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Abstract

Gene expression profiling can be used for predicting survival in multiple myeloma (MM) and 

identifying patients who will benefit from particular types of therapy. Some germline single 

nucleotide polymorphisms (SNPs) act as expression quantitative trait loci (eQTLs) showing strong 

associations with gene expression levels. We performed an association study to test whether 

eQTLs of genes reported to be associated with prognosis of MM patients are directly associated 

with measures of adverse outcome. Using the Genotype-Tissue Expression (GTEx) portal, we 

identified a total omultiplf 16 candidate genes with at least one eQTL SNP associated with 

their expression with p<10−7 either in EBV-transformed B-lymphocytes or whole blood. We 

genotyped the resulting 22 SNPs in 1,327 MM cases from the International Multiple Myeloma 

rESEarch (IMMEnSE) consortium and examined their association with overall survival (OS) 

and progression free survival (PFS), adjusting for age, sex, country of origin and disease 

stage. Three polymorphisms in two genes (TBRG4-rs1992292, TBRG4-rs2287535, ENTPD1-

rs2153913) showed associations with (OS) at P<0.05, with the former two also associated with 

PFS. The associations of two polymorphisms in TBRG4 with OS were replicated in 1277 MM 

cases from the International Lymphoma Epidemiology (InterLymph) Consortium. A meta-analysis 

of the data from IMMEnSE and InterLymph (2579 cases) showed that TBRG4-rs1992292 is 

associated with OS (HR=1.14, 95%C.I. 1.04–1.26, p=0.007). In conclusion, we found biologically 

a plausible association between a SNP in TBRG4 and OS of MM patients.
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Introduction

Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells, which 

are primarily resident in the bone marrow. MM is the second most common haematological 
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malignancy, with an annual crude incidence rate of 6.5 and 8 new cases per 100,000 

inhabitants in Europe and in the United States of America, respectively1.

The advances in therapy made in the last decade have resulted in a considerable increase 

in patient survival. However, MM remains an incurable disease for most patients, who 

eventually relapse. The clinical course of MM is characterized by a high degree of 

heterogeneity, with long-term responders to therapy who survive long enough to eventually 

die of other causes, and patients who are refractory to any therapy and succumb very quickly 

to the disease2.

Gene expression profiling (GEP) is being widely used for tumor classification and prognosis 

and can effectively identify patients with very poor outcome. Numerous prognostic gene 

signatures have been identified in the past years; some of them were identified agnostically 

from direct comparison of patients with different survival while others were informed by 

genes relevant to the biology of MM3–11. Moreover, GEP has been able to classify patients 

based on their response to certain kinds of therapy, which could be valuable to personalize 

treatments given the vast heterogeneity of treatments and drug combinations12,13.

Over recent years single nucleotide polymorphisms (SNPs) have been found associated 

with MM survival, through candidate14–18 or genome wide association studies (GWAS)19,20. 

However, the influence of germline variants on MM outcome is still a poorly explored 

field and few studies have identified SNPs associated with a different response to specific 

therapies21.

Recent evidence derived from large projects such as the Genotype-Tissue Expression 

(GTEx) database have identified SNPs as expression quantitative trait loci (eQTLs), strongly 

associated with gene expression22. eQTLs have been successfully used as surrogates of 

direct measurement of gene expression to study disease etiology23,24. In most cases they are 

located in physical proximity to the genes whose expression they influence (“cis-eQTLs”, 

usually mapping to promoter or enhancer regions), while some eQTLs are located in a 

different chromosomal region, or even on a different chromosome from the gene whose 

expression is affected (“trans-eQTLs”). Interestingly, it has been shown that polymorphisms 

associated with complex traits in GWAS, including risk of many cancers, are enriched 

in eQTLs24,25. Considering that the expression of several genes is associated with MM 

prognosis we hypothesized that SNPs that affect expression levels of those genes might also 

be associated with prognosis.

We performed an association study within the International Multiple Myeloma rESEarch 

(IMMEnSE) consortium to examine SNPs that act as eQTLs for genes included in 

expression signatures that have been previously shown to influence MM survival. We 

hypothesize that these eQTLs could be used as markers of outcome. We attempted to 

replicate the top associations in the International Lymphoma Epidemiology (InterLymph) 

consortium and performed a meta-analysis of results from both consortia.
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Materials and Methods

Study samples

International Multiple Myeloma rESEarch (IMMEnSE) consortium.—The first 

phase of the association study was performed in the IMMEnSE consortium, which has 

been described elsewhere26. Each collaborating institution retrospectively collected clinico-

pathological data from medical records on age, sex, country of origin, disease stage (Durie-

Salmon and/or International Staging System), and type of first-line therapy, response to 

first-line therapy, progression and vital status. We analyzed 1,302 MM patients with staging 

information for the Durie-Salmon system and 1,064 subjects with staging information for 

the International staging system (ISS), while 1,050 patients had data for both (table 1). MM 

cases were diagnosed according to the IMWG criteria from 2001 to 2015 and 640 were 

treated with bortezomib/immunomodulatory drugs which we defined as “recent therapies”.

The IMMEnSE study protocol was approved by the Ethics Committee of the Medical 

Faculty of the University of Heidelberg (reference number: S-004/2020). Following the 

guidelines of the Declaration of Helsinki, written informed consent was obtained from each 

participant.

International Lymphoma Epidemiology (InterLymph) consortium.—Multiple 

myeloma studies from InterLymph consisted of 9 participating studies of European ancestry 

(EA) with genotype and phenotype information (2,434 cases and 3,446 controls), which was 

pooled to perform genome-wide association studies (GWAS) for risk and survival. In total, 

the primary InterLymph dataset had 885 cases with stage information (ISS). A secondary 

InterLymph survival dataset consisting of 392 patients diagnosed with MM with follow-up 

and disease stage available from The University of Texas/MD Anderson Cancer Center 

(MDACC) and University of California San Francisco in the United States was added.

Contributing studies were approved by local ethics review committees, and all participants 

provided written, informed consent.

Characteristics of study participants are summarized in table 1.

SNP selection

We selected a comprehensive list of genes whose expression levels were associated with 

poor MM prognosis in the literature 3–5,8,9,27. We also identified GEP signatures associated 

with differential response to therapy13. From this review, we assembled a list of 283 genes 

and searched for eQTLs associated with the expression levels of those genes using the 

browser of the genotype-tissue expression project GTEx (http://www.gtexportal.org) 24. 

For our study, the cis window established from the browser was 1 megabase up- and 

down-stream of the transcriptional start site of each gene. We performed these queries using 

the expression data on the tissues represented in GTEx that are closest to the cells of 

interest for MM, i.e. EBV-transformed B-lymphocytes (from 114 samples) and whole blood 

(from 338 samples). We ranked the eQTLs according to p-values of association with gene 

expression. Ten of these genes (RPS28, YWHAZ, CNDP2, TBRG4, HLA-DPA1, DHFR, 
RAB2A, SERPINB1, HLA-DRB1 IKZF1) have significant eQTLs in both tissues while six 

Macauda et al. Page 3

Int J Cancer. Author manuscript; available in PMC 2022 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.gtexportal.org/


other genes (ACTR2, HELLS, ENTPD1, CCND2, CCND1, ANK3) had eQTLs in at least 

one of the tissues analysed. For each gene we selected at least one eQTL while considering 

the linkage disequilibrium (LD) among eQTLs. The final list included 22 independent SNPs 

from these 16 genes (table 2).

Genotyping and quality control

IMMEnSE.—Genomic DNA was extracted from peripheral blood using the QIAampR 96 

DNA QIAcubeR HT Kit and stored at −20C till use. All the genotyping assays were carried 

out in 384-well format, with 10 ng of DNA from each subject using TaqMan (Thermo Fisher 

Scientific Inc.) or KASP (LGC Genomics) SNP genotyping assays. For quality control about 

5% of the samples were interspersed in the plates as duplicated. Samples with a call rate 

lower than 80% (N=184) were discarded.

InterLymph GWAS (primary and secondary).—Samples were genotyped using 

the Affymetrix 6.0 and Illumina (610 Quad, Human660W-quad Beadchip, Omni5, 

OmniExpress Beadchip, Oncoarray) platforms. Each of the GWAS was subjected to rigorous 

standardised quality control independently prior to imputation, which was performed 

via the Michigan imputation server (https://imputationserver.sph.umich.edu/) based on the 

Haplotype Reference Consortium (HRC)29. After imputation, each site was filtered to 

include only imputed variants with information score>0.6 and further quality controls 

checks were implemented (genotype rate >95%, minor allele frequencies >0.01, and Hardy-

Weinberg equilibrium (HWE) >x10−5 in controls). Finally, the data were pooled and final 

quality control was performed on the pooled GWAS set including checks for missingness, 

duplicates, sex mismatch, abnormal heterozygosity, cryptic relatedness, population outliers 

(principal components analyses: Eigenstrat), and genomic inflation (λ > 1.00). Additional 

information on the MM GWAS studies contributing in the InterLymph consortium are 

showed in supplementary table 1.

Statistical and bioinformatic analyses

Survival analysis in IMMEnSE was performed with Cox proportional hazards regression, 

calculating hazard ratios (HR) and 95% confidence intervals (CI), using overall survival 

(OS) and progression-free survival (PFS) as endpoints. OS was defined as the time interval 

between MM diagnosis and death or last follow-up. PFS was defined as the time interval 

between the ASCT (autologous stem cell transplantation) or high-dose treatment (for 

patients not eligible for ASCT) until documented progression or until the last progression-

free examination. All analyses were adjusted for age at diagnosis, sex, country of origin, 

MM stage (calculated with the Durie-Salmon or ISS system) and type of first-line therapy, 

defined as treatment based on bortezomib/immunomodulatory drugs (“recent therapies”) or 

any other regimen (such as vincristine/adriamycin/dexamethasone or melphalan/prednisone, 

“chemotherapy based only therapies”). The statistical analysis was performed using per-

allele and co-dominant models. We considered the threshold of statistical significance, using 

a Bonferroni correction, to be p<0.0023 (0.05/22 SNPs). A stratified analysis by type of first 

line therapy was also performed for the six polymorphisms selected from the signature of 

Terragna et al.13 In addition, we performed the same analysis adjusted by bone lesions for 

the two polymorphisms in TBRG4 since this gene is implicated in bone-related disease30.
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The InterLymph survival GWAS data were analyzed using Gwasurvivr, an R package for 

genome-wide survival analysis31 with Cox-proportional hazard models adjusting for age, 

sex, site, 10 principal components from the GWAS, and ISS stage.

Results from IMMEnSE and InterLymph (primary and secondary) GWAS were meta-

analysed according to a fixed effect model. The results of the single SNPs were not adjusted 

for type of first line therapy which was available only in IMMEnSE but not in InterLymph.

To identify the regulatory potential of selected SNPs and the regions nearby we 

used HaploReg (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) 31 and 

RegulomeDb (http://regulome.stanford.edu) 33.

Results

For IMMEnSE, the overall genotyping call rate was 92.3%, the minimum call rate 

observed was 91.9% (rs2972572) and the maximum 98.2% (rs1992292). The concordance 

between duplicates was of 99.9%. Five of the selected SNPs (HLA-DQB1-rs141471663, 

HLA-DQB1-rs1130456, HLA-DRB1-rs66859861, SERPINB1-rs62392542, HLA-DPA1-

rs116102562) were not in Hardy-Weinberg equilibrium (HWE). All those SNPs were 

located in chromosome 6 where the MHC complex is located as well. It is well known 

that this particular genomic region is not neutral from the point of view of natural selection 

and is also known to contain duplicated sequences and copy number variants (CNVs),34,35 

and deviation from HWE may be expected34. Considering also that some of these SNPs 

(rs1140347 and rs62391542) are also not in HWE in the 1000 Genomes Project, and, on the 

other hand, that concordance of genotypes of duplicated samples in our study was 100% for 

these SNPs, we included them in further statistical analyses.

Discovery phase (IMMEnSE results).

The most significant association was seen for TBRG4-rs1992292 which showed an 

association with OS when adjusted for ISS disease stage system (table 3). The C/T 

genotype is associated with a worse OS in our set of patients (HR=1.59, 95% C.I.= 1.18–

2.15, p=0.0024) in the co-dominant model of inheritance. Additionally, rs2289375, another 

independent SNP in the same gene, showed weaker evidence of association in the same 

direction of TBRG4-rs1992292 (HR=1.33, 95% C.I. =1.06–1.67, p=0.013). These 2 SNPs 

were also nominally associated with a worse PFS (table 4). Results were similar regardless 

of the staging system used for adjustment (Durie-Salmon or ISS).

Additionally, we found several associations with different end-points at the nominal level 

of p<0.05. Namely, the ENTPD1-rs2153913 SNP showed associations with OS when 

considering all cases (HR=0.71, 95% C.I.=0.54–0.94, p=0.017, for the heterozygotes in 

the codominant model) and cases treated with new therapies (HR=0.61, 95% C.I.=0.37–

0.98, p=0.043), but not cases treated with the old therapies (HR=0.78, 95% C.I.=0.55–1.11, 

p=0.168).

Both polymorphisms in TBRG4 showed associations with OS when adjusting by bone 

lesions. In particular, the strongest association was observed for TBRG4-rs1992292 for the 
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codominant model of inheritance (HRhet=2.21, 95% C.I.=1.49–3.28, p=0.0001). All results 

for these analyses are reported in supplementary table 2.

All the results presented and tables 3 and 4 were adjusted for ISS, while the results adjusted 

using Durie-Salmon staging are showed in supplementary tables 3 and 4.

Replication phase (InterLymph).

Survival analysis in the InterLymph datasets was performed on the top three associations 

seen in IMMEnSE (p<0.05): ENTPD1-rs2153913, TBRG4-rs1992292, TBRG4-rs2289375. 

Associations with both polymorphisms in TBRG4 replicated in the primary InterLymph 

dataset with OS: rs1992292 showed an HR=1.16, 95% C.I.=1.01–1.33, p=0.046 and 

rs2289375 an HR=1.24, 95% C.I.=1.06–1.47, p=0.008, considering the allelic model. 

The association with ENTPD1-rs2153913 was not replicated in this set (HR=1.03, 95% 

C.I.=0.88–1.19, p=0.731). None of the above-mentioned associations replicated in the 

additional set of cases from the secondary InterLymph dataset.

A total of 2579 cases were used for the meta-analysis and the polymorphism TBRG4-

rs1992292 showed to be significantly associated with OS, with no heterogeneity between 

the three groups (HR=1.14 95% C.I. 1.04–1.26, p=0.007) and a forest plot for this analysis 

is shown in figure 1. No evidence of association was observed for ENTPD1-rs2153913 

(HR=0.93, 95% C.I. 0.84–1.04, p=0.211).

Kaplan-Meier curves for the survival of MM patients according to genotype at the two 

TBRG4 SNPs are shown separately for IMMEnSE and the primary InterLymph dataset 

(supplementary figure 1 and 2).

Discussion

The investigation of germline variants that act as expression quantitative trait loci (eQTL) 

for genes whose expression is known to affect MM prognosis could be used to identify 

predictors of patient outcome. Based on this rationale, we tested whether eQTLs of 

genes included in expression signatures that define MM patients with poor prognosis 

are associated with adverse outcome and therefore could be used as genetic markers of 

prognosis.

Our results suggest that the minor alleles of the TBRG4-rs1992292 and TBRG4-rs2289375 

SNPs are associated with a worse survival. TBRG4 encodes for a regulator of transforming 

growth factor beta (TGF-β), which is involved in various cellular pathways, including 

the regulation of hematopoiesis, an important process for myeloma cell proliferation and 

survival26. Increased levels of TGF-β in the bone marrow microenvironment induce an 

increase of IL-6 and VEGF secretion, major cytokines involved in cancer cell proliferation 

and angiogenesis25. Moreover it has been reported that down-regulation of TBRG4 
contributes to arrest of cell cycle in the G1 phase, which ultimately leads to a better outcome 

in MM 28. This gene was selected initially because it was reported that its higher expression 

is associated with a shorter survival in MM patients8.
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TBRG4-rs1992292 is in strong LD (r2=0.935 in European population (CEU) of the 1000 

Genomes project) with rs6967730, that has a rank of 1f in RegulomeDB, indicating that it is 

likely to affect the binding of additional transcription factors and it is linked to expression of 

TBRG4. In this regard, it has been reported that rs6967730 is located within a transcription 

factor binding site for CTCF (CCCTC-binding factor), a highly conserved zinc finger 

protein. CTCF can function as a transcriptional activator, a repressor or an insulator protein, 

blocking the communication between enhancers and promoters39. Therefore, rs6967730 

could be responsible for changing the expression of TBRG4 by modifying the binding site of 

CTCF. Even though the information provided by our and other studies is relevant, in-depth 

analysis of the biological role of the TBRG4-rs1992292 SNP in modulating MM survival, 

including mechanistic insights, is still needed.

According to our results also TBRG4-rs2289375 is associated with a worse survival of MM 

patients. This SNP has a RegulomeDB rank of 2b and is in LD (r2=1) with rs3757573, 

which has a rank of 1f indicating that it could have a strong functional role in affecting the 

expression of TBRG4. The GTEx portal reports that the TT genotype is associated with a 

higher expression of TBRG4 in both the tissues we considered, in line with our results where 

carriers of this genotype have a worse survival (figure 2).

Finally, although ENTPD1-rs215391 did not replicate in the InterLymph datasets, this SNP, 

according to our bioinformatics analysis, has a clear biological link with MM. Indeed, 

GTEx reports that the C allele of ENTPD1-rs215391 decreases the expression of the 

ENTPD1 gene, which translates into a lower production of adenosine which, in turn, 

results in a less active adenosine-mediated immunosuppressive pathway increasing the 

anticancer monitoring immune system. Considering the above, we cannot exclude a potential 

contribution of ENTPD1-rs215391 in MM outcome.

The study has some weaknesses: data on PFS and type of first line treatment were not 

available for InterLymph cases; therefore, we could not confirm the result obtained with 

PFS as endpoint. Another limitation is the lack of karyotype data which is involved in 

the heterogeneity observed in patient prognosis. Moreover, the selection of the eQTLs was 

limited to one or two eQTLs for each region that we selected (the ones showing associations 

with gene expression levels with the lowest p-values in GTEx) and therefore we could 

not exclude the possibility of having missed additional associations. Our results, however, 

represent a proof of principle that eQTLs could be used as MM survival markers and offer 

a starting point to further investigate in this direction alongside other known prognostic 

markers.

Standard eQTL analysis, which involves a direct association test between markers of genetic 

variation with gene expression levels, has many advantages. The main one is that the 

genotypes are not influenced by sample manipulation or by environmental variables since 

invariable throughout life of an individual. eQTL analysis can be performed in silico using 

available GWAS dataset and free bioinformatic tools as GTEx, which makes this kind of 

analysis basically costless compared to GEP which involves the use of expensive equipment 

and reagents.
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The main strengths of the study are that our results were confirmed in two of three 

independent datasets with a large overall sample size with information on overall survival 

and stage.

In conclusion, we found biologically plausible associations between SNPs in TBRG4 and 

OS of MM patients that should be investigated more deeply. eQTLs are a valid surrogate for 

GEP, and are much easier to measure than GEP itself..

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviation:

ASCT autologous stem cell transplantation

CI confidence intervals

CTCF CCCTC-binding factor

EA European ancestry

eQTLs expression quantitative trait loci

GEP Gene expression profile

GWAS genome wide association studies

HR hazard ratios

HWE Hardy-Weinberg equilibrium

ISS International staging syste

LD linkage disequilibrium

MM multiple myeloma

OS overall survival

PFS progression free survival

SNPs single nucleotide polymorphisms
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What’s new?

Gene expression profile (GEP) is widely used for tumor classification and prognosis 

of MM patients. SNPs so called expression quantitative trait loci (eQTLs) have been 

strongly associated with gene expression variation and have been successfully used as 

surrogates of direct measurement of gene expression to study disease etiology.

Herein we sought to test whether eQTLs of genes reported to be associated with 

prognosis of MM patients are directly associated with measures of adverse outcome.

Macauda et al. Page 14

Int J Cancer. Author manuscript; available in PMC 2022 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. 
Forest plot forTBRG4-rs1992292
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FIGURE 2. 
A, box plot of the association between rs1992292 andTBRG4 expression; B, box plot of 

the association between rs2289375and TBRG4 expression. The data used for the analyses 

described inthis manuscript were obtained from: GTEx Analysis Release V8,acccessed on 

10/10/2019334.
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Table 1.

Study populations

IMMEnSE InterLymph

Primary Secondary

Country of origin

Italy 124

Poland 793

Spain 103

Portugal 30

Denmark 260

Hungary 17

USA 765 392

Canada 120

Total 1,327 885 392

Median age (25%-75% percentiles) 61 (54–67) 61 (54–68) 60 (53–67)

Gender

Males 52% 63% 56%

Females 48% 37% 44%

Disease stage Durie-Salmon 
a 

1 186 71 -

2 320 83 -

3 808 419 -

Total 1,316 574 -

Disease stage ISS 
a 

1 323 178 156

2 347 466 127

3 393 241 109

Total 1,064 885 392

First line therapy 
a,b

New 640 - -

Old 687 - -

Total 1,327 - -

Median overall survival months 39 (20.5–69.47) 60 (31–93) 55 (28–81)

(25%-75% percentiles)

Median progression-free survival months 23 (11.70–43.72) NA NA

(25%-75% percentiles) - -

a
The sum does not add up to the total of subjects due to missing data.
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b
New therapies are those based on proteasome inhibitors and/or immunomodulating drugs; old therapies are all others.
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Table 2.

List of selected SNPs.

Gene Gene signature SNP Alleles Major/minor GTEx p-value
a

RPS28

Kuiper 201211

rs2972572 A/G 7.9×10−42

DHFR
rs2560424 C/T 1.4×10−16

rs7387 T/A 1.4×10−16

RAB2A rs948421 T/C 1.2×10−10

HLA-DQB1

Moreaux 2013 3

rs1140347 T/C 2.3×10−30

rs1063355 T/C 2.1×10−29

HLA-DRB1
rs66859861 C/T 1.7×10−18

rs9270917 G/T 4.7×10−29

SERPINB1 rs62391542 C/T 8.6×10−08

HLA-DPA1
rs116102562 T/C 9.3×10−16

rs1054026 G/C 4.2×10−15

YWHAZ

Shaughnessy 20078

rs3134353 A/T 4.5×10−18

TBRG4
rs1992292 T/C 3.5×10−08

rs2289375 C/T 3.1×10−10

CNDP2 Decaux 20084
rs8084058 A/G 8.8×10−09

rs4891557 C/T 4.4×10−09

ACTR2

Terragna 201613

rs4671647 C/T 6.9×10−7

HELLS rs7100415 G/C 5.4×10−6

ENTPD1 rs2153913 G/C 1.3×10−21

CCND2 rs3217860 A/G 1.4×10−6

CCND1 rs7102758 A/G 1.1×10−6

ANK3 rs7072106 C/G 2.7×10−12

a
P-values of association between SNP genotypes and level of expression of the respective gene. The data used for the analyses described in this 

manuscript were obtained from: GTEx Analysis Release V7, accessed on 10/10/2017.
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