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Self-directed online machine learning for topology
optimization
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Topology optimization by optimally distributing materials in a given domain requires non-

gradient optimizers to solve highly complicated problems. However, with hundreds of design

variables or more involved, solving such problems would require millions of Finite Element

Method (FEM) calculations whose computational cost is huge and impractical. Here we

report Self-directed Online Learning Optimization (SOLO) which integrates Deep Neural

Network (DNN) with FEM calculations. A DNN learns and substitutes the objective as a

function of design variables. A small number of training data is generated dynamically based

on the DNN’s prediction of the optimum. The DNN adapts to the new training data and gives

better prediction in the region of interest until convergence. The optimum predicted by the

DNN is proved to converge to the true global optimum through iterations. Our algorithm was

tested by four types of problems including compliance minimization, fluid-structure optimi-

zation, heat transfer enhancement and truss optimization. It reduced the computational time

by 2 ~ 5 orders of magnitude compared with directly using heuristic methods, and out-

performed all state-of-the-art algorithms tested in our experiments. This approach enables

solving large multi-dimensional optimization problems.
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D istributing materials in a domain to optimize performance
is a significant topic in many fields, such as solid
mechanics, heat transfer, acoustics, fluid mechanics,

materials design and various multiphysics disciplines1. Many
numerical approaches2 have been developed since 1988, where
the problems are formulated by density, level set, phase field,
topological derivative, or other methods3. Typically, these
approaches use gradient-based optimizers, such as the Method of
Moving Asymptotes (MMA), and thus have various restrictions
on the properties of governing equations and optimization con-
straints to allow for fast computation of gradients. Because of the
intrinsic limitation of gradient-based algorithms, the majority of
existing approaches have only been applied to simple problems,
since they would fail as soon as the problem becomes complicated
such as involving varying signs on gradients or non-linear
constraints4. To address these difficulties, non-gradient methods
have been developed which play a significant role in overcoming
the tendency to be trapped in a local minimum5.

Non-gradient optimizers, also known as gradient-free or
derivative-free methods, do not use the gradient or derivative of
the objective function and have been attempted by several
researchers, most of which are stochastic and heuristic methods.
For instance, Hajela et al. applied Genetic Algorithm (GA) to a
truss structure optimization problem to reduce weight6. Shim and
Manoochehri minimized the material use subject to maximum
stress constraints by a Simulated Annealing (SA) approach7.
Besides these two popular methods, other algorithms have been
investigated as well, such as ant colonies8,9, particle swarms10,
harmony search11, and bacterial foraging12. Non-gradient meth-
ods have four advantages over gradient-based methods5: better
optima, applicable to discrete designs, free of gradients, and
efficient to parallelize. However, the major disadvantage of the
methods is their high computational cost from calling the
objective functions, which becomes prohibitively expensive for
large systems3. As a trade-off, sometimes searching space can be
reduced in order for less computation. For instance, pattern
search has been applied13,14 which is a non-heuristic method with
a smaller searching space but is more likely to be trapped in local
minima.

Machine learning has been used in sequential model-based
optimization (SMBO) to target at expensive objective function
evaluation15,16. For instance, Bayesian optimization (BO)17 uses a
Gaussian prior to approximate the conditional probability dis-
tribution of an objective p(y∣x) where y= F(x) is the objective and
x is the design variable (vector); then the unknown regions can be
estimated by the probability model. In Covariance Matrix
Adaptation Evolution Strategy (CMA-ES)18, a multivariable
Gaussian distribution is used to sample new queries. However, as
demonstrated later in the paper, these methods are not designed
for large-scale and high-dimensional problems, and thus do not
perform well in topology optimization for slow convergence19 or
requirement of shrinking design space20. Despite some
improvement to scale up these algorithms21,22, none of them has
shown superior performance in topology optimization to the best
of our knowledge.

There are some reports on leveraging machine learning to
reduce the computational cost of topology optimization23–31.
Most of them are generative models which predict solutions of
the same problem under different conditions, after being trained
by optimized solutions from gradient-based methods. For
example, Yu et al.30 used 100,000 optimal solutions to a simple
compliance problem with various boundary forces and the opti-
mal mass fractions to train a neural network consisting of Con-
volutional Neural Network (CNN) and conditional Generative
Adversarial Network (cGAN), which can predict near-optimal
designs for any given boundary forces. However, generative

models are not topology optimization algorithms: they rely on
existing optimal designs as the training data. The predictions are
restricted by the coverage of the training datasets. To consider
different domain geometries or constraints, new datasets and
networks would be required. Besides, the designs predicted by the
networks are close to, but still different from the optimal designs.
An offline learning method31 replaces some FEM calculations
during the optimization process with DNN’s prediction, yet gives
limited improvement especially considering that it requires the
solutions to similar problems for training.

Here we propose an algorithm called Self-directed Online
Learning Optimization (SOLO) to dramatically accelerate non-
gradient topology optimization. A DNN is used to map designs to
objectives as a surrogate model to approximate and replace the
original function which is expensive to calculate. A heuristic
optimization algorithm finds the possible optimal design
according to DNN’s prediction. Based on the optimum, new
query points are dynamically generated and evaluated by the
Finite Element Method (FEM) to serve as additional training
data. The loop of such self-directed online learning is repeated
until convergence. This iterative learning scheme, which can be
categorized as an SMBO algorithm, takes advantage of the
searching abilities of heuristic methods and the high computa-
tional speed of DNN. Theoretical convergence rate is derived
under some assumptions. In contrast to gradient-based methods,
this algorithm does not rely on gradient information of objective
functions of the topology optimization problems. This property
allows it to be applied to binary and discrete design variables in
addition to continuous ones. To show its performance, we test the
algorithm by two compliance minimization problems (designing
solid so that the structure achieves maximum stiffness for a given
loading), two fluid-structure optimization problems (designing
fluid tunnel to minimize the fluid pressure loss for a given inlet
speed), a heat transfer enhancement problem (designing a copper
structure to reduce the charging time of a heat storage system),
and three truss optimization problems (choosing the cross-
sectional areas of bars in a truss). Our algorithm reduces the
computational cost by at least two orders of magnitude compared
with directly applying heuristic methods including Generalized
Simulated Annealing (GSA), Binary Bat Algorithm (BBA), and
Bat Algorithm (BA). It also outperforms an offline version (where
all training data are randomly generated), BO, CMA-ES, and a
recent algorithm based on reinforcement learning32.

Results
Formulation and overview. Consider the following topology
optimization problem: in a design domain Ω, find the material
distribution ρ(x) that could take either 0 (void) or 1 (solid) at
point x to minimize the objective function F, subject to a volume
constraint G0 ≤ 0 and possibly M other constraints Gj ≤ 0
(j= 1,…,M)4. Mathematically, this problem can be written as
looking for a function ρ defined on the domain Ω,

min
domðρÞ¼Ω

FðρÞ

G0ðρÞ ¼
R
ΩρðxÞ dx � V0 ≤ 0

GjðρÞ≤ 0; j ¼ 1; :::;M

ρðxÞ ¼ 0 or 1; 8x 2 Ω

8><>: ;
ð1Þ

where V0 denotes the given volume. To solve such a problem
numerically, the domain Ω is discretized into finite elements to
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describe the density distribution by N nodal or elemental values,

min
ρ¼½ρ1;ρ2;:::;ρN �T

FðρÞ

G0ðρÞ ¼ ∑
N

i¼1
wiρi � V0 ≤ 0

GjðρÞ≤ 0; j ¼ 1; :::;M

ρi 2 S; i ¼ 1; :::;N

8>>><>>>: ;
ð2Þ

where wi denotes the weight of integration. The domain of ρi is
usually binary (S= {0, 1}), but more generally may take other
values such as discrete (S= {a0, a1,…, aK}) or continuous
(S= [0, 1]).

Our algorithm can be applied to Eq. (2) with binary, discrete or
continuous design variables. In this section, we discuss the case of
continuous design variables since it is most general.

In many applications, the objective function is quite compli-
cated and time-consuming to calculate, since it requires solving
partial differential equations by, for instance, FEM. To reduce the
number of FEM calculations and accelerate non-gradient
optimization, we build a DNN to evaluate the objective function.
In a naive way, the entire domain of the objective function should
be explored to generate the training data. This would incur a huge
number of FEM calculations. However, we only care about the
function values close to the global optimum and do not require
precise predictions in irrelevant regions. In other words, most
information about the objective function in the domain is
unnecessary except the details around the optimum. So we do not
need to generate data to train in those irrelevant regions.

An intuitive explanation is shown in Fig. 1a. In a 1D
minimization example, we can generate a small dataset to train
the DNN and refine the mesh around the minimum obtained
from the current prediction to achieve higher resolution at the
place of interest in the next iteration. After several batches, the
minimum of the predicted function would converge to that of the
objective function.

Figure 1b shows the flow diagram of the proposed algorithm. A
small batch of random vectors (or arrays) ρ satisfying the
constraints in Eq. (2) is generated. The corresponding objective
values F(ρ) are calculated by FEM. Then, ρ and F(ρ) are inputted
into the DNN as the training data so that the DNN has a certain
level of ability to predict the function values based on the design
variables. Namely, the output of the DNN f(ρ) approximates the

objective function F(ρ). Next, the global minimum of the
objective function f(ρ) is calculated by a heuristic algorithm.
After obtaining the optimized array ρ̂, more training data are
generated accordingly. Inspired by the concept of GA33, the
disturbance we add to the array is more than a small
perturbation, and is categorized as mutation, crossover, and
convolution. Mutation means replacing one or several design
variables with random numbers; crossover means exchanging
several values in the array; convolution means applying a
convolution filter to the variables (see “Methods” section for
details). Then constraints are checked and enforced. The self-
directed learning and optimization process stops when the value
of the objective function Fðρ̂Þ does not change anymore or the
computation budget is exhausted.

This algorithm can converge provably under some mild
assumptions. Given the total number of training data ntrain, for
any trained DNN with small training error, we have

½Fðρ̂Þ � F��2 ≤ ~O
Cffiffiffiffiffiffiffiffiffiffi
ntrain

p
� �

; ð3Þ

where C is a constant related to some inherent properties of F and
DNN, F* is the global minimum of F, and ~O omits log terms.
This result states that when our trained DNN can fit the training
data well, then our algorithm can converge to the global optimal
value. We provide convergence guarantee with a concrete
convergence rate for our proposed algorithm, and to the best of
our knowledge, this is the first non-asymptotic convergence result
for heuristic optimization methods using DNN as a surrogate
model. The detailed theory and its derivation are elaborated in
Supplementary Sect. 2.

In the following, we will apply the algorithm to eight classic
examples of four types (covering binary, discrete and continuous
variables): two compliance minimization problems, two fluid-
structure optimization problems, a heat transfer enhancement
problem, and three truss optimization problems.

Compliance minimization. We first test the algorithm on two
simple continuous compliance minimization problems. We show
that our algorithm can converge to the global optimum and is
faster than other non-gradient methods.

As shown in Fig. 2a, a square domain is divided evenly by a
4 × 4 mesh. A force downward is applied at the top-right edge; the

Fig. 1 Schematics of the proposed self-directed online learning optimization. a Schematic illustration of self-directed online training. The initial batch of
training data (light-blue dots) is randomly located. The DNN f1 (dashed light-blue line) trained on the first batch of data only gives a rough representation of
the true objective function F (solid black line). The second batch of training data (dark-blue dots) are generated by adding disturbance (orange curve) to
the minimum of f1. After trained with two batches, the DNN f2 (dashed dark-blue line) is more refined around the minimum (the region of interest), while
remains almost the same at other locations such as the right convex part. f2 is very close to finding the exact global minimum point. b Flow diagram of the
algorithm.
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bottom left edge is set as a roller (no vertical displacement); the
right boundary is set to be symmetric. There are 25 nodal design
variables to control the material distribution, i.e., density ρ. Our
goal is to find the density ρi(i= 1, 2,…, 25), subject to a volume
constraint of 0.5, such that the elastic energy E of the structure is
minimized, equivalent to minimizing compliance or the vertical
displacement where the external force is applied. Formally,

min
ρ2½0;1�N

eEðρÞ ¼ EðρÞ
EðρOÞ

; ð4Þ

where ρO= [0.5, 0.5,…, 0.5]T. The constraint is

w � ρ≤ 0:5; ð5Þ
where w denotes the vector of linear Gaussian quadrature. In Eq. (4),
we use the dimensionless elastic energy eEðρÞ, defined as the ratio of
elastic energy of the structure with any given material distribution to
that of the reference uniform distribution (the material density is 0.5
everywhere in the domain). The elastic energy is calculated by FEM
from the Young’s modulus in the domain, which is related to density
by the popular Simplified Isotropic Material with Penalization
(SIMP) method 34,

YðρðxÞÞ ¼ Y0ρðxÞ3 þ ε 1� ρðxÞ3� �
; ð6Þ

where Y and Y0 denote the Young’s moduli as a variable and a
constant, respectively, ε is a small number to avoid numerical

singularity and ρ(x) is the material density at a given location x
interpolated linearly by the nodal values of the element.

For benchmark, we use a traditional gradient-based algorithm,
the Method of Moving Asymptotes (MMA), to find the optimized
solution (Fig. 2d).

For our proposed method, we use 100 random arrays to
initialize the DNN. Then Generalized Simulated Annealing
(GSA) is used to obtain the minimum ρ̂ based on the DNN’s
prediction. Afterward, 100 additional samples will be generated
by adding disturbance to ρ̂ including mutation and crossover.
Such a loop continues until convergence.

We compare our proposed method, Self-directed Online
Learning Optimization (SOLO), with five other algorithms. In
Fig. 2b, SOLO converges at ntrain= 501. “Offline” denotes a naive
implementation to couple DNN with GSA, which trains a DNN
offline by ntrain random samples and then uses GSA to search for
the optimum, without updating the DNN. As expected, the elastic
energy decreases with the number of accumulated training
samples ntrain. This is because more training data will make the
DNN estimate the elastic energy more accurately. Yet it converges
much slower than SOLO and does not work well even with
ntrain= 2000. More results are shown in Supplementary Fig. 1. SS
denotes Stochastic Search, which uses current minimum (the
minimum of existing samples) to generate new searching
samples; the setup is the same as SOLO except that the base
design ρ̂ is obtained from the current minimum instead of a
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Fig. 2 Setup and results of a compliance minimization problem with 5 × 5 design variables. a Problem setup: minimizing compliance subject to a
maximum volume constraint. b Best dimensionless energy with a total of ntrain accumulated training samples. SOLO denotes our proposed method where
the cross “X” denotes the convergence point (presented in e), “Offline” denotes training a DNN offline and then uses GSA to search for the optimum
without updating the DNN, whose results are independent so they are plotted as circles instead of a curve, SS denotes Stochastic Search, which is the same
as SOLO except that ρ̂ in each loop is obtained by the minimum of existing samples, CMA-ES denotes Covariance Matrix Adaptation Evolution Strategy,
BO denotes Bayesian Optimization. SOLO converges the fastest among these methods. c Energy prediction error of ρ̂ relative to FEM calculation of the
same material distribution. e(ρ̂) denotes DNN’s prediction, E(ρ̂) denotes FEM’s result. d Optimized design produced by the gradient-based method.eE ¼ 0:293. e Optimized design produced by SOLO. ntrain= 501 and eE ¼ 0:298. f Optimized design produced by SOLO. ntrain= 5782 and eE ¼ 0:293. In d–f
dark red denotes ρ= 1 and dark blue denotes ρ= 0, as indicated by the right color scale bar.
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DNN. Comparing SS with SOLO, we can conclude that the DNN
in SOLO gives a better searching direction than using existing
optima. CMA-ES denotes Covariance Matrix Adaptation Evolu-
tion Strategy with a multivariable Gaussian prior. BO denotes
Bayesian Optimization with Gaussian distribution as the prior
and expected improvement (EI) as the acquisition function. Our
method outperforms all these methods in terms of convergence
speed. CMA-ES ranks the second with an objective value 3%
higher than SOLO at ntrain= 2000.

To assess inference accuracy in online and offline learning, we
compare the DNN-predicted energy with that calculated by FEM
on the same material distribution. The relative error is defined by
½eðρ̂Þ � Eðρ̂Þ�=Eðρ̂Þ where eðρ̂Þ and Eðρ̂Þ denote energy calculated
by DNN and FEM, respectively. The energy prediction error is
shown in Fig. 2c. When ntrain is small, both networks over-
estimate the energy since their training datasets, composed of
randomly distributed density values, correspond to higher energy.
As ntrain increases, the error of SOLO fluctuates around zero since
solutions with low energy are fed back to the network.

The solution of SOLO using 501 samples is presented in
Fig. 2e, whose energy is 0.298, almost the same as that of the
benchmark in Fig. 2d. With higher ntrain, the solution from SOLO
becomes closer to that of the benchmark (the evolution of
optimized structures is shown in Supplementary Fig. 2). In Fig. 2f,
the energy is the same as the benchmark. The material
distribution in Fig. 2f does not differ much from that in Fig. 2e.
In fact, using only 501 samples is sufficient for the online training
to find the optimized material distribution. We find that in our
problem and optimization setting, the GSA needs about 2 × 105

function evaluations to obtain the minimum of DNN. Since the
DNN approximates the objective function, we estimate GSA
needs the same number of evaluations when applying to the
objective, then it means 2 × 105 FEM calculations are required if
directly using GSA. From this perspective, SOLO reduces the
number of FEM calculations to 1/400.

A similar problem with a finer mesh having 121 (11 × 11)
design variables is shown in Fig. 3a. The benchmark solution
from MMA is shown in Fig. 3d, whose energy is 0.222. The trends
in Fig. 3b, c are similar to those in Fig. 2 with a coarse mesh.
Figure 3b shows that SOLO converges at ntrain= 10,243, givingeE ¼ 0:228. Our method again outperforms CMA-ES, the second-
best algorithm according to Fig. 2b. The material distribution
solutions are shown in Fig. 3e, f. The configuration of SOLO is the
same as that for the coarse mesh except that each loop has 1000
incremental samples and GSA performs 4 × 106 function
evaluations. Compared with directly using GSA, SOLO reduces
the number of FEM calculations to 1/400 as well. The evolution of
optimized structures is shown in Supplementary Fig. 3.

Fluid-structure optimization. In the following two problems, we
leverage our algorithm to address binary fluid-structure optimi-
zation. We want to show that our method outperforms the
gradient-based method and a recent algorithm based on rein-
forcement learning32.

As shown in Fig. 4a, the fluid enters the left inlet at a given
velocity perpendicular to the inlet, and flows through the channel
bounded by walls to the outlet where the pressure is set as zero. In
the 20 × 8 mesh, we add solid blocks to change the flow field to
minimize the friction loss when the fluid flows through the
channel. Namely, we want to minimize the normalized inlet
pressure

min
ρ2f0;1gN

ePðρÞ ¼ PðρÞ
PðρOÞ

; ð7Þ

where P denotes the average inlet pressure and ρO= [0, 0,…, 0]T

indicates no solid in the domain. As for the fluid properties, we
select a configuration with a low Reynolds number for stable
steady solution35, specifically,

Re ¼ DvL
μ

¼ 40; ð8Þ

where D denotes fluid density, μ denotes viscosity, v denotes inlet
velocity and L denotes inlet width (green line).

For the benchmark, we use a typical gradient-based algorithm
which adds an impermeable medium to change binary variables
to continuous ones36. It uses the adjoint method to derive
gradients and MMA as the solver. The solution is presented in
Fig. 4c. The solid blocks form a ramp at the left bottom corner for
a smooth flow expansion.

We use two variants of our algorithm. One is denoted as
SOLO-G, a greedy version of SOLO where additional 10 samples
produced in each loop are all from the DNN’s prediction. The
initial batch is composed of a solution filled with zeros and
160 solutions each of which has a single element equal to one and
others equal to zero. The pressure values corresponding to these
designs are calculated by FEM. These 161 samples are used to
train a DNN. Next, Binary Bat Algorithm (BBA) is used to find
the minimum of the DNN. The top 10 solutions (after removing
repeated ones) encountered during BBA searching will be used as
the next batch of training data. The other variant, denoted as
SOLO-R, is a regular version of SOLO where each loop has 100
incremental samples. 10 of them are produced in the same way as
SOLO-G whereas the rest 90 are generated by adding disturbance
to the best solution predicted by the DNN. Similar to the
compliance minimization problems, the disturbance includes
mutation and crossover.

As shown in Fig. 4b, SOLO-G and SOLO-R converge to the
same objective function value eP ¼ 0:9567 at ntrain= 286 and
ntrain= 2148, respectively. Their solutions are equivalent, shown
in Fig. 4d and e. Intermediate solutions from SOLO-G are shown
in Supplementary Fig. 4. We obtain the optimum better than the
gradient-based method (eP ¼ 0:9569) after only 286 FEM
calculations. For comparison, a recent topology optimization
work based on reinforcement learning used the same geometry
setup and obtained the same solution as the gradient-based
method after thousands of iterations32; our approach demon-
strates better performance. Compared with directly using BBA
which requires 108 evaluations, SOLO-G reduces FEM calcula-
tions by orders of magnitude to about 1/(3 × 105). To account for
randomness, we repeat the experiments another four times and
the results are similar to Fig. 4b (Supplementary Figs. 5 and 6).

We also apply our algorithm to a finer mesh, with 40 × 16 design
variables (Fig. 5a). SOLO-G converges at ntrain= 1912, shown in
Fig. 5b. Our design (Fig. 5d, eP ¼ 0:8062) is found to be better than
the solution from the gradient-based algorithm (Fig. 5c,eP ¼ 0:8065). Intermediate solutions from SOLO-G are shown in
Supplementary Fig. 7. Compared with directly using BBA which
needs 2 × 108 evaluations, SOLO-G reduces the number of FEM
calculations to 1/105. Similar trends can be observed when repeating
the experiments (Supplementary Fig. 7). It is interesting to note that
the optimum in Fig. 5d has two gaps at the 7th and 12th columns. It
is a little counter-intuitive, since the gradient-based method gives a
smooth ramp (Fig. 5c). We try filling the gaps and find that their
existence indeed reduces pressure (Supplementary Fig. 8), which
demonstrates how powerful our method is.

Heat transfer enhancement. In this example, we would like to
solve a complicated problem that gradient-based methods are
difficult to address. Phase change materials are used for energy
storage by absorbing and releasing latent heat when the materials
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change phases, typically between solid and liquid. Due to their
simple structure and high heat storage capacity, they are widely
used in desalination, buildings, refrigeration, solar system, elec-
tronic cooling, spacecraft and so forth37. However, commonly
used non-metallic materials suffer from very low thermal con-
ductivity. A popular solution is to add high conductivity material
(such as copper) as fins to enhance heat transfer38. Topology
optimization is implemented to optimize the geometry of fins. To
deal with such transient problems, current gradient-based
methods have to simplify the problem by using a pre-
determined time period and fixed boundary conditions39–42. By
contrast, in real applications, these conditions depend on user
demand and environment, or even couple with the temperature
field of the energy storage system43–47. Therefore, problems with
more complex settings need to be addressed.

We consider a heat absorption scenario where time is variant
and the boundary condition is coupled with the temperature field.
As shown in Fig. 6a, copper pipes containing heat source are
inserted in a phase change material, paraffin wax RT54HC48; the
heat source can be fast-charging batteries for electric vehicles or
hot water for residential buildings. Considering symmetry, the
problem is converted to a 2D problem in Fig. 6b. We fill the
domain with wax to store heat and with copper to enhance heat
transfer. The material distribution ρ(x)∈ {0, 1} (1 being copper
and 0 being wax) is represented by a 10 × 10 mesh. Specifically, a
continuous function is interpolated by Gaussian basis functions

from the 10 × 10 design variables and then converted to binary
values by a threshold (see Methods for details). Our goal is to find
the optimal ρ to minimize the time to charge the system with a
given amount of heat

min
ρ2½0;1�N

etðρÞ ¼ tðρÞ
tðρOÞ

; ð9Þ

where N= 100, ρO= [0, 0,…, 0]T means no copper inside the
design domain, and t(ρ) is the time to charge the system with Q0

amount of heat, expressed byZtðρÞ
0

qðρ; tÞdt ¼ Q0; ð10Þ

subject to the maximum heat flux constraint at the boundary
(green curve in Fig. 6b)

qðρ; tÞ≤ q0; ð11Þ
the constraint of the maximum temperature of the domain,

Tðρ; q; x; tÞ≤T0; ð12Þ
and given copper usage, i.e., the volume constraint of copper,R

ΩρðxÞdxR
Ωdx

¼ 0:2: ð13Þ
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Fig. 3 Setup and results of a compliance minimization problem with 11 × 11 design variables. a Problem setup: minimizing compliance subject to
maximum volume constraint. b Best dimensionless energy with a total of ntrain accumulated training samples. SOLO denotes our proposed method where
the cross “X” denotes the convergence point (presented in e), “Offline” denotes training a DNN offline and then uses GSA to search for the optimum
without updating the DNN, whose results are independent so they are plotted as circles instead of a curve, CMA-ES denotes Covariance Matrix Adaptation
Evolution Strategy. SOLO converges the fastest among these methods. c Energy prediction error of ρ̂ relative to FEM calculation of the same material
distribution. e(ρ̂) denotes DNN’s prediction, E(ρ̂) denotes FEM’s result. d Optimized design produced by the gradient-based method. eE ¼ 0:222. e
Optimized design produced by SOLO. ntrain= 10,243 and eE ¼ 0:228. f Optimized design produced by SOLO. ntrain= 77,691 and eE ¼ 0:222. In d–f dark red
denotes ρ= 1 and dark blue denotes ρ= 0, as indicated by the right bar.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27713-7

6 NATURE COMMUNICATIONS |          (2022) 13:388 | https://doi.org/10.1038/s41467-021-27713-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Here Q0, q0, and T0 are preset constants. Obviously, the bottom
left boundary (inner side of copper pipes) has the highest
temperature during charging, thus we only need to consider the
temperature constraint at this boundary. Physically, there are one or
two charging steps: the system is charged at heat flux q0 until the
boundary temperature reaches T0 or the total heat flow reaches Q0

(whichever first), and if it is the former case, the heat flux is reduced
to maintain the boundary temperature at T0 until the total heat flow
requirement is satisfied. In practice, we choose parameters such that
the system will go through two steps for sure.

To solve the problem with objective Eq. (9) and constraints in
Eqs. (11)–(13), our method SOLO is initialized by 500 random

Fig. 4 Setup and results of a fluid-structure optimization problem with 20 × 8 design variables. a Problem setup: minimizing pressure drop through the
tunnel. The vertical green line on the left denotes the inlet while the vertical blue line on the right denotes the outlet. b Dimensionless inlet pressure versus
ntrain, the number of accumulated training samples. SOLO-G denotes a greedy version of our proposed method, SOLO-R denotes the regular version of our
proposed method. The horizontal dashed line denotes the solution from the gradient-based method. The cross “X” denotes the convergence point
(presented in d and e, respectively). c Optimized design obtained by the gradient-based method. eP ¼ 0:9569. d Optimized design obtained by SOLO-G.
ntrain= 286 and eP ¼ 0:9567. e Optimized design obtained by SOLO-R. ntrain= 2148 and eP ¼ 0:9567. In c–e black denotes ρ= 1 (solid) and white denotes
ρ= 0 (void). The solutions in d and e are equivalent since the flow is blocked by the black squares forming the ramp surface and the white squares within
the ramp at the left bottom corner are irrelevant.

Fig. 5 Setup and results of a fluid-structure optimization problem with 40 × 16 design variables. a Problem setup: minimizing pressure drop through the
tunnel. b Dimensionless inlet pressure versus ntrain, the number of accumulated training samples. SOLO-G denotes a greedy version of our proposed
method, where the cross “X” denotes the convergence point (presented in d). The horizontal dashed line denotes the solution from the gradient-based
method. c Optimized design obtained by the gradient-based method. eP ¼ 0:8065. d Optimized design obtained by SOLO-G. ntrain= 1912 and eP ¼ 0:8062.
In c, d black denotes ρ= 1 (solid) and white denotes ρ= 0 (void). The SOLO-G result in d has two gaps at the 7th and 12th columns, while the gradient-
based result in c gives a smooth ramp. We try filling the gaps and find that their existence indeed reduces pressure, which demonstrates the powerfulness
of our method.
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samples to train a DNN. Bat Algorithm (BA) is then used to find
the minimum of the DNN, based on which additional 200 samples
are generated in each loop by mutation and convolution. Two
gradient-based methods are used as baselines to compare with
our algorithm: one is to solve Problem (9)–(13) directly by
gradient descent, denoted as “Direct”; the other is to simplify this
problem to a steady-state problem42, denoted as “Approximated”.
In Fig. 6c, SOLO converges at ntrain= 20,860 (marked by a cross
“X”) with lower et than other methods. It appears counter-
intuitive that the solution of SOLO, shown in Fig. 6d, has some
copper islands isolated from major branches. We tried removing
these islands and adding more copper materials to the major
branches to maintain copper volume, yet the variants showed
worse performance, as shown in Supplementary Fig. 10. “Direct”
gives the worst solution in Fig. 6e. “Approximated” yields a good
solution with a tree structure, as shown in Fig. 6f; since it does not
solve the same problem as the other two methods, we do not
consider its relation with ntrain and represent it by a horizontal
line in Fig. 6c.

Our method gives a good solution after 20,860 FEM
calculations, while BA is estimated to need 4 × 108 calculations.
In summary, our method outperforms the other two methods and
reduces the number of FEM calculations by over four orders of
magnitude compared with BA.

Truss optimization. In this example, we test the scalability of
SOLO with over a thousand design variables. Also, we will
compare it with a heuristic method, BA, to provide direct

evidence that SOLO can reduce the number of FEM computa-
tions by over two orders of magnitude.

Truss structures are widely used in bridges, towers, buildings,
and so forth. An exemplary application, an antenna tower, is
shown in Fig. 7a. Researchers have been working on optimizing
truss structures from different perspectives. A classic truss
optimization benchmark problem is to optimize a structure with
72 bars49–52, as shown in Fig. 7b with four repeated blocks, so as
to minimize the weight of the bars subject to displacement and
tension constraint. Following this benchmark problem, we set the
goal to optimize the size of each bar (the bars can all have
different sizes) to minimize total dimensionless weight

min
ρ2fa1;a2;:::;a16gN

eWðρÞ ¼ WðρÞ
WðρmaxÞ

¼ ∑N
i¼1 ρiLiγi
WðρmaxÞ

; ð14Þ

where ρi, Li, and γi are the cross-sectional area, length, and unit
weight of the ith bar, respectively; ρmax uses the largest cross-
sectional area for all bars; N= 72 is the number of bars. Each bar
is only allowed to choose from 16 discrete cross-sectional area
values a1, a2,…, a16, to represent standardized components in
engineering applications. The tension constraint requires all bars
to not exceed the maximum stress

jσ ij≤ σ0; i ¼ 1; 2; :::;N: ð15Þ

The displacement constraint is applied to the connections of the
bars: the displacement in any direction is required to be lower

Fig. 6 Setup and results of a heat transfer enhancement problem with 10 × 10 design variables. a Engineering background: a group of copper pipes is
inserted in a phase change material. Because of symmetry, we only need to consider 1/8 of the unit cell (dark-blue area in the top right corner). b Problem
setup: minimizing the time to charge the system with a given amount of heat, subject to heat flux, temperature, and volume constraints. The black dots
denote locations of design variables. c Dimensionless charging time versus ntrain, the number of accumulated training samples. SOLO denotes our proposed
method, where the cross “X” denotes the convergence point (presented in d). “Direct” denotes solving the problem directly by gradient descent.
“Approximated” denotes simplifying this problem to a steady-state problem. d Optimized design obtained by SOLO. et ¼ 0:0137. e Optimized design
obtained by “Direct”. ntrain= 24,644 andet ¼ 0:0275. f Optimized design obtained by “Approximated”.et ¼ 0:0203. In d–f black denotes ρ= 1 (copper) and
white denotes ρ= 0 (wax). The SOLO result in d has islands isolated from major branches, while the “Approximated” result in f gives a connected
structure. We try combining the islands to be part of major branches and find that the existence of isolated islands indeed reduces time, which
demonstrates the powerfulness of our method.
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than a threshold

jjΔxijj1 ≤ δ0; i ¼ 1; 2; :::;Nc; ð16Þ

where Nc is the number of connections.
Now we have an optimization problem with objective Eq. (14)

subject to stress constraint Eq. (15) and displacement constraint
Eq. (16). In addition to the popular 72-bar problem, we add more
repeated blocks to the structure to generate two more problems,
with 432 and 1008 bars. Geometric symmetry is not considered
while solving the problems. Therefore, the design space goes up to
161008 ≈ 101214, which is extremely huge. For the three problems,
SOLO is initialized by 100, 500, and 1000 samples, respectively.
The number of incremental samples per loop is 10% of the
initialization samples. 10% of incremental samples are the optima
obtained by BA based on the DNN’s prediction, and the rest 90%
are generated by mutation of the best solution predicted by
the DNN.

The results are shown in Fig. 7c–e. To reach the same objective
weight, BA needs over 102 times of calculations of SOLO. The
difference becomes even larger when the number of variables
increases. These examples demonstrate the scalability of SOLO by
showing higher efficiency in computation, especially with a large
number of design variables.

Discussion
Topology optimization is an important problem with broad
applications in many scientific and engineering disciplines. Sol-
ving non-linear high-dimensional optimization problems requires
non-gradient methods, but the high computational cost is a major
challenge. We proposed an approach of self-directed online
learning optimization (SOLO) to dramatically accelerate the
optimization process and make solving complex optimization
problems possible.

We demonstrated the effectiveness of the approach in solving
eight problems of four types, i.e., two compliance minimization
problems, two fluid-structure optimization problems, a heat
transfer enhancement problem, and three truss optimization
problems. For the compliance problems with 25 and 121 con-
tinuous design variables, our approach converged and produced
optimized solutions same as the known optima with only 501
and 10,243 FEM calculations, respectively, which are about 1/
400 of directly using GSA and FEM without DNN based on our
estimation. For the fluid problems with 160 and 640 binary
variables, our method (SOLO-G) converged after 286 and 1912
FEM calculations, respectively, with solutions better than the
benchmark. It used less than 1/105 of FEM calculations com-
pared with directly applying BBA to FEM, and converged much
faster than another work based on reinforcement learning.
In the heat transfer enhancement example, we investigated a

a Forceb c 72 bars
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0.3 SOLO
BA

102 times

d 432 bars
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0.4
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SOLO
BA

e 1,008 bars

104 105 106 107 108

0.15
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103 times

Fig. 7 Setup and results of three truss optimization problems with different numbers of bars (equal to the numbers of design variables). a Illustration
of an antenna tower, an exemplary application of truss structures. b Illustration of the problem setup: minimizing total weight through changing the size of
each bar, subject to stress and displacement constraints. The block is repeated until the given number of bars is reached. c–e Dimensionless weight eW
versus the number of accumulated training samples ntrain. SOLO denotes our proposed method. BA denotes Bat Algorithm. The numbers of bars for these
three sub-figures are 72, 432, and 1008, respectively. Each experiment is repeated five times; the curves denote the mean and the shadows denote the
standard deviation.
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complicated, transient and non-linear problem. Our method
gave a solution that outperformed other baselines after 20,860
FEM calculations, which was estimated to be four orders of
magnitude less than BA. Similar to other SMBO methods,
overhead computation was introduced (by training DNNs and
finding their optima), but it was almost negligible (see the time
profile in Supplementary Table 1) which is attractive for real-
world applications where new designs want to be developed and
tested. In these examples, we estimated the amount of com-
putation of directly using heuristic algorithms, which showed
that our approach led to 2–5 orders of magnitude of compu-
tation reduction. In addition to this estimation, we applied BA
to the original objectives in the three truss optimization pro-
blems and observed 2–4 orders of magnitude of calculation
reduction using our approach.

Our algorithm is neat and efficient, and has great potential for
large-scale applications. We bring a new perspective for high-
dimensional optimization by embedding deep learning in opti-
mization methods. More techniques, such as parallel FEM com-
putation, uncertainty modeling, and disturbance based on
sensitivity analysis, can be incorporated to enhance the
performance.

Methods
Enforcement of volume constraint. Compliance and heat transfer problems have
volume constraints. The latter will be detailed in Section Interpolation of design
variables, thus we only discuss the former here. In the two compliance problems, all
matrices representing the density distribution ρ have the same weighted average
∑N

i¼1 wiρi ¼ V0 due to the volume constraint where wi denotes the weight of linear
Gaussian quadrature. A matrix from the initial batch is generated by three steps:

1. Generate a random matrix with elements uniformly distributed from 0 to 1.
2. Rescale the array to enforce the predefined weighted average.
3. Set the elements greater than one, if any, to one and then adjust those

elements less than one to maintain the average.

Matrices for the second batch and afterward add random disturbance to
optimized solutions ρ̂ and then go through Step 2 and Step 3 above to make sure
the volume satisfies the constraint.

Finite Element Method (FEM) and gradient-based baselines. The objective
function values of material designs are calculated by FEM as the ground truth to
train the DNN. In the compliance and fluid problems, the meshes of FEM are the
same as the design variables. In the heat problem, the meshes are finer.
Numerical results are obtained by COMSOL Multiphysics 5.4 (except the truss
problems). Solutions from gradient-based methods (including “Approximated”)
are all solved by MMA via COMSOL with optimality tolerance as 0.001. In the
fluid problems, the gradient-based baseline method produces a continuous array,
and we use multiple thresholds to convert it to binary arrays and recompute
their objective (pressure) to select the best binary array. In the heat problem, the
“Approximated” method uses the same resolution as the other two methods
(SOLO and “Direct”) for a fair comparison. Specifically, we apply a Helmholtz
filter53, whose radius is half of the minimum distance of two design variable
locations, to yield a mesh-independent solution. The solution is a continuous
array; we use a threshold to convert it to a binary array which satisfies the
volume constraint in Eq. (14).

Interpolation of design variables. In the two compliance problems and the heat
problem, we use a vector (or matrix) ρ to represent a spacial function ρ(x).
Interpolation is needed to obtain the function ρ(x) for FEM and plotting. Given
design variables ρ ¼ ½ρ1; ρ2; :::; ρN �T , we get the values ρ(x) by two interpolation
methods. For the compliance problems, we use bilinear interpolation54. Suppose
x= (x, y) is within a rectangular element whose nodal coordinates are (x1, y1), (
x1, y2), (x2, y1), (x2, y2), the interpolated function value can be calculated by

ρðx; yÞ ¼
x2 � x x � x1
� � Fðx1; y1Þ Fðx1; y2Þ

Fðx2; y1Þ Fðx2; y2Þ

� �
y2 � y

y � y1

� �
ðx2 � x1Þðy2 � y1Þ

:
ð17Þ

For the heat problem, a continuous function �ρðxÞ 2 ½0; 1� (which will later be
converted to a binary function which takes 0 or 1) is interpolated by Gaussian basis
functions13,20:

�ρðx; yÞ ¼ ∑
N

i¼1
λiϕðx; xiÞ þ a0 þ a1x þ a2y; ð18Þ

where ϕðx; xiÞ ¼ e�ðx�xiÞ2=d2 (d is a preset distance), and λi, a0, a1, a2 are parameters
to be determined. The following constraints are needed to guarantee a unique
solution

∑
N

i¼1
λi ¼ 0; ∑

N

i¼1
λixi ¼ 0; ∑

N

i¼1
λiyi ¼ 0: ð19Þ

Expressing the above equations by a matrix form, we have

ϕ x1; x1
	 


¼ ϕ x1; xN
	 


1 x1 y1

..

. . .
. ..

. ..
. ..

. ..
.

ϕ xN ; x1
	 


¼ ϕ xN ; xN
	 


1 xN yN
1 ¼ 1 0 0 0

x1 ¼ xN 0 0 0

y1 ¼ yN 0 0 0

266666666664

377777777775

λ1

..

.

λN
a0
a1
a2

26666666664

37777777775
¼

ρ1

..

.

ρN
0

0

0

26666666664

37777777775
; ð20Þ

abbreviated as Φλ ¼ ρ
0

� �
. We get λ ¼ Φ�1 ρ

0

� �
and interpolate �ρðxÞ by Eq. (18).

Then we set a threshold ρthres to convert the continuous function �ρðxÞ to a binary
one ρ(x)∈ {0, 1}, i.e., ρ(x)= 1 if �ρðxÞ≥ ρthres and ρ(x)= 0 otherwise. The threshold
ρthres is controlled to satisfy the copper volume constraint Eq. (13).

Deep Neural Network (DNN). The architectures of the DNN used in this paper
are presented in Fig. 8. The design variable ρ is flattened to a 1D vector as the input
to DNN. All inputs are normalized before training and we introduce batch nor-
malization (BN)55 within the network as regularization. The output of DNN is
reciprocal of the objective function (energy, pressure, charging time or weight) to
give better resolution at lower objective values. For the rest of this paper, we regard
the DNN to approximate the objective function for simplicity. To optimize the
DNN training process, we apply ADAM56 as the optimizer implemented on the
platform of PyTorch 1.8.0 57. The learning rate is 0.01. The loss function is set as
Mean Square Error (MSE)58. All models are trained for 1000 epochs with a batch
size of 1024 (if the number of training data is <1024, all the data will be used as one
batch).

Random generation of new samples from a base design. After calculating the
optimized array ρ̂, more training data are generated by adding disturbance to it.
As shown in Fig. 9, there are three kinds of disturbance: mutation, crossover, and
convolution. They are all likely to change the weighted average of an array, thus
the enforcement of volume constraint will be applied when necessary. Mutation
means mutating several adjacent cells in the optimized array, i.e., generating
random numbers from 0 to 1 to replace the original elements. In the 2D example
shown in Fig. 9a, the numbers in a 2-by-2 box are set as random. Crossover
denotes the crossover of cells in the array ρ̂ and is achieved by the following
steps:

1. Assign a linear index to each element in the array.
2. Randomly pick several indices.
3. Generate a random sequence of the indices.
4. Replace the original numbers according to the sequence above. As shown in

Fig. 9b, indices are assigned sequentially from left to right and from top to
bottom. The indices we pick in Step 2 are 3, 4, and 8; the sequence generated
in Step 3 is 4, 8, and 3.

In the two compliance problems, the ways to generate a new input matrix based
on ρ̂ and their possibilities are:

(a) Mutation: mutating one element in ρ̂ (10%);
(b) Mutation: mutating a 2 × 2 matrix in ρ̂ (10%);
(c) Mutation: mutating a 3 × 3 matrix in ρ̂ (20%);
(d) Mutation: mutating a 4 × 4 matrix in ρ̂ (20%);
(e) Crossover: choosing an integer n from one to the number of total elements,

selecting n cells in ρ̂ and permuting them (20%);
(f) Generating a completely random matrix like the initial batch (20%).

In the fluid problem with 20 × 8 mesh, i.e., SOLO-R, the ways are the same as
previous ones except a threshold is needed to convert the continuous array into a
binary one. The threshold has a 50% probability to be β41 where β1 is uniformly
sampled from [0, 1], and has a 50% probability to be the element-wise mean of ρ̂.
In the heat problem, crossover is replaced by convolution. It is the same as the
compliance problems except that (e) above is replaced by

(g) Convolution: substituting a submatrix of the array, whose size and the
corresponding probability is the same as (a–d), with a same convolution (the
output has the same size as the input submatrix) between the submatrix and
2 × 2 kernel whose element is uniformly sampled from [0, 1].

In the truss optimization problems, the design variable ρ is purely one-dimensional
and can no longer be represented as a matrix. Therefore, we only use mutation.
First, β2 is uniformly sampled from [0, 1] to indicate the ratio of elements to be
mutated in ρ̂, and then those elements are randomly selected to add γ to
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themselves; γ is uniformly sampled from [−1, 1]. Then the continuous variable is
scaled and converted to the closest discrete one.

Generalized Simulated Annealing (GSA). Simulated Annealing (SA) is a sto-
chastic method to determine the global minimum of a objective function by

simulating the annealing process of a molten metal59. GSA is a type of SA with
specific forms of visiting function and acceptance probability60. Assuming objective

ρ̂ ¼ arg min
ρ2½0;1�N

hðρÞ; ð21Þ

we do the following:
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BatchNorm1d
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Linear, 512×256
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Fig. 8 Architectures of DNN. The input is a design vector ρ and the output is the predicted objective function value f(ρ). “Linear” presents a linear
transformation and “BatchNorm1d” denotes one-dimensional batch normalization used to avoid internal covariate shift and gradient explosion for stable
training55. “LeakyReLU” is an activation function extended from ReLU with activated negative values. “Dropout” is a regularization method to prevent
overfitting by randomly masking nodes68. a The DNN in the compliance and fluid problems. b The DNN in the heat problem. Two architectures are used in
this problem. At the 100th loop and before, B= 1, C= 512, and the Linear layer in the dashed box is 512 × 256. At the 101st loop and afterwards, B= 4,
C= 512 and the 4 Linear layers are 256 × 512, 512 × 512, 512 × 512 and 512 × 256, respectively. c The DNN in the truss optimization problems. B= 1. C= 512
when N= 72/432; C= 1024 when N= 1008.
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Fig. 9 Illustration of mutation and crossover. a An example of mutation: some adjacent cells (in the red box) are replaced with random numbers. b An
example of crossover: several cells (in the red boxes) are exchanged. c An example of convolution: several cells (in the red box) are convoluted with a
kernel (in the blue cell). The volume constraint may be enforced at the next step, not shown here.
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1. Generate an initial state ρð0Þ ¼ ½ρð0Þ1 ; ρð0Þ2 ; :::; ρð0ÞN �T randomly and obtain its
function value E(0)= h(ρ(0)). Set parameters T(0), tmax, qv, qa.

2. For artificial time step t= 1 to tmax,

(a) Generate a new state ρ(t)= ρ(t−1)+ Δρ(t), where the probability
distribution of Δρ(t) follows the visiting function

gðΔρðtÞÞ / ½TðtÞ�� N
3�qv

1þ ðqv � 1Þ ½ΔρðtÞ �2

½TðtÞ�
2

3�qv

� � 1
qv�1þN�1

2

: ð22Þ

where T denotes the artificial temperature calculated by

TðtÞ ¼ Tð0Þ 2qv�1 � 1

ð1þ tÞqv�1 � 1
: ð23Þ

(b) Calculate the energy difference

ΔE ¼ EðtÞ � Eðt�1Þ ¼ hðρðtÞÞ � hðρðt�1ÞÞ: ð24Þ
(c) Calculate the probability to accept the new state

p ¼ min 1 ; 1� 1� qa
	 
 t

TðtÞΔE
� � 1

1�qa

( )
: ð25Þ

Determine whether to accept the new state based on the probability, if
not, ρ(t)= ρ(t−1).

3. Conduct a local search to refine the state.

Since compliance minimization has a volume constraint, the objective function
used in the optimization process is written as

hðρÞ ¼ f ðρÞ þ cðw � ρ� V0Þ2; ð26Þ
where c is a constant to transform the constrained problem to an
unconstrained problem by adding a penalty term. GSA is implemented via the
SciPy package with default parameter setting. For more details, please refer to its
documentation61.

Bat Algorithm (BA). Bat Algorithm (BA) is a heuristic optimization algorithm,
inspired by the echolocative behavior of bats62. This algorithm carries out the
search process using artificial bats mimicking the natural pulse loudness, emission
frequency, and velocity of real bats. It solves the problem

ρ̂ ¼ arg min
ρ2½0;1�N

hðρÞ: ð27Þ

We adopt a modification63 and implement as follows:

1. Generate M vectors ρ(0, 1), ρ(0, 2),…, ρ(0,M). We use ρ(t,m) to denote a vector,
flattened from the array representing design variables. It is treated as the
position of the mth artificial bat, where m= 1, 2,…,M. We use ρðt;mÞ

i 2 ½0; 1�
to denote the ith dimension of vector ρ(t,m), where i= 1, 2,…,N. Thus,

ρð0;mÞ ¼ ½ρð0;mÞ
1 ; ρð0;mÞ

2 ; ::ρð0;mÞ
N �T .

2. Calculate their function values and find the minimum
ρ� ¼ argmin hðρð0;mÞÞ.

3. Initialize their velocity v(0, 1), v(0, 2),… , v(0,m),… , v(0,M).
4. Determine parameters qmin, qmax, tmax, α, γ, r(0), A(0), winit, wfinal.
5. For artificial time step t= 1 to tmax,

(a) Update parameters A(t)= αA(t−1), r(t)= r(0)(1− e−γt),
wðtÞ ¼ ð1� t=tmaxÞ2ðwinit � wfinalÞ þ wfinal.

(b) For m= 1, 2,…,M,

i.
Calculate sound frequency

qðt;mÞ ¼ qmin þ ðqmax � qminÞβ; ð28Þ
where β is a random number that has a uniform distribution in [0, 1].

ii.
Update velocity based on frequency

vðt;mÞ ¼ wðtÞvðt�1;mÞ þ ðρðt�1;mÞ � ρ�Þqðt;mÞ: ð29Þ
iii.
Get a (temporary) new solution. Calculate the new position

ρðt;mÞ ¼ ρðt;m�1Þ þ vðt;mÞ: ð30Þ
iv.
Local search. Generate β0iði ¼ 1; 2; :::;NÞ, a series of random numbers

uniformly sampled in [0, 1]. For those i satisfying β0i > rðtÞ , add noise to the
current best solution

ρðt;mÞ
i ¼ ρ�i þ ϵAðtÞ; ð31Þ

where ϵ is a random variable sampled in Gaussian distribution with zero
mean, ρ�i is the ith component of ρ*. If ρðt;mÞ

i goes over the range [0, 1], it is
thresholded to 0 or 1. For others, keep them as they are.

v.
Determine whether to accept the new solution. Reverse to the previous

step ρ(t,m)= ρ(t−1,m), if h(ρ(t,m)) > h(ρ(t−1,m)) or β″ >A(t) (where β″ is
random number uniformly sampled in [0, 1]).

(c) Update ρ� ¼ arg min
m¼1;2;:::;M

hðρðt;mÞÞ.
6. Output ρ̂ ¼ ρ� .

BA is used in the heat and truss problems. In the heat problem, we optimize f
without adding penalty terms since the volume constraint is controlled by a
threshold, i.e., h= f. In the truss optimization problems, we need to choose ρ(t,m)

in a discrete space since only 16 values are allowed. Before we evaluate h(ρ(t,m)), we
will replace ρðt;mÞ

i by the nearest discrete values. To deal with constraints in Eqs.
(15) and (16), the objective function is converted to

hðρÞ ¼ WðρÞ 1þ ∑
jσ i j> σ0

jσ ij � σ0
σ0

þ ∑
jjΔxi jj1 > δ0

jjΔxijj1 � δ0
δ0

 !2

: ð32Þ

Binary Bat Algorithm (BBA). Binary Bat Algorithm64,65 is a binary version of BA.
To solve

ρ̂ ¼ arg min
ρ2f0;1gN

hðρÞ; ð33Þ

we slightly adjust the original algorithm and implement it as follows:

1. GenerateM vectors ρ(0, 1), ρ(0, 2),…, ρ(0,M). We use ρ(t,m) to denote a vector,
flattened from the array representing design variables. It is treated as the
position of the mth artificial bat, where m= 1, 2,…,M. We use ρðt;mÞ

i 2
f0; 1g to denote the ith dimension of vector ρ(t,m), where i= 1, 2,….,N.
Thus, ρð0;mÞ ¼ ½ρð0;mÞ

1 ; ρð0;mÞ
2 ; ::ρð0;mÞ

N �T .
2. Calculate their function values and find the minimum ρ� ¼ argmin hðρð0;mÞÞ.
3. Initialize their velocity v(0, 1), v(0, 2),… , v(0,m), . . . , v(0,M).
4. Determine parameters qmin, qmax, tmax, α, γ, r(0), A(0).
5. For artificial time step t= 1 to tmax,

(a) Update parameters A(t)= αA(t−1), r(t)= r(0)(1− e−γt).
(b) For m= 1, 2,… ,M,

i.
Calculate sound frequency

qðt;mÞ ¼ qmin þ ðqmax � qminÞβ; ð34Þ
where β is a random number that has a uniform distribution in [0, 1].

ii.
Update velocity based on frequency

vðt;mÞ ¼ vðt�1;mÞ þ ðρðt�1;mÞ � ρ�Þqðt;mÞ: ð35Þ
iii.
Get a (temporary) new solution. Calculate the possibility to change

position based on velocity

V ðt;mÞ
i ¼ 2

π
arc tan

π

2
vðt;mÞ
i


 ����� ����þ 1
N
: ð36Þ

iv.
Random flip. Generate β0iði ¼ 1; 2; :::;NÞ, a series of random numbers

uniformly in [0, 1]. For those i satisfying β0i < V ðt;mÞ
i , change the position by

flipping the 0/1 values

ρðt;mÞ
i ¼ 1� ρðt�1;mÞ

i : ð37Þ
For others, keep them as they are.

v.
Accept the local optimum. Generate β

00
i ði ¼ 1; 2; :::;NÞ, a series of

random numbers uniformly sampled in [0, 1]. For those i satisfying β
00
i > rðtÞ,

set ρðt;mÞ
i ¼ ρ�i .
vi.
Determine whether to accept the new solution. Reverse to the previous

step ρ(t,m)= ρ(t−1,m), if h(ρ(t,m)) > h(ρ(t−1,m)) or β‴ >A(t) (where β‴ is
random number uniformly sampled in [0, 1]).

(c) Update ρ� ¼ arg min
m¼1;2;:::;M

hðρðt;mÞÞ.
6. Output ρ̂ ¼ ρ� .

BBA is used in the fluid problems. Since we do not have constraints in these
problems, we can optimize f without adding penalty terms, i.e., h= f.
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Data availability
The optimization data generated in this study have been deposited in the Zenodo
database66.

Code availability
All code (MATLAB and Python) used in this paper is deposited in the Zenodo
repository67 or available at https://github.com/deng-cy/deep_learning_topology_opt.

Received: 22 April 2020; Accepted: 3 December 2021;

References
1. Deaton, J. D. & Grandhi, R. V. A survey of structural and multidisciplinary

continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49,
1–38 (2014).

2. Bendse, M. P. & Kikuchi, N. Generating optimal topologies in structural
design using a homogenization method. Computer Methods Appl. Mech. Eng.
71, 197–224 (1988).

3. Rozvany, G. I. A critical review of established methods of structural topology
optimization. Struct. Multidiscip. Optim. 37, 217–237 (2009).

4. Sigmund, O. & Maute, K. Topology optimization approaches. Struct.
Multidiscip. Optim. 48, 1031–1055 (2013).

5. Sigmund, O. On the usefulness of non-gradient approaches in topology
optimization. Struct. Multidiscip. Optim. 43, 589–596 (2011).

6. Hajela, P. & Lee, E. Genetic algorithms in truss topological optimization. Int. J.
Solids Struct. 32, 3341–3357 (1995).

7. Shim, P. Y. & Manoochehri, S. Generating optimal configurations in structural
design using simulated annealing. Int. J. Numer. methods Eng. 40, 1053–1069
(1997).

8. Kaveh, A., Hassani, B., Shojaee, S. & Tavakkoli, S. Structural topology
optimization using ant colony methodology. Eng. Struct. 30, 2559–2565 (2008).

9. Luh, G.-C. & Lin, C.-Y. Structural topology optimization using ant colony
optimization algorithm. Appl. Soft Comput. 9, 1343–1353 (2009).

10. Luh, G.-C., Lin, C.-Y. & Lin, Y.-S. A binary particle swarm optimization for
continuum structural topology optimization. Appl. Soft Comput. 11,
2833–2844 (2011).

11. Lee, K. S. & Geem, Z. W. A new structural optimization method based on the
harmony search algorithm. Computers Struct. 82, 781–798 (2004).

12. Georgiou, G., Vio, G. A. & Cooper, J. E. Aeroelastic tailoring and scaling using
bacterial foraging optimisation. Struct. Multidiscip. Optim. 50, 81–99 (2014).

13. Guirguis, D., Melek, W. W. & Aly, M. F. High-resolution non-gradient
topology optimization. J. Comput. Phys. 372, 107–125 (2018).

14. Guirguis, D. & Aly, M. F. A derivative-free level-set method for topology
optimization. Finite Elem. Anal. Des. 120, 41–56 (2016).

15. Bartz-Beielstein, T. A survey of model-based methods for global optimization. In
Conference Bioinspired Optimization Methods and Their Applications 1–18 (2016).

16. Hutter, F., Hoos, H. H. & Leyton-Brown, K. Sequential model-based
optimization for general algorithm configuration. In International Conference
on Learning and Intelligent Optimization 507–523 (Springer, 2011).

17. Frazier, P. I. A tutorial on bayesian optimization. Preprint at https://arxiv.org/
abs/1807.02811 (2018).

18. Hansen, N. The cma evolution strategy: a tutorial. Preprint at https://
arxiv.org/abs/1604.00772 (2016).

19. Bujny, M., Aulig, N., Olhofer, M. & Duddeck, F. Hybrid evolutionary
approach for level set topology optimization. In 2016 IEEE Congress on
Evolutionary Computation (CEC) 5092–5099 (IEEE, 2016).

20. Luo, Y., Xing, J. & Kang, Z. Topology optimization using material-field series
expansion and kriging-based algorithm: an effective non-gradient method.
Computer Methods Appl. Mech. Eng. 364, 112966 (2020).

21. Jin, J., Yang, C. & Zhang, Y. An improved cma-es for solving large scale
optimization problem. In International Conference on Swarm Intelligence
386–396 (Springer, 2020).

22. Wang, Z., Hutter, F., Zoghi, M., Matheson, D. & de Feitas, N. Bayesian
optimization in a billion dimensions via random embeddings. J. Artif. Intell.
Res. 55, 361–387 (2016).

23. Lei, X., Liu, C., Du, Z., Zhang, W. & Guo, X. Machine learning driven real time
topology optimization under moving morphable component (MMC)-based
framework. J. Appl. Mech. 86, 011004 (2018).

24. Banga, S., Gehani, H., Bhilare, S., Patel, S. & Kara, L. 3D topology optimization
using convolutional neural networks. Preprint at https://arxiv.org/abs/
1808.07440 (2018).

25. Oh, S., Jung, Y., Kim, S., Lee, I. & Kang, N. Deep generative design: integration
of topology optimization and generative models. J. Mech. Design 144, 111405
(2019).

26. Sosnovik, I. & Oseledets, I. Neural networks for topology optimization.
Russian J. Numer. Anal. Math. Model. 34, 215–223 (2019).

27. Rawat, S. & Shen, M.-H. H. A novel topology optimization approach
using conditional deep learning. Preprint at https://arxiv.org/abs/1901.04859
(2019).

28. Jang, S., Yoo, S. & Kang, N. Generative design by reinforcement learning:
enhancing the diversity of topology optimization designs. Preprint at https://
arxiv.org/abs/2008.07119 (2020).

29. Shen, M.-H. H. & Chen, L. A new cgan technique for constrained topology
design optimization. Preprint at https://arxiv.org/abs/1901.07675 (2019).

30. Yu, Y., Hur, T., Jung, J. & Jang, I. G. Deep learning for determining a near-
optimal topological design without any iteration. Struct. Multidiscip. Optim.
59, 787–799 (2019).

31. Sasaki, H. & Igarashi, H. Topology optimization accelerated by deep learning.
IEEE Trans. Magn. 55, 1–5 (2019).

32. Gaymann, A. & Montomoli, F. Deep neural network and Monte Carlo tree
search applied to fluid-structure topology optimization. Sci. Rep. 9, 1–16
(2019).

33. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994).
34. Bendsoe, M. P. & Sigmund, O. Topology Optimization: Theory, Methods and

Applications (Springer, 2004).
35. Deng, C., Qi, X. & Liu, Y. Numerical study on equilibrium stability of objects

in fluid flow a case study on constructal law. Case Stud. Therm. Eng. 15,
100539 (2019).

36. Olesen, L. H., Okkels, F. & Bruus, H. A high-level programming-language
implementation of topology optimization applied to steady-state
Navier–Stokes flow. Int. J. Numer. Methods Eng. 65, 975–1001 (2006).

37. Kamkari, B. & Shokouhmand, H. Experimental investigation of phase change
material melting in rectangular enclosures with horizontal partial fins. Int. J.
Heat. Mass Transf. 78, 839–851 (2014).

38. Desai, A. N., Gunjal, A. & Singh, V. Numerical investigations of fin efficacy for
phase change material (pcm) based thermal control module. Int. J. Heat. Mass
Transf. 147, 118855 (2020).

39. Chen, J., Xia, B. & Zhao, C. Topology optimization for heat transfer
enhancement in thermochemical heat storage. Int. J. Heat. Mass Transf. 154,
119785 (2020).

40. Pizzolato, A., Sharma, A., Maute, K., Sciacovelli, A. & Verda, V. Topology
optimization for heat transfer enhancement in latent heat thermal energy
storage. Int. J. Heat. Mass Transf. 113, 875–888 (2017).

41. Iradukunda, A.-C., Vargas, A., Huitink, D. & Lohan, D. Transient thermal
performance using phase change material integrated topology optimized heat
sinks. Appl. Therm. Eng. 179, 115723 (2020).

42. Zhao, M., Tian, Y., Hu, M., Zhang, F. & Yang, M. Topology optimization of
fins for energy storage tank with phase change material. Numer. Heat. Transf.,
Part A Appl. 77, 284–301 (2020).

43. Li, Y. et al. Optimization of thermal management system for li-
ion batteries using phase change material. Appl. Therm. Eng. 131, 766–778
(2018).

44. Weng, J. et al. Optimization of the detailed factors in a phase-change-material
module for battery thermal management. Int. J. Heat. Mass Transf. 138,
126–134 (2019).

45. Yan, J., Li, K., Chen, H., Wang, Q. & Sun, J. Experimental study on the
application of phase change material in the dynamic cycling of battery pack
system. Energy Convers. Manag. 128, 12–19 (2016).

46. Arící, M., Bilgin, F., Nižetić, S. & Karabay, H. Pcm integrated to external
building walls: an optimization study on maximum activation of latent heat.
Appl. Therm. Eng. 165, 114560 (2020).

47. Xu, T., Humire, E. N., Chiu, J. N.-W. & Sawalha, S. Numerical
thermal performance investigation of a latent heat storage prototype
toward effective use in residential heating systems. Appl. Energy 278, 115631
(2020).

48. Yu, J. et al. Effect of porous media on the heat transfer enhancement for a
thermal energy storage unit. Energy Proc. 152, 984–989 (2018).

49. Gomes, H. M. Truss optimization with dynamic constraints using a particle
swarm algorithm. Expert Syst. Appl. 38, 957–968 (2011).

50. Farshchin, M., Camp, C. & Maniat, M. Multi-class teaching–learning-based
optimization for truss design with frequency constraints. Eng. Struct. 106,
355–369 (2016).

51. Perez, R. L. & Behdinan, K. Particle swarm approach for structural design
optimization. Computers Struct. 85, 1579–1588 (2007).

52. Camp, C. V. & Farshchin, M. Design of space trusses using modified
teaching–learning based optimization. Eng. Struct. 62, 87–97 (2014).

53. Lazarov, B. S. & Sigmund, O. Filters in topology optimization based on
Helmholtz-type differential equations. Int. J. Numer. Methods Eng. 86,
765–781 (2011).

54. Han, D. Comparison of commonly used image interpolation methods. In
Proceedings of the 2nd International Conference on Computer Science and
Electronics Engineering (ICCSEE 2013) Vol. 10 (2013).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27713-7 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:388 | https://doi.org/10.1038/s41467-021-27713-7 |www.nature.com/naturecommunications 13

https://github.com/deng-cy/deep_learning_topology_opt
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1808.07440
https://arxiv.org/abs/1808.07440
https://arxiv.org/abs/1901.04859
https://arxiv.org/abs/2008.07119
https://arxiv.org/abs/2008.07119
https://arxiv.org/abs/1901.07675
www.nature.com/naturecommunications
www.nature.com/naturecommunications


55. Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training
by reducing internal covariate shift. In International conference on machine
learning, 448–456 (PMLR, 2015).

56. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint
at https://arxiv.org/abs/1412.6980 (2014).

57. Paszke, A. et al. Automatic Differentiation in Pytorch (NIPS-W, 2017).
58. Lehmann, E. & Casella, G. Theory of Point Estimation (Springer Verlag, 1998).
59. Xiang, Y., Gubian, S. & Martin, F. in Computational Optimization in

Engineering (ed. Peyvandi, H.) Ch. 2 (IntechOpen, Rijeka, 2017).
60. Xiang, Y., Gubian, S., Suomela, B. & Hoeng, J. Generalized

simulated annealing for global optimization: The GenSA Package. R. J. 5, 13
(2013).

61. The SciPy Community. scipy.optimize.dual_annealing – scipy v1.3.0 reference
guide. https://docs.scipy.org/doc/scipy/reference/generated/
scipy.optimize.dual_annealing.html. Accessed 19 May 2019 (2019).

62. Yang, X.-S. in Nature Inspired Cooperative Strategies for Optimization (NICSO
2010) 65–74 (Springer, 2010).

63. Yílmaz, S. & Küçüksille, E. U. A new modification approach on bat
algorithm for solving optimization problems. Appl. Soft Comput. 28, 259–275
(2015).

64. Mirjalili, S., Mirjalili, S. M. & Yang, X.-S. Binary bat algorithm. Neural
Comput. Appl. 25, 663–681 (2014).

65. Ramasamy, R. & Rani, S. Modified binary bat algorithm for feature
selection in unsupervised learning. Int. Arab J. Inf. Technol. 15, 1060–1067
(2018).

66. Deng, C., Wang, Y., Qin, C., Fu, Y. & Lu, W. Self-directed online machine
learning for topology optimization. Zenodo https://doi.org/10.5281/
zenodo.5725598 (2021).

67. Deng, C., Wang, Y., Qin, C., Fu, Y. & Lu, W. Self-directed online machine
learning for topology optimization. Zenodo https://doi.org/10.5281/
zenodo.5722376 (2021).

68. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res. 15, 1929–1958 (2014).

Acknowledgements
This work was supported by the National Science Foundation under Grant No. CNS-
1446117 (W.L.).

Author contributions
C.D. designed the algorithm and drafted the manuscript. Y.W. derived the convergence
theory. C.D. and C.Q. wrote the code. Y.W., C.Q., and Y.F. edited the manuscript. W.L.
conceived this work, supervised the study, and revised the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-27713-7.

Correspondence and requests for materials should be addressed to Wei Lu.

Peer review information Nature Communications thanks Kejie Huang, and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27713-7

14 NATURE COMMUNICATIONS |          (2022) 13:388 | https://doi.org/10.1038/s41467-021-27713-7 | www.nature.com/naturecommunications

https://arxiv.org/abs/1412.6980
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html
https://doi.org/10.5281/zenodo.5725598
https://doi.org/10.5281/zenodo.5725598
https://doi.org/10.5281/zenodo.5722376
https://doi.org/10.5281/zenodo.5722376
https://doi.org/10.1038/s41467-021-27713-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Self-directed online machine learning for topology optimization
	Results
	Formulation and overview
	Compliance minimization
	Fluid-structure optimization
	Heat transfer enhancement
	Truss optimization

	Discussion
	Methods
	Enforcement of volume constraint
	Finite Element Method (FEM) and gradient-based baselines
	Interpolation of design variables
	Deep Neural Network (DNN)
	Random generation of new samples from a base design
	Generalized Simulated Annealing (GSA)
	Bat Algorithm (BA)
	Binary Bat Algorithm (BBA)

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




