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BACKGROUND: African Americans have the highest pancreatic cancer incidence of any racial/ethnic group in the United States.
The oral microbiome was associated with pancreatic cancer risk in a recent study, but no such studies have been conducted in
African Americans. Poor oral health, which can be a cause or effect of microbial populations, was associated with an increased risk
of pancreatic cancer in a single study of African Americans.
METHODS: We prospectively investigated the oral microbiome in relation to pancreatic cancer risk among 122 African-American
pancreatic cancer cases and 354 controls. DNA was extracted from oral wash samples for metagenomic shotgun sequencing. Alpha
and beta diversity of the microbial profiles were calculated. Multivariable conditional logistic regression was used to estimate odds
ratios (ORs) and 95% confidence intervals (CIs) for associations between microbes and pancreatic cancer risk.
RESULTS: No associations were observed with alpha or beta diversity, and no individual microbial taxa were differentially abundant
between cases and control, after accounting for multiple comparisons. Among never smokers, there were elevated ORs for known
oral pathogens: Porphyromonas gingivalis (OR= 1.69, 95% CI: 0.80–3.56), Prevotella intermedia (OR = 1.40, 95% CI: 0.69–2.85),
and Tannerella forsythia (OR= 1.36, 95% CI: 0.66–2.77).
CONCLUSIONS: Previously reported associations between oral taxa and pancreatic cancer were not present in this African-
American population overall.
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INTRODUCTION
African Americans have the highest incidence and mortality from
pancreatic cancer of any racial/ethnic group in the United
States (US). Pancreatic cancer is rare, yet its poor prognosis (5-
year survival of 9.0%) underscores the need for identifying
modifiable risk factors and early detection strategies [1].
Poor oral health [2–8] has been implicated as a risk factor for

pancreatic cancer. Increased pancreatic cancer risk has been
consistently associated with periodontal disease or tooth loss,
which in turn correspond with changes in the microbiota—the
community of microorganisms, including bacteria, fungi, viruses
and archaea, that reside within the oral cavity [9]. In our prior
investigation of pancreatic cancer in African-American women,
adult tooth loss was associated with a 2-fold increased pancreatic
cancer risk [2]. In addition, a recent prospective study of the
relation between the oral microbiome and pancreatic cancer risk

reported associations of a few specific oral pathogens (i.e.
Porphyromonas gingivalis and Aggregatibacter actinomycetemco-
mitans) with an increased risk [10]. Most study participants were
White, prohibiting analysis by race/ethnicity. It utilised bacterial
16S ribosomal RNA (rRNA) gene sequencing, which does not allow
for characterisation of the functional potential of the microbiota or
species-level identification and only identifies bacteria.
African Americans are reported to have worse oral health

profiles than other racial/ethnic groups in the US, largely due to
socioeconomic disadvantage and racial discrimination in the
health care system, which can reduce access to preventive oral
health care [11]. An individual’s oral microbiome is affected by
factors such as periodontal disease and tooth loss, and the reverse
association may also occur. Here, we prospectively assessed the
association of the oral microbiome with pancreatic risk in African-
American women and men.

Received: 2 December 2020 Revised: 14 September 2021 Accepted: 1 October 2021
Published online: 30 October 2021

1Slone Epidemiology Center, Boston University, Boston, MA, USA. 2Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA. 3Department of Public
Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA. 4Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center,
Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA. 5Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA.
6Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA. 7Department of Nutritional Sciences, University of Michigan
School of Public Health, Ann Arbor, MI, USA. 8Department of Medicine, Division of Computational Biomedicine, Boston University, Boston, MA, USA. 9Broad Institute of MIT and
Harvard, Cambridge, MA, USA. ✉email: jpetrick@bu.edu; jpalmer@bu.edu

www.nature.com/bjcBritish Journal of Cancer

Published on Behalf of CRUK

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-021-01578-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-021-01578-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-021-01578-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-021-01578-5&domain=pdf
http://orcid.org/0000-0001-6580-450X
http://orcid.org/0000-0001-6580-450X
http://orcid.org/0000-0001-6580-450X
http://orcid.org/0000-0001-6580-450X
http://orcid.org/0000-0001-6580-450X
http://orcid.org/0000-0002-0339-5824
http://orcid.org/0000-0002-0339-5824
http://orcid.org/0000-0002-0339-5824
http://orcid.org/0000-0002-0339-5824
http://orcid.org/0000-0002-0339-5824
http://orcid.org/0000-0002-6534-335X
http://orcid.org/0000-0002-6534-335X
http://orcid.org/0000-0002-6534-335X
http://orcid.org/0000-0002-6534-335X
http://orcid.org/0000-0002-6534-335X
https://doi.org/10.1038/s41416-021-01578-5
mailto:jpetrick@bu.edu
mailto:jpalmer@bu.edu
www.nature.com/bjc


MATERIALS AND METHODS
Study populations
The current study leveraged resources from two prospective cohort
studies: Black Women’s Health Study (BWHS) and Southern Community
Cohort Study (SCCS). All study participants provided written informed
consent. The Institutional Review Boards of Boston University (BWHS) and
Vanderbilt University Medical Center and Meharry Medical College (SCCS)
approved the studies.
The BWHS enrolled 59,000 women aged 21–69 years in 1995 by mailing

scannable questionnaires to subscribers of Essence magazine [12].
Participants, who reside in all regions of the mainland US, complete
follow-up questionnaires every 2 years, either online or by mail.
SCCS participants reside in a 12-state area in the southeastern US

[13, 14]. Between 2002 and 2009, 55,362 African-American and 25,305
White men and women aged 40–79 years were enrolled via in-person
recruitment at 71 community health centres (86%) or through mailed
questionnaires (14%). Follow-up mail questionnaires are sent to partici-
pants every 5–6 years. Both the SCCS and BWHS are ongoing.
Cases were BWHS or SCCS participants diagnosed with incident primary

pancreatic adenocarcinoma (consistent with the International Classification
of Diseases 10 [ICD-10] topography codes C25.0–25.9 and morphology
code 8140) during follow-up, who also had a stored, prediagnostic oral
wash specimen. The majority of pancreatic cancer cases were identified by
cancer registries or National Death Index. Self-report of cancer on follow-
up questionnaires was confirmed by a review of hospital and cancer
registry data. Participants who reported prevalent pancreatic cancer at
study baseline or a diagnosis within the first 2 years after providing an oral
wash sample were excluded. Thus, this study included 148 pancreatic
cancer cases (n= 53 from BWHS and n= 95 from SCCS), among whom 122
were African American and 26 White.
Within each cohort, controls were individually matched 3:1 to cases

using incidence-density sampling on the following criteria: age (5-year age
groups), smoking status (never, former, current), timing of oral wash
collection (±12 months) and for SCCS only, sex, race, and community
health centre/mail enrolment. For the main analyses, we restricted to
African-American cases (n= 122) and controls (n= 354). In secondary
analyses, we used the full dataset of 148 cases and 441 controls and
stratified on race.

Oral wash samples
Oral wash sample collection in BWHS and SCCS has previously been
described [15, 16]. Briefly, BWHS participants were mailed a mouthwash
collection kit and instructed to take a mouthful of Mint Fresh Scope® (at
least ½ hour after eating or drinking), swish vigorously for 45 s and spit the
sample into a screw-top polypropylene jar. Subjects were asked to record
the time and date of oral rinse on the instruction sheet and to mail the
instruction sheet to the laboratory with the sample. All BWHS samples were
returned via first class mail and processed on the day of receipt. Similar
methods and materials were used for SCCS, except that the samples were
collected in person and taken directly to the laboratory for processing.
Similar methods were used by the SCCS and BWHS to process and store

samples. Buccal cells from oral wash samples were centrifuged and
suspended using TE buffer, aliquoted as a pellet into a 2ml vial, and stored
at −80 °C. For SCCS, samples were obtained at study enrolment
(2002–2009) from ~40% of participants [17, 18]. For BWHS, samples were
obtained from 2004 to 2007 from ~50% of participants [19]. The median
interval from the provision of sample to pancreatic cancer diagnosis was 7
years in both studies.

Metagenomic shotgun sequencing
DNA was extracted using the PowerSoil Pro Kit (MoBio Laboratories Inc.), as
this has been shown to increase the ratio of bacterial and fungal to human
DNA extracted [20]. Using a minimum of 300 ng of DNA, paired-end whole-
metagenome shotgun sequencing was performed at BGI Genomics
(Shenzhen, China), using the Illumina HiSeq2000 platform with a read
length of 100 bp (insert size 350 bp).

Bioinformatic processing of metagenomic data
For BWHS and SCCS, raw sequencing reads were processed by the Harvard
TH Chan School of Public Health Microbiome Analysis Core using the
bioBakery shotgun metagenomic workflow v0.13.1 [21]. Briefly, raw
sequencing reads were run through KneadData, which trims data to

remove low-quality reads and human contamination from the samples
using a human (hg38) and known sequencing contaminant databases. This
retained an average of ~1.6 Gb of high-quality non-human sequences per
sample. Next, the marker gene-based approach from MetaPhlAn2 was
used to assign taxonomy to each sample [22]. Functional profiling was
performed using HUMAnN2 to provide taxon-specific profiles of UniRef
gene families, enzymes and MetaCyc pathways [23].

Quality control
Quality control was performed on the taxonomic profiles of the samples in
comparison to negative controls (i.e. extraction blanks) to ensure the
validity of the sequencing results. In brief, reads were detected in the
negative controls [24]. However, the number of reads from the negative
controls were orders of magnitude lower than from the study samples. We
examined the taxa in the negative controls and determined that they
consisted solely of typical contaminant microbes not observed in our study
samples. This, coupled with the low read counts in the negative controls,
allowed us to conclude that noticeable reagent contamination was not
present (and would not need to be removed from the study samples).
Further, it would be extremely unusual for reagent contamination to be a
substantial problem in a study like this, as none of our samples were low
biomass [25]. Laboratory personnel were blinded to case/control status;
matched sets were processed within the same batch. Thus, any laboratory
variation would be accounted for in the matching factors.

Statistical analysis
Alpha diversities were calculated based on species as Shannon, Simpson,
and inverse Simpson indices; richness analysis was calculated based on
species as Chao1 index and beta diversities were calculated based on
species and DNA pathways as Bray–Curtis dissimilarity to examine within-
and between-sample differences in microbial richness and composition
[26]. Principal coordinate analysis plots were created using the Bray–Curtis
dissimilarities [27]. Between-group differences in microbial composition
(Bray–Curtis dissimilarities and Jaccard distance) were also assessed using
permutational multivariate analysis of variance. For all analyses, except
alpha diversity, microbial features (species and pathways) were filtered
requiring a microbial feature to have at least 0.01% relative abundance in
at least 10% of all samples.
Seven periodontal bacteria were specified a priori for examination—A.

actinomycetemcomitans, Filifactor alocis, Fusobacterium nucleatum, P. gingiva-
lis, Prevotella intermedia, Tannerella forsythia and Treponema denticola
[10, 28, 29]. For fungi, one phylum (Ascomycota) and one genus within that
phylum (Saccharomyces) was inferred from the gene family relative
abundances [30].
Count data were normalised using relative abundance calculations and

log-transformed. The taxon variables examined include log10 relative
abundances, prevalence (carrier/non-carrier status), and high, low or non-
carrier status (categorised using the mean relative abundance of the
control group as the threshold for high or low carriers).
To examine bacteria that were specified a priori, conditional logistic

regression was used to calculate odds ratios (ORs) and corresponding 95%
confidence intervals (CIs) for the association between microbes and
pancreatic cancer risk [31]. Data for covariates were taken from the same
time period/questionnaire cycle as the oral wash sample. Because smoking
is an important risk factor, we additionally controlled for intensity and
duration of smoking by including a term for <20 or ≥20 pack-years in the
regression models. Other potential covariates considered were body mass
index (kg/m2), type 2 diabetes, alcohol intake, red meat intake [32, 33], and
tooth loss. If the log(OR) changed by ≥10% due to variable elimination, the
variable was considered a confounder and retained in the model; [31]
none of the additional covariates met this criterion. Based on aetiologic
evidence, which suggests differences in the oral microbiome by smoking
status [34–36], and for comparison with the prior report [10], we
conducted analyses stratified by smoking status, as well as by sex and
by race.
Featurewise analysis was conducted using MaAsLin2 on log10 relative

abundances and pathways to determine if there were differentially
abundant microbes or pathways. All p values are two-sided [37]. Multiple
comparisons were adjusted for using the q value for species and pathway-
level classifications, based on the Benjamini–Hochberg procedure for false
discovery rate control at the 0.05 level for 161 species-level comparisons
and 266 DNA pathway comparisons [38]. Analyses were performed in R
version 4.0.0 (Vienna, Austria).
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RESULTS
As expected for the oral cavity, the most abundant phylum, genus
and species were Firmicutes, Streptococcus, and Rothia mucilagi-
nosa, respectively. Unlike the prior study [10], microbial taxonomic
profiles were similar between cases and controls (Supplemental
Fig. S1). There were no differences in alpha or beta diversity or
richness between cases and controls for taxa or DNA pathways
(Supplemental Figs. S2–S5). Cases were more likely than controls
to have diabetes at baseline (32.0 vs. 26.0%), consume levels of
red meat above the median (49.2 vs. 43.8%), and have any teeth

Table 1. Demographic factors among African-American pancreatic
cancer cases and controls.

Cases (n= 122) Controls (n= 354)

Age, years (mean ± SD) 59.5 ± 9.3 59.3 ± 9.1

Sex (n, %)

Female 94 (77.0) 274 (77.4)

Male 28 (23.0) 80 (22.6)

Smoking status (n, %)

Never 43 (35.2) 131 (37.0)

Former 33 (27.0) 94 (26.6)

Current 46 (37.7) 129 (37.7)

≥20 pack-yearsa 28 (23.0) 71 (20.1)

Body mass index (n, %)

<25 kg/m2 25 (20.5) 72 (20.3)

25–29 kg/m2 48 (39.3) 127 (35.9)

30–34 kg/m2 23 (18.9) 75 (21.2)

≥35 kg/m2 26 (21.3) 80 (22.6)

Diabetes diagnosis (%)

No 83 (68.0) 261 (73.7)

Yes 39 (32.0) 92 (26.0)

Missing 0 (0.0) 1 (0.3)

Alcohol intake (%)

Non-drinker 68 (55.7) 197 (55.6)

1–3 drinks/week 37 (30.3) 109 (30.8)

≥4 drinks/week 17 (13.9) 48 (13.6)

Red meat intake, g/day (n, %)

Quartile 1 23 (18.9) 93 (26.3)

Quartile 2 32 (26.2) 88 (24.9)

Quartile 3 31 (25.4) 75 (21.2)

Quartile 4 29 (23.8) 80 (22.6)

Missing 7 (5.7) 18 (5.1)

Tooth loss (n, %)

None 12 (9.8) 51 (14.4)

1–4 teeth 23 (18.9) 58 (16.4)

5–10 teeth 32 (26.2) 42 (11.9)

>10–<32 teeth 6 (4.9) 31 (8.8)

All teeth 9 (7.4) 20 (5.6)

Missing 40 (32.8) 152 (42.9)

Gingivitis (n, %)

No 74 (60.7) 197 (55.6)

Yes 14 (11.5) 40 (11.3)

Missing 34 (27.9) 117 (33.1)
aAmong current and past smokers.

Table 2. Associations of periodontal bacteria with risk of pancreatic
cancer among African Americans.

Bacterial microbes Cases Controls ORa 95% CIa

Aggregatibacter actinomycetemcomitans

Non-carrier 116 331 1.00

Carrie 6 23 0.74 (0.29–1.90)

Low carrier 4 12 0.95 (0.29–3.15)

High carrier 2 11 0.51 (0.11–2.38)

Log10 relative
abundanceb

–

Filifactor alocis

Non-carrier 67 198 1.00

Carrier 55 156 1.08 (0.70–1.67)

Low carrier 33 76 1.31 (0.79–2.15)

High carrier 22 80 0.79 (0.43–1.45)

Log10 relative
abundanceb

0.78 (0.45–1.38)

Fusobacterium nucleatum

Non-carrier 14 42 1.00

Carrier 108 312 1.06 (0.54–2.09)

Low carrier 58 159 1.09 (0.54–2.21)

High carrier 50 153 1.03 (0.49–2.16)

Log10 relative
abundanceb

0.92 (0.69–1.23)

Porphyromonas gingivalis

Non-carrier 46 134 1.00

Carrier 76 220 1.04 (0.66–1.64)

Low carrier 37 106 1.05 (0.63–1.74)

High carrier 39 114 1.03 (0.59–1.79)

Log10 relative
abundanceb

1.17 (0.86–1.61)

Prevotella intermedia

Non-carrier 59 167 1.00

Carrier 63 187 0.97 (0.63–1.52)

Low carrier 29 93 0.90 (0.53–1.55)

High carrier 34 94 1.04 (0.62–1.78)

Log10 relative
abundanceb

1.30 (0.84–2.02)

Tannerella forsythia

Non-carrier 38 115 1.00

Carrier 84 239 1.09 (0.69–1.72)

Low carrier 41 120 1.05 (0.63–1.76)

High carrier 43 119 1.14 (0.66–1.97)

Log10 relative
abundanceb

0.88 (0.61–1.27)

Treponema denticola

Non-carrier 60 182 1.00

Carrier 62 172 1.12 (0.73–1.72)

Low carrier 38 86 1.35 (0.83–2.20)

High carrier 24 86 0.83 (0.46–1.49)

Log10 relative
abundanceb

0.75 (0.47–1.21)

aOdds ratios (ORs) and 95% confidence intervals (CIs), conditioned on
matched sets (matched on: cohort [BWHS, SCCS], batch, age (5-year age
groups), smoking status (never, former, current), timing of oral wash
collection (±12 months) and for SCCS only, sex, race, and community
health centre/mail enrolment) and adjusted for smoking intensity (<20,
≥20 pack-years).
bCalculated within carriers.
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missing (57.4 vs. 42.7%; Table 1). Demographics of the White
participants from SCCS are provided in Supplemental Table S1.
No individual microbial taxa—bacteria, fungi, viruse, or archaea—

were differentially abundant between African-American cases and
controls (Supplemental Table S2) or the full set of cases and controls
(Supplemental Table S3), after accounting for multiple comparisons.
Further, little of the beta-diversity variance was explained by
case–control status (Supplemental Table S4). In the seven bacterial
microbes that were targeted a priori based on previous study
findings, there was little to no association with pancreatic cancer risk
among African Americans overall (Table 2). For example, carriers of
P. gingivalis had no increased pancreatic cancer risk (OR= 1.04, 95%
CI: 0.66–1.64), compared to non-carriers. However, among never
smokers (Table 3), ORs were elevated for carriers of P. gingivalis (OR

= 1.69, 95% CI: 0.80–3.56), P. intermedia (OR= 1.40, 0.69–2.85),
and T. forsythia (OR= 1.36, 95% CI: 0.66–2.77).
Fungal microbes also showed little association between carrier

status and pancreatic cancer risk (Table 4), although the OR for
carriers of Saccharomyces at high levels (i.e. above the median
relative abundance) was 1.87 (95% CI: 0.81–4.35). Results were
similar by smoking status (data not shown).
In analyses stratified by race (Supplemental Table S5), the OR for

P. gingivalis in relation to pancreatic cancer risk was 1.68 (95% CI:
0.60–4.68) in Whites, compared to a null association among
African Americans. Other ORs were similar across races. In analyses
stratified by sex (Supplemental Table S6), all ORs for microbial taxa
were close to 1.0 among women. Among men, elevated ORs for
carriers relative to noncarriers were observed for A.

Table 3. Associations of periodontal bacteria with risk of pancreatic cancer, stratified by smoking status, among African Americans.

Bacterial microbes Never smoker Ever smoker

Cases Controls ORa 95% CIa Cases Controls ORa 95% CIa

Aggregatibacter actinomycetemcomitans

Non-carrier 41 123 1.00 75 208 1.00

Carrier 2 8 0.75 (0.16–3.53) 4 15 0.73 (0.22–2.39)

Log10 relative
abundanceb

– –

Filifactor alocis

Non-carrier 25 81 1.00 42 117 1.00

Carrier 18 50 1.25 (0.62–2.53) 37 106 0.98 (0.56–1.71)

Log10 relative
abundanceb

1.01 (0.36–2.78) 0.73 (0.37–1.45)

Fusobacterium nucleatum

Non-carrier 5 11 1.00 9 31 1.00

Carrier 38 120 0.80 (0.26–2.45) 70 192 1.25 (0.54–2.90)

Log10 relative
abundanceb

0.73 (0.47–1.13) 1.09 (0.72–1.66)

Porphyromonas gingivalis

Non-carrier 14 55 1.00 32 79 1.00

Carrier 29 76 1.69 (0.80–3.56) 47 144 0.79 (0.44–1.41)

Log10 relative
abundanceb

1.30 (0.83–2.03) 0.97 (0.63–1.50)

Prevotella intermedia

Non-carrier 19 67 1.00 40 100 1.00

Carrier 24 64 1.40 (0.69–2.85) 39 123 0.76 (0.43–1.35)

Log10 relative
abundanceb

1.56 (0.75–3.26) 1.14 (0.64–2.04)

Tannerella forsythia

Non-carrier 14 51 1.00 24 64 1.00

Carrier 29 80 1.36 (0.66–2.77) 55 159 0.91 (0.50–1.67)

Log10 relative
abundanceb

0.94 (0.51–1.75) 0.85 (0.54–1.34)

Treponema denticola

Non-carrier 28 82 1.00 32 100 1.00

Carrier 15 49 0.93 (0.46–1.88) 47 123 1.23 (0.71–2.13)

Log10 relative
abundanceb

1.70 (0.40–7.22) 0.64 (0.38–1.10)

aOdds ratios (ORs) and 95% confidence intervals (CIs), conditioned on matched sets (matched on: cohort [BWHS, SCCS], batch, age (5-year age groups),
smoking status (never, former, current), timing of oral wash collection (±12 months) and for SCCS only, sex, race, and community health centre/mail
enrolmentage (5-year age groups), smoking status (never, former, current), timing of oral wash collection (±12 months) and for SCCS only, sex, race, and
community health centre/mail enrolment) and adjusted for smoking intensity (<20, ≥20 pack-years).
bCalculated within carriers.
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actinomycetemcomitans (OR = 2.33, 95% CI: 0.55–9.79), T. denticola
(OR = 1.73, 95% CI: 0.58–5.14), P. intermedia (OR = 1.56, 95% CI:
0.52–4.68), F. alocis (OR = 1.34, 95% CI: 0.53–3.41), and T. forsythia
(OR = 1.30, 95% CI: 0.35–4.87).
Functional profiling was assessed for all phenotypes and strata:

28 MetaCyc pathways were nominally differential between cases
and controls, but effect sizes were small and q values were large
adjusting for multiple comparisons (0.25 > q > 0.05; Table 5 and
Supplemental Tables S7 and S8). The majority of these metabolic
pathways include the expected taxonomic range of bacteria and
are involved in biosynthesis processes characteristic of the oral
cavity (e.g. aerobic sugar metabolism).

DISCUSSION
In the present study of African Americans, there was little to no
association between carriage of periodontal bacterial or fungal
microbes and pancreatic cancer risk. However, among never
smokers, there was evidence of an association of several known
oral bacterial pathogens (i.e. P. gingivalis, P. intermedia, T. forsythia)
with elevated pancreatic cancer risk, with increases ranging from
36 to 69%.
These results are in contrast to several case–control studies, which

have reported differences in oral microbial composition and
diversity, as detected by 16S rRNA sequencing, between pancreatic
cancer cases and controls [39–41]. Another case–control study
reported that relative abundance of Lactobacillus was lower, and
Fusobacteria higher, in tissue samples from pancreatic cancer cases
compared to non-cases [42]. In a study of the gut microbiome, 14
bacterial features that discriminated between pancreatic cancer
cases and controls were identified [43]. However, these studies are
susceptible to reverse causation, as oral, faecal or tissue samples
were obtained at, or after, the time of cancer diagnosis.
The present study is the first study of the oral microbiome in

relation to pancreatic cancer risk in an African-American popula-
tion. The results differed from previously reported results in a
White population, which was based on combined data from two

other prospective cohort studies [10]. In that study, P. gingivalis
and A. actinomycetemcomitans were associated with increased
pancreatic cancer risk and Fusobacteria with a decreased risk [10].
Stronger associations were observed among never smokers. In
addition, in a prospective study from Europe, higher antibody
levels to P. gingivalis were associated with a 2-fold increased
pancreatic cancer risk [44].
The most likely explanations for the difference in findings are (1)

sampling variation and small numbers in both studies or (2)
differences in important characteristics of the study populations,
or some combination of the two. The study populations differed in
two major respects: race, which is a marker for shared cultural
experiences, including the legacy of racism and racial discrimina-
tion, and prevalence of cigarette smoking.
Although the current report is focused on African Americans,

we also analysed data from the smaller proportion of avail-
able White participants. Of note, among the 26 White pancreatic
cancer cases and 87 White controls, carriage of P. gingivalis was
associated with a 68% increased risk. This estimate is nearly
identical to results from Fan et al., in which the OR for carriage of
P. gingivalis was 1.60 [10]. Results from White participants in the
present study were also similar to results for Fusobacteria and F.
nucleatum in the prior study [10].
With regard to cigarette smoking, 38% of African-American

participants in the present study were current smokers, whereas in
the prior study [10], only 7% of participants were current smokers.
We observed evidence of positive associations for several microbes,
including P. gingivalis, among never smokers. Never smokers are an
ideal group in which to assess associations of the oral microbiome
with pancreatic cancer risk, given that cigarette smoking has an
independent association with pancreatic cancer risk and also has an
impact on oral health. It is possible that the high proportion of
current smokers in our study population made it more difficult to
detect an association, if present, as smoking reduces the host
response to oral pathogens, such as P. gingivalis [45]. While smokers
are more likely to have periodontitis, smokers paradoxically have
reduced markers of clinical inflammation [46, 47]. Experimental
studies have demonstrated that P. gingivalis cells in oral biofilms
grown in the presence of extracts from cigarette smoke exhibit a
lower proinflammatory capacity (i.e. lower levels of tumour necrosis
factor-α, interleukin-6 and interleukin-12) than control oral biofilms
[45, 48, 49]. This would not have been an issue in the prior study
since 93% of participants were not current smokers.
Microbiome data are inherently compositional, which necessi-

tates careful consideration of statistical approaches. However, if
the use of compositionally corrected methods is necessary—or if
these methods result in improved model performance—are a
source of debate [50–57]. Recent findings suggest that composi-
tionally corrected methods may not always outperform non-
compositionally corrected methods [55–57]. In the current study,
we utilised the MaAsLin2 method, which uses total sum scaling for
normalisation. MaAsLin2 was recently compared to various
compositionally corrected methods, naive methods, non-
microbial analysis methods and experimental methods [57].
Compositionally corrected methods (e.g. analysis of the composi-
tion of microbiomes) or compositionally corrected normalisation
(e.g. centred log-ratio transformation) did not improve perfor-
mance over non-compositional approaches. While there is no
method that is best in all scenarios, MaAsLin2 was the only
multivariable method that controlled the false discovery rate and
performed well in all scenarios [57]. A recent study also indicates
that model goodness of fit may depend on whether the data
come from 16S or shotgun metagenomic sequencing, due to
different count data structures [56]. The differences in data
structures may be due to several factors, including sequencing
depth, taxonomic classification between technologies (i.e. meta-
genomic sequences vs. clusters of amplicon sequences) and

Table 4. Associations of periodontal fungi with risk of pancreatic
cancer among African Americans.

Fungal microbes Cases Controls ORa 95% CIa

Ascomycota

Non-carrier 58 161 1.00

Carrier 64 193 0.93 (0.61–1.42)

Low carrier 29 102 0.79 (0.47–1.32)

High carrier 35 91 1.11 (0.67–1.85)

Log10 relative abundanceb 0.89 (0.62–1.28)

Saccharomyces

Non-carrier 107 312 1.00

Carrier 15 42 1.10 (0.57–2.13)

Low carrier 4 24 0.54 (0.18–1.62)

High carrier 11 18 1.87 (0.81–4.35)

Log10 relative abundanceb –

aOdds ratios (ORs) and 95% confidence intervals (CIs), conditioned on
matched sets (matched on: cohort [BWHS, SCCS], batch, age (5-year age
groups), smoking status (never, former, current), timing of oral wash
collection (±12 months) and for SCCS only, sex, race, and community
health centre/mail enrolmentage (5-year age groups), smoking status
(never, former, current), timing of oral wash collection (±12 months) and for
SCCS only, sex, race, and community health centre/mail enrolment) and
adjusted for smoking intensity (< 20, ≥ 20 pack-years).
bCalculated within carriers.
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bioinformatic methods used for data preprocessing. The prior
microbiome studies used 16S rRNA sequencing [10, 39–41], while
the current study utilised shotgun metagenomic sequencing.
Thus, data structure differences between 16S rRNA sequencing
and shotgun metagenomic sequencing could partially account for
different results between the prior studies [10, 39–43] and our
current study.
Shotgun metagenomic sequencing permits functional profiling,

substantially greater specificity in taxonomic profiling, and the
detection (albeit at low levels) of non-bacterial organisms [58, 59].
A recent experimental study demonstrated that pancreatic
tumours harbour ~3000-fold more fungi than normal pancreatic
tissue and were specifically enriched for Malassezia [30]. Ablation
of the fungi was protective, while repopulation with Malassezia
accelerated pancreatic oncogenesis [30]. In addition, prior studies
have reported that individuals with Candida infection are at higher
risk of pancreatic cancer [60]. In the current study, only one fungal
phylum (Ascomycota) and one genus within that phylum
(Saccharomyces) were detected, and neither were differentially
abundant between cases and controls. Without targeted enrich-
ment protocols, fungi are generally difficult to detect in typical
human-associated communities by any means, due to the
relatively low abundance of oral fungi and lack of well-
characterised reference genomes [61, 62]. By nature of shotgun
metagenomics, bacteria tend to dominate in abundance and in
the resulting sequence data, due to much higher biomass
prevalence in the samples. Thus, fungi may have been filtered
out with whole-genome sequencing due to sparsity. An elevated
OR was observed for high levels of Saccharomyces, but this may
simply be an indicator of an increased fungal population—not
Saccharomyces specifically.
The mechanisms underlying the potential association between the

oral microbiota and pancreatic cancer are still speculative. In a prior
study, high P. gingivalis antibody levels were associated with an
increased risk of orodigestive cancer (including pancreatic) even
among individuals without the overt periodontal disease [8],
suggesting that the role of the oral microbiota is not dependent on
oral disease. In a tissue-based study, oral bacterial species were
identified in the pancreatic duct [42, 63], suggesting that oral bacteria
can migrate and have direct effects on pancreatic carcinogenesis. This
has also been the case in other gastrointestinal cancers [64] and
inflammatory bowel disease [65], although it is not clear whether such
taxa are causal or responsive to tumorigenesis. Thus, several
hypotheses have been proposed for the biological pathways linking
oral health and microbiota to pancreatic risk, including (1) direct
somatic pathways, whereby oral microbes migrate to the pancreas
through ingestion or circulation following tooth brushing [66, 67] and
(2) systemic inflammation due to periodontal disease increasing levels
of proinflammatory cytokines, which may promote the development
of pancreatic cancer [68, 69]. Another potential pathway involves oral
bacteria producing carcinogenic metabolic byproducts from tobacco
smoke and alcohol, both known pancreatic cancer risk factors [70–74].
In the current study, we characterised the functional potential

of the oral microbiome in relation to pancreatic cancer risk. While
we identified several pathways that were differential between
cases and controls, significant values were large after adjusting for
multiple comparisons and the effect sizes were small. Some of
these pathways (e.g. fructose degradation) are known to play a
role in cancer development at the cellular level [75]. However,
there is not a clear mechanism for fructose degradation in the oral
microbiota to influence pancreatic cancer development.
Multiple comparisons need to be considered when discussing the

study results, as there were 161 taxa and 266 pathway comparisons
within the main analyses. Thus, there is a possibility that some results
arose due to chance. Adjusting for multiple comparisons reduces the
likelihood of detecting a false-positive association, but it also reduces
the power for detecting a true association if one exists. Thus, we
chose to focus on associations based on biological plausibility andTa
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consistency with published results [76]. Our a priori aim was to
examine seven oral pathogens that have been associated with
periodontal disease or tooth loss. To examine these, we interpreted
the magnitude of the effect estimate and present CIs [77]. To examine
featurewise analysis, MaAsLin2 was used to preserve statistical power
while accounting for the nuances of microbiome features and
controlling false discovery rates [57, 78]. We provide the output of the
differential abundance analysis for cases and controls in Supplemental
Tables S2-S3 and S7-S8.
The primary limitations of the current study were the one-time

sample collection, oral wash method and sample size. Whether a
single sample—vs. repeated sampling—accurately reflects the
relevant oral microbiota for pancreatic cancer development is
unknown. However, several studies have shown that the oral
microbiome ascertained from oral wash samples is stable over time
[79–82]. In addition, within-person variation in the oral microbiome
is consistently lower than between-person variation [83]. This study
included a relatively large number of African-American cases for a
prospective study of rare cancer, yet still had only 122 cases of
incident pancreatic cancer in this group. In particular, statistical
power for stratified analyses (e.g. by smoking status or sex) was
limited. The BWHS study population is more highly educated than
the general US population and study participants are from across
the United States, while the SCCS study population is less highly
educated and participants reside in the southeastern US. While
these two studies are not population-based, they encompass a
wide range of demographics and geographic locals within the US.
Thus, these results are likely generalisable to other African
Americans, but this cannot be assumed as neither study
population represents all African-American individuals in the US.
Strengths include the study design, sequencing method and

control of confounding. As pancreatic cancer can be rapidly fatal
and case–control studies are susceptible to reverse causation, we
conducted a study nested within two prospective cohorts and
excluded cases that occurred within 2 years of provision of the
oral wash sample. We utilised shotgun metagenomic sequencing
for the detection of microbial taxa and functional profiling [58, 59].
Finally, detailed data collected in both cohort studies allowed for
consideration of a wide range of potential confounders.
In conclusion, this prospective study of African Americans

provides evidence of associations between known oral bacterial
pathogens and pancreatic cancer risk among non-smokers.
However, the findings did not reproduce previously reported
overall associations in a White population.
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