parallel with known positive controls. The cutoff for H. pylori and CagA positivity 

was an optical density ratio > 0.6 and > 0.3, respectively.

Shotgun metagenomic sequencing

Bacterial DNA from the 54 saliva samples was isolated using the MasterPure DNA 

purification kit (Epicentre, Madison, WI). DNA from the 124 oral wash and 110 antral 

mucosal brushing samples was extracted using the DNeasy PowerLyzer PowerSoil kit 

(Qiagen, Germantown, MD). Metagenomic DNA samples were quantified using the Qubit 

dsDNA HS Assay Kit with a Qubit Fluorometer (ThermoFisher Scientific, Waltham, MA) 

and normalized to a concentration of 5 ng/μl. Shotgun sequencing libraries were constructed 

using the automated KAPA HyperPrep kit (Roche, Wilmington, MA) and sequenced on an 

Illumina NovaSeq 6000 System (Illumina, San Diego, LA) at 2×100 bp paired-end with 96 

samples pooled in each run by the NYU Genomics Core.

Sequencing data processing

Raw sequencing reads were demultiplexed, and Trimmomatic (v0.36) was used to trim 

low-quality sequences. Retained reads were first aligned to the human genome (GRCh38) 

by Bowtie2 (v_2.2.9) and the mapped reads were filtered out. Details on metagenomic 

sequencing data were summarized in Supplementary Methods and Supplementary Table 

S1, S2 and S3. The non-human reads were further used for taxonomic classification by 

Kraken2 (v_ 2.0.8-beta)20 against the eHOMD reference database (http://www.homd.org/), 

which reduces a shotgun metagenome to a table of relative abundance for each taxon at 

the level from phylum to species. Gene family and pathway abundance of each sample 

was determined directly from the processed reads using HUMAnN2 (v_0.11.1)21 with 

default parameters. HUMAnN2 maps reads to functionally annotated microbial species 

genomes and performs translated search to align non-human reads to UniRef90 protein 

clusters (gene families)22. Gene families are then grouped into MetaCyc pathways using 

MinPath. For a lower level of resolution, we also regrouped UniRef90 gene families into 

Gene Ontology (GO) categories using the “humann2_regroup_table” script. We removed 
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unintegrated/unmapped/unknown/ungrouped pathways, categories, and gene families prior 

to calculating relative abundance, using the “humann2_renorm_table” script.

Statistical analyses

α and β diversity—α-diversity (within-subject diversity) was assessed using richness 

(observed number of species and Chao1) and diversity (the Shannon and Simpson’s diversity 

index) metrics. Species level read counts were rarefied to the 90% of the minimum sample 

depth in the dataset (611,771 and 33,287 reads per sample in the oral and gastric microbiota, 

respectively). We used conditional logistic regression models using matched sets as strata to 

determine whether α-diversity was associated with gastric IM, adjusting for age and race.

β-diversity (between-subject diversity) was assessed using the Jensen-Shannon Divergence 

(JSD) on the species level. Principal coordinate analysis (PCoA) was used for visualization. 

Non-parametric permutational multivariate analysis of variance (PERMANOVA; ‘adonis’ 

function, ‘vegan’ package, R) with 9999 permutations was used to test the association 

between community-level bacterial composition and gastric IM, using matched sets as strata 

and adjusting for age and race.

Identification of taxa associated with gastric IM

We applied the centered log-ratio (clr) transformation23 to the relative abundance of taxa at 

each level (e.g. phylum, class, etc.) after adding a pseudo relative abundance (the minimal 

relative abundance in the whole dataset at each level), in order to remove compositional 

constraints of sequencing. Additionally, we excluded rare taxa with mean relative abundance 

≤ 0.01%. These exclusions resulted in inclusion of 9 phyla, 18 classes, 29 orders, 40 

families, 65 genera, and 265 species for the oral microbiota, and 9 phyla, 18 classes, 29 

orders, 44 families, 78 genera, and 297 species for the gastric microbiota in the analyses. 

We fit standard conditional logistic regression models to assess the association between the 

relative abundance of each taxon and gastric IM, using matched pairs as strata and adjusting 

for age and race. Additional adjustment for ever smoking, ever drinking, and H. pylori/
CagA status did not impact effect estimates (data not shown). P values from these models 

were adjusted for the false discovery rate (FDR)24 at each taxonomic level (i.e., genus, 

species) separately. Taxa associated with gastric IM were also assessed using conditional 

logistic regression with elastic-net penalties, to allow selection of a set of representative taxa 

while considering their correlations25. We conducted leave-one-out cross-validation using 

the “cv.clogitL1” function in the clogitL1 R package26 and covariates (age and race) were 

also penalized in each model. We also conducted stratified analyses to assess whether the 

association between bacterial taxa and gastric IM differed by seropositivity of H. pylori. 
We further conducted analyses separately for oral wash samples (62 pairs, n = 124) and 

saliva samples (27 pairs, n = 54), and combined the results using fixed-effect meta-analyses 

(‘metagen’ function, ‘meta’ package, R). Additional sensitivity analyses were conducted to 

exclude cases of IM in the gastric body and/or fundus (n = 5 and n = 3 for oral and gastric 

microbiome analyses, respectively) and their paired controls.
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Identification of functional pathways and GO categories associated with gastric IM

We assessed associations of metagenomic functional pathways and GO categories’ relative 

abundance with gastric IM using standard conditional logistic regression models as 

described above. Relative abundance of pathways and GO categories was clr transformed. 

We only considered pathways and GO categories with mean relative abundance > 0.03%27 

and largely explained by known species (< 25% unclassified in > 75% of individuals 

according to the species-specific pathway data)28. For GO categories analyses, in addition to 

the criteria above, we further focused on GO categories with variance > the 25th percentile 

of variances27. This resulted in inclusion of 111 and 69 pathways, as well as 266 and 143 

GO categories in the oral and gastric microbiome, respectively. We presented pathways and 

GO categories related to gastric IM with a nominal P < 0.05. We also examined to what 

extent these pathways and GO categories were driven by specific species by calculating 

Spearman’s correlation coefficients between pathway/GO relative abundance and species 

relative abundance and using heatmap for visualization.

Results

Participant characteristics

Compared with controls, cases were more likely to be older or Asians (Table 1, all P < 

0.05), and more likely to carry antibody to H. pylori, particularly the CagA-positive strain 

(P = 0.06). There were no significant differences by case status in terms of educational 

attainment, smoking status and intensity, and alcohol consumption (all P > 0.05).

Overall oral and gastric microbiota diversity in relation to gastric IM

Cases did not differ significantly from matched controls in oral and gastric α-diversity 

(all P > 0.05; data not shown). We found significant differences in overall oral 

microbial composition between cases and controls (P < 0.01; Supplementary Figure S1A); 

overall gastric microbial composition was marginally related to gastric IM (P = 0.067; 

Supplementary Figure S1B).

Oral and gastric taxa associated with gastric IM

We identified 2 phyla, 6 classes, 8 orders, 9 families, 10 genera, and 50 species in the 

oral microbiota that were nominally associated with gastric IM (FDR-adjusted P = 0.07–

0.26, Supplementary Table S4). In leave-one-out cross-validated elastic-net conditional 

logistic regression models for gastric IM, 2 phyla, 6 classes, 2 orders, 4 families, 5 

genera, and 10 species were selected as the most important oral bacterial taxa associated 

with gastric IM (Table 2). Oribacterium sinus, Peptostreptococcus stomatis, Neisseria 
elongata, N. flavescens, and SR1 bacterium oral taxon 874 were positively related to 

gastric IM (ORs = 1.24–1.43, P = 0.004–0.03). The higher-rank taxa of these species 

had consistent associations with gastric IM and were also retained in the model (Table 

2). For instance, in the Clostridia-Clostridiales-Peptostreptococcaceae-Peptostreptococcus-

P. stomatis lineage, Clostridia (class), Peptostreptococcaceae (family), Peptostreptococcus 
(genus), and P. stomatis (species) were all selected in the model. The procedure also selected 

several species with their relative abundance inversely associated with gastric IM. These 
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species included Lactobacillus gasseri, Streptococcus sanguinis, Shuttleworthia satelles, 

Achromobacter xylosoxidans, and Kingella oralis (odds ratios [ORs] = 0.66–0.80, P = 

0.002–0.046). The higher-rank taxa to which L. gasseri belongs, such as Bacilli (class) 

and Lactobacillus (genus) were also selected by the model. The association patterns of the 

aforementioned species with gastric IM remained similar in meta-analyses of participants 

with oral wash and saliva samples separately (Supplementary Table S5).

We identified 1 class, 1 order, 2 families, 2 genera, and 17 species in the gastric microbiota 

that were nominally associated with gastric IM, including a highly significant species 

Johnsonella ignava (P = 0.005; Supplementary Table S6). In leave-one-out cross-validated 

elastic-net conditional logistic regression models, 9 taxa were selected as the most important 

taxa related to gastric IM (Table 3). Specifically, higher relative abundance of species 

Actinomyces sp. oral taxon 448, Prevotella baroniae, Filifactor alocis, Veillonella sp. oral 
taxon 780, and Leptotrichia goodfellowii was associated with higher odds of gastric IM 

(ORs = 1.42–1.67, P = 0.015–0.04) while higher relative abundance of L. gasseri and S. 
mutans was related to lower odds of gastric IM (ORs = 0.75 and 0.61, P = 0.046 and 0.024, 

respectively). Genus Filifactor to which F. alocis belongs was also selected with consistent 

association with gastric IM.

Stratified analyses of the associations between the aforementioned species and gastric IM 

by serum H. pylori status (Supplementary Table S7) indicated that many of the associations 

were stronger among those tested positive for H. pylori or CagA antibodies. The associations 

between the aforementioned species and gastric IM did not materially change with exclusion 

of cases of IM in the gastric body and/or fundus (Supplementary Table S8).

Several taxa in both the oral and gastric microbiota showed consistent associations with 

gastric IM (Figure 1). These included class Bacilli and species L. gasseri, S. mutans, S. 
parasanguinis, and S. sanguinis, that were associated with lower odds of gastric IM, as 

well as species J. ignava, that was associated with higher odds of gastric IM. In addition, 

P. stomatis, which was positively related to gastric IM in the oral data, was marginally 

associated with gastric IM in the gastric data (P = 0.058).

Oral and gastric functional pathways and GO categories associated with gastric IM

We identified 16 pathways in the oral microbiome that were associated with gastric IM 

at the nominal level (P = 0.002–0.05) (Figure 2A). Some of the IM-enriched pathways 

were involved in lipopolysaccharide (LPS) biosynthesis (PWY0–1241: ADP-L-glycero-β-D-

manno-heptose biosynthesis, NAGLIPASYN-PWY: lipid IVA biosynthesis) and ubiquinol 

biosynthesis (PWY-5855/5856/5857/6708: ubiquinol-7/9/10/8 biosynthesis (prokaryotic)). 

Those under-represented pathways in IM were mainly involved in sugar degradation 

(PWY-5384: sucrose degradation IV (sucrose phosphorylase), LACTOSECAT-PWY: lactose 

and galactose degradation I).

We estimated pair-wise correlations of the relative abundance between the selected 

species (Table 2) and the IM-associated pathways that they contributed to (Figure 2B). 

IM-enriched pathways tended to be positively correlated with IM-enriched species (N. 
elongata and N. flavescens). Pathways under-represented in IM were positively correlated 
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with protective species (L. gasseri, S. mutans, S. sanguinis, and S. parasanguinis). Average 

contributions by pathway-correlated oral species to overall pathway abundances were shown 

in Supplementary Figure S2.

We identified 15 pathways in the gastric microbiome that were associated with gastric IM 

at the nominal level (P = 0.003–0.05) (Figure 3A). Several of these pathways were related 

to sugar degradation (LACTOSECAT-PWY: lactose and galactose degradation I, PWY66–

422: D-galactose degradation V (Leloir pathway), PWY-6317: galactose degradation I 

(Leloir pathway)). Most of the under-represented pathways in IM were positively associated 

with under-represented species (S. parasanguinis and S. sanguinis) (Figure 3B). Average 

contributions by pathway-correlated gastric species to overall pathway abundances were 

shown in Supplementary Figure S3.

Associations between oral and gastric GO categories and gastric IM (Supplementary Tables 

S9 and S10) largely corresponded to the associations between functional pathways and 

IM (details in the Supplementary Materials). Correlations between IM-associated oral and 

gastric species and GO categories are shown in Supplementary Figure S4 and S5.

Discussion

In this study of oral and gastric microbiome and gastric premalignant lesions (IM), we 

identified species related to periodontal disease (P. stomatis, J. ignava, F. alocis)29,30 and 

opportunistic pathogens (N. elongata, N. flavescens) that were enriched in gastric IM, as 

well as probiotic species (L. gasseri) and commensals (S. mutans, S. parasanguinis, S. 
sanguinis) that were under-represented in gastric IM. Several species (J. ignava, L. gasseri, 
S. mutans, S. parasanguinis, S. sanguinis) in both the oral and gastric microbiota were 

consistently associated with gastric IM. Further, we identified metagenomic functions as 

potential mechanism by which these bacteria influence disease risk, including via LPS and 

ubiquinol biosynthesis and sugar degradation.

Previous prospective studies have reported positive associations of tooth loss and 

periodontal disease with gastric cancer risk31. However, studies investigating specific 

periodontal pathogens are limited8,32. In our previous study with 37 cases of gastric 

precancerous lesions, we observed that DNA levels of periodontal pathogen Aggregatibacter 
actinomycetemcomitans was related to a non-significant elevated OR of gastric precancerous 

lesions (OR: 1.36, P = 0.17)8. Using metagenomic sequencing in the present study, we also 

observed a positive albeit non-significant association between A. actinomycetemcomitans 
and gastric IM (OR: 1.22; P = 0.088) which was stronger in those carrying H. pylori 
antibodies (OR: 2.69; P = 0.002). In addition, we observed positive associations of 

several newly appreciated species related to periodontal disease (P. stomatis, J. ignava, 

and F. alocis)29,30 with gastric IM. A previous case-control study with 16S rRNA gene 

analysis identified increased abundance of P. stomatis in gastric biopsies of gastric cancer 

patients compared with individuals with superficial gastritis12, and another study found the 

enrichment of Peptostreptococcus in biopsies of gastric atrophy and IM33. P. stomatis may 

contribute to the acidic and hypoxic tumor microenvironment, which promotes bacterial 

colonization34. F. alocis can induce the secretion of proinflammatory cytokines from 
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gingival epithelial cells35. Taken together, the data suggest a role of these highly host-

interactive organisms in gastric cancer and warrant further investigations.

Several Neisseria species were enriched in gastric IM, such as N. elongata and N. flavescens. 

Neisseria species are oral cavity commensals and have been recognized as opportunistic 

pathogens. A recent small metagenomics study revealed enrichment of Neisseriaceae-
Neisseria-N. sicca in gastric wash samples of gastric cancer patients compared with 

individuals with superficial gastritis36. In our collaborative prospective study of oral 

microbiome and gastric cancer that was also based on metagenomics data, the order 

Neisseriales, family Neisseriaceae, and genus Neisseria were enriched in oral wash samples 

collected before cancer occurrence, compared with controls37 (Supplementary Table S11). 

The relative abundance of N. elongata was positively related to an increased risk of gastric 

cancer in one of the cohorts. However, a 16S rRNA-based study observed significant 

depletion of Neisseria in gastric cancer13,38,39. This discrepancy could reflect that 16S rRNA 

gene sequencing typically provides only family- or genus-level taxonomy. Neisseria species 

were correlated with pathways and GO categories for LPS and ubiquinol biosynthesis 

(Figure 2B and Supplementary Figure S4). LPS is a gram-negative bacterial antigen that 

increases inflammation in the tumor microenvironment and drives tumorigenesis40. LPS-

related pathways were enriched in gastric cancer36. Most Gram-negative bacteria produce 

ubiquinone, which can form a microbial environment characteristic of inflammation41. 

Additional research is warranted to investigate these potential mechanisms by which 

Neisseria species may influence gastric cancer risk.

In our study, several commensals in the oral cavity and digestive tract, including L. gasseri, 
S. mutans, S. parasanguinis, and S. sanguinis, were associated with lower odds of gastric 

IM, with consistent associations across the oral and gastric microbiota. S. mutans is a 

major pathogen causing human dental caries42. S. parasanguinis is an early colonizer 

of dental surfaces and is related to a healthy microbiota43. S. sanguinis, a member of 

the oral biofilm community, is considered benign, or even beneficial, with regard to 

dental caries44. Dental caries-associated bacteria such as Streptococcus species elicit potent 

Th1 immune responses and promote CD8+ T-cell responses45 that may decrease cancer 

development46. The abundances of Lactobacillus and Streptococcus species were correlated 

with pathways for sugar degradation that were under-represented in gastric IM, suggesting 

a role of fermentation of sugars and production of lactic acid in gastric cancer. Lactic acid 

produced by Lactobacillus can lower the gastrointestinal tract pH, thus creating a hostile 

environment for resident pathogenic bacteria and eliciting antibacterial effects47.Probiotics 

can induce the coccoid conversion of H. pylori and suppress H. pylori colonization 

and multiplication48,49. Supporting our results, significant reduction in the abundance of 

Streptococcus was observed in gastric microbiota of gastric cancer compared with chronic 

gastritis13. However, several studies using 16S rRNA gene sequencing reported significantly 

higher abundance of Lactobacillus and Streptococcus in gastric carcinoma relative to chronic 

gastritis13,14. Again, differences in sequencing methods and study design may explain the 

discrepancy.

Although seropositivity of H. pylori or CagA was positively associated with gastric IM 

(Table 1), the relative abundance of H. pylori in gastric microbiome was not (data not 
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shown). This observation is consistent with the observation that H. pylori is absent in gastric 

tissues in the large majority of patients with advanced atrophy, IM or gastric cancer5 even 

when serology is positive, suggesting the disappearance of active H. pylori infection during 

the later stages of gastric cancer development6. The loss of H. pylori and impairment of acid 

secretion in these lesions may facilitate the colonization of other bacteria in the stomach 

that may play a role in gastric cancer development. Many of the associations between the 

non-H. pylori bacteria and gastric IM we found were stronger among individuals carrying 

H. pylori antibodies, suggesting their additive effects on the H. pylori-initiated gastric cancer 

development. Some experimental studies suggested that H. pylori can act synergistically 

with a community of bacteria to promote gastric neoplasia, and the gastric cancer risk may 

depend on the microbiota following H. pylori infection10,11. Future larger studies should be 

conducted to investigate interaction between H. pylori and specific taxa in gastric cancer 

risk.

Strengths and limitations

Strengths of our study included the matched design, comprehensive shotgun metagenomic 

sequencing, inclusion of both oral and gastric microbiome profiling, and adjustment for 

gastric cancer risk factors throughout analysis. Several case-control studies of gastric 

premalignant lesions, predominantly gastric IM, have identified shared risk factors and 

molecular alterations for gastric cancer17 under the premise that a risk factor’s association 

with the precancerous lesion parallels its association with cancer. Thus, IM can be used 

to identify risk factors for gastric cancer and elucidate the underlying carcinogenesis. 

However, although our study is the largest of its kind, case sample sizes (n=89 oral and n=55 

gastric) remained small, limiting statistical power and our ability to investigate race-specific 

associations. Although we only study the compositions at a single time, the abundance of 

core members of the oral and gut microbiota are stable over time at the genus level50.

Conclusion

We found evidence that individuals with gastric IM exhibited different microbial 

composition and functions compared with healthy individuals. Future studies are needed 

to confirm our findings and investigate the underlying mechanisms. Given that bacterial 

profiles may be modified, identification of bacterial risk factors of malignancy might enable 

interventions and more cost-effective cancer screening by risk stratification.
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CagA cytotoxin-associated gene A

CI confidence interval

clr centered log-ratio

FDR false discovery rate

GC gastric cancer

GO Gene Ontology

H. pylori Helicobacter pylori

IM intestinal metaplasia

JSD Jensen-Shannon Divergence

LPS lipopolysaccharide

OR odds ratio

PCoA principal coordinate analysis

PERMANOVA permutational multivariate analysis of variance

SCCS Southern Community Cohort Study

SMHS Shanghai Men’s Health Study

SWHS Shanghai Women’s Health Study
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Novelty and impact:

The colonization of bacteria other than H. pylori in precancerous and cancerous lesions 

of the stomach may play a role in the development of gastric cancer, but the evidence 

is not well established. This study identified species related to periodontal disease (P. 
stomatis, J. ignava, F. alocis) and opportunistic pathogens (N. elongata, N. flavescens) 

that were enriched in gastric IM, as well as probiotic species (L. gasseri) and commensals 

(S. mutans, S. parasanguinis, S. sanguinis) that were under-represented in gastric IM. 

Several species (J. ignava, L. gasseri, S. mutans, S. parasanguinis, S. sanguinis) in 

both the oral and gastric microbiota were consistently associated with gastric IM. 

Further, we identified metagenomic functions as potential mechanism by which these 

bacteria influence disease risk, including via LPS and ubiquinol biosynthesis and sugar 

degradation. The findings on potential roles of certain oral and gastric microbiota in 

the development of gastric precancerous lesions, if confirmed by future studies, may be 

considered in interventions and more cost-effective cancer screening.
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Figure 1. 
Oral and gastric taxa associated with gastric intestinal metaplasia. Forest plot of odds ratios 

(ORs) and 95% confidence intervals (95% CI) for associations between clr-transformed taxa 

relative abundance and gastric IM in standard conditional logistic regression models. These 

taxa in both the oral and gastric microbiota were consistently associated with gastric IM.
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Figure 2. 
Pathways in the oral microbiome associated with gastric intestinal metaplasia. (A) Forest 

plot of odds ratios (ORs) and 95% confidence intervals (95% CI) for associations between 

clr-transformed pathway relative abundance and gastric IM in standard conditional logistic 

regression models. (B) Correlations between IM-associated oral species and functional 

pathways. Spearman correlation coefficient values were estimated for each pairwise 

comparison of clr-transformed species and pathway relative abundance. Here we show only 

species in Table 2 and Figure 1 with known contribution to each pathway according to the 

species-specific pathway data.
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Figure 3. 
Pathways in the gastric microbiome associated with gastric intestinal metaplasia. (A) 

Forest plot of odds ratios (ORs) and 95% confidence intervals (95% CI) for associations 

between clr-transformed pathway relative abundance and gastric IM in standard conditional 

logistic regression models. (B) Correlations between IM-associated gastric species and 

functional pathways. Spearman correlation coefficient values were estimated for each 

pairwise comparison of clr-transformed species and pathway relative abundance. Here we 

show only species in Table 3 and Figure 1 with known contribution to each pathway 

according to the species-specific pathway data.
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Table 1.

Characteristics of study participants by case status of intestinal metaplasia

Characteristics

Intestinal metaplasia

OR
a
 (95% CI) PCases (n=89) Controls (n=89)

Women, n (%) 52 (58.4) 52 (58.4) – –

Age (y), mean (SD) 58.3 (10.9) 57.3 (10.5) 1.13 (1.01–1.27) 0.04

BMI (kg/m2), mean (SD) 25.0 (4.5) 26.5 (5.6) 0.93 (0.86–1.02) 0.12

Ever smoking, n (%) 30 (33.7) 26 (29.2) 1.64 (0.77–3.47) 0.20

Pack-years, mean (SD) 83.1 (183.9) 77.2 (159.5) 1.01 (0.99–1.03)
b

0.54

Ever drinking, n (%) 48 (53.9) 50 (56.2) 1.45 (0.68–3.08) 0.33

Daily alcohol intake
c
, mean (SD) 0.2 (0.6) 0.5 (1.3) 0.75 (0.51–1.10) 0.14

Education, n (%)

 <College 48 (53.9) 50 (56.2) 1.55 (0.46–5.18) 0.48

 College 28 (31.5) 19 (21.4) 2.50 (0.71–8.75) 0.15

 Graduate 13 (14.6) 20 (22.5) Ref

Race, n (%)

 White 8 (9.0) 20 (22.5) Ref

 Black 5 (5.6) 16 (18.0) 0.89 (0.23–3.44) 0.86

 Hispanic 23 (25.8) 21 (23.6) 2.45 (0.63–9.58) 0.20

 Asian 53 (59.6) 32 (36.0) 4.22 (1.48–12.1) 0.007

H. pylori status (in serum), n (%)

 Negative 50 (61.7) 64 (71.9) Ref

 Positive, CagA negative 9 (11.1) 5 (5.6) 3.51 (0.80–15.4) 0.10

 Positive, CagA positive 22 (27.2) 20 (22.5) 2.80 (0.98–8.04) 0.06

Recruitment year – –

 2009–2011 27 (30.3) 27 (30.3)

 2013–2015 8 (9.0) 0

 2016–2018 54 (60.7) 62 (69.7)

Recruitment location – –

 Bellevue Hospital 40 (44.9) 40 (44.9)

 Private clinic 46 (51.7) 46 (51.7)

 NYU Ambulatory Center 3 (3.4) 3 (3.4)

a
ORs were calculated using logistic regression conditional on matching factors including sex, recruitment site (Bellevue Hospital, Private clinic, 

Ambulatory Care Center), age categories (<35, 35–49, 50–64, 65+ years), and recruitment year (± 3 years), adjusting for age (continuous) and race 
(White, African American, Hispanic, Asian).

b
Per 10 pack-years.

c
Daily consumption of total standard drinks of alcoholic beverages (a 12-oz can of beer, 4-oz glass of wine, and 1.5-oz shot of hard liquor).
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