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Abstract
The gut microbiota plays a key role in metabolic diseases. Gut-microbiota-derived 
metabolites are found in different dietary sources, including: Carbohydrate 
(acetate, propionate, butyrate, also known as short-chain fatty acids, as well as 
succinate); protein (hydrogen sulfide, indole, and phenylacetic acid); and lipids 
(resveratrol-, ferulic acid-, linoleic acid-, catechin- and berry-derived metabolites). 
Insulin resistance, which is a global pandemic metabolic disease that progresses to 
type 2 diabetes mellitus, can be directly targeted by these metabolites. Gut-
microbiota-derived metabolites have broad effects locally and in distinct organs, 
in particular skeletal muscle, adipose tissue, and liver. These metabolites can 
modulate glucose metabolism, including the increase in glucose uptake and lipid 
oxidation in skeletal muscle, and decrease in lipogenesis and gluconeogenesis 
associated with lipid oxidation in the liver through activation of phosphatidylin-
ositol 3-kinase - serine/threonine-protein kinase B and AMP-activated protein 
kinase. In adipose tissue, gut-microbiota-derived metabolites stimulate adipo-
genesis and thermogenesis, inhibit lipolysis, and attenuate inflammation. 
Importantly, an increase in energy expenditure and fat oxidation occurs in the 
whole body. Therefore, the therapeutic potential of current pharmacological and 
non-pharmacological approaches used to treat diabetes mellitus can be tested to 
target specific metabolites derived from intestinal bacteria, which may ultimately 
ameliorate the hyperglycemic burden.
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Core Tip: The gut-microbiota-derived metabolites play a key role in metabolic diseases. 
Insulin signaling pathways are directly targeted by these metabolites, as they promote 
an increase in glucose uptake and lipid oxidation in skeletal muscle; a decrease in 
lipogenesis and gluconeogenesis associated with an increase in lipid oxidation in the 
liver; and an improvement in thermogenesis and inflammation in the adipose tissue. 
Collectively, these findings pave the way for the development of novel drugs or for 
investigation of the therapeutic potential of drugs currently used to treat insulin 
resistance, targeting the gut-microbiota-derived metabolites.
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TO THE EDITOR
We read with interest the recent publication by Jang and Lee[1] on the relationship of 
mechanisms linking the gut microbiota-derived metabolites to insulin resistance 
published in this journal.

The gut microbiota plays a key role in metabolic diseases. Gut-microbiota-derived 
metabolites are found in different dietary sources, including: Carbohydrate (acetate, 
propionate, butyrate, and succinate); protein (hydrogen sulfide, indole, and 
phenylacetic acid); and lipids (resveratrol-, ferulic acid-, linoleic acid-, cathecin- and 
berry-derived metabolites). Insulin signaling pathways are directly targeted by these 
metabolites. Therefore, gut-microbiota-derived metabolites, in particular, the short-
chain fatty acids (SCFAs), increase glucose uptake and lipid oxidation in skeletal 
muscle, whereas in the liver, SCFAs decrease lipogenesis and gluconeogenesis, 
increasing the lipid oxidation through activation of phosphatidylinositol 3-kinase - 
serine/threonine-protein kinase B (PI3K-AKT-PKB) and AMP-activated protein 
kinase. In adipose tissue, SCFAs stimulate adipogenesis and thermogenesis, inhibit 
lipolysis, and attenuate inflammation. Therefore, an increase in energy expenditure 
and fat oxidation occurs in the whole body. Collectively, these findings pave the way 
for the development of novel drugs or for investigation of the therapeutic potential of 
drugs currently used to treat insulin resistance, targeting the gut-microbiota-derived 
metabolites.

Notably, preclinical models and clinical studies substantiate the interaction between 
intestinal microbiota and the pathophysiology of insulin resistance in type 2 diabetes 
mellitus (DM)[2-4].

Therefore, this current article provides an overview of the important role of the 
specific microbiota-derived compounds in insulin-responsive tissues, acting as risk 
factors or protectors for the development of insulin resistance, and highlights the 
biologic implications of the muscle–liver–adipose tissue axis interaction.

Even though the authors documented the potential role of some bacterial 
metabolites as regulators of metabolic functions in the body, such as SCFAs derived 
from carbohydrates (propionate, butyrate and acetate), and the protein- and lipid-
derived metabolites, in modulating pathways of insulin signaling, the impact of these 
bacterial metabolites on host metabolism warrants further investigation.

Importantly, succinate is a metabolite of the tricarboxylic acid cycle and is produced 
equally by microbiota and the host[5]. Although this metabolite contributes to 
improving glucose homeostasis through the activation of intestinal gluconeogenesis
[6], in obese individuals, high levels of this circulating metabolite are documented[5]. 
Furthermore, the imbalance of higher relative abundance of succinate-producing 
bacteria (Prevotellaceae and Veillonellaceae) and lower relative abundance of 
succinate-consuming bacteria Odoribacteraceae and Clostridaceae) may promote an 
increase in succinate levels and, ultimately, impaired glucose metabolism. These 
authors also pointed out succinate as having a potential role in metabolic-associated 
cardiovascular disorders and obesity. Additionally, succinate acts as an immunogenic 
molecule, identified as damage-associated molecular patterns. This molecule is 
recognized by immune cells and stabilizes hypoxia-inducible factor-1α through its G-
protein coupled receptor (succinate receptor 1/SUCNR1 or GPR19), which leads to the 
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proinflammatory differentiation of T lymphocytes, and production of cytokines 
through interaction with Toll-like receptor ligands in dendritic cells[7,8]. Collectively, 
these findings may promote an enhancement of insulin resistance and DM burden.

Furthermore, hydrogen sulfide (H2S) and the role of sulfur-reducing bacteria from 
the intestinal microbiota have gained insights into the physiological implications of 
host glycemic control[9]. Thus, H2S metabolite may protect against oxidative stress by 
restoring reduced glutathione (GSH) and scavenging of mitochondrial reactive oxygen 
species, inducing pro-survival/angiogenesis signaling pathway (STAT3, signal 
transducer and activator of transcription 3), and promoting immunomodulation 
(inhibition/activation of nuclear factor-κB) and vasodilation (activation of KATP ion 
channel)[10]. However, the balance between therapeutic and harmful effects of H2S 
should be considered when targeting that metabolite, as H2S either endogenous or 
exogenous, as well as that produced by the gut microbiota, promotes or inhibits a 
variety of characteristics in mucosal microbiota biofilms[11]. Depending on H2S 
concentration, in particular, when the gut microbiota produces an excessive amount, it 
may cause mucus disruption and inflammation in the colon and contribute to cancer. 
Conversely, low levels of H2S directly stabilize mucus layers, prevent fragmentation 
and adherence of the microbiota biofilm to the epithelium, inhibit the release of 
invasive opportunistic pathogens or pathobionts, and prevent inflammation and tissue 
injury[11]. Moreover, H2S overproduction is a causative factor in the pathogenesis of β-
cell death in DM due to increased levels of reactive oxygen and nitrogen species, 
whereas its deficiency, as a result of increased H2S consumption by hyperglycemic 
cells, may lead to endothelial dysfunction, and kidney and heart diseases[12].

As we learn more about gut-microbiota-derived metabolites, we will better 
understand how to target these metabolites. Thus, acetate, which is involved in host 
energy, substrate metabolism, and appetite via secretion of the gut hormones 
[glucagon-like peptide (GLP) and peptide YY], may be increased by oral acetate 
administration (vinegar intake), colonic acetate infusions, acetogenic fibers and 
acetogenic probiotic administration[13]. These strategies may both decrease whole-
body lipolysis and systemic proinflammatory cytokine levels, and increase energy 
expenditure, insulin sensitivity, and fat oxidation, which contributes to weight control 
and glucose homeostasis. Probiotics (live microorganisms) act as microbiome modu-
lators and confer a health benefit, as demonstrated by the capacity of selected probiotic 
strains (lactobacilli and enterococci) to increase SCFA production; in particular, 
propionate and butyrate[14]. As reviewed elsewhere, probiotic administration (
Bifidobacterium pseudocatenulatum, Lactobacillus plantarum, or the formula VSL#3) in 
preclinical models of obesity led to an increase in the intestinal barrier function, a 
reduction in the endotoxemia, acceleration in metabolism, and suppression of body 
weight gain and insulin resistance via modulation of the gut microbiota composition 
and SCFA production[15]. Probiotics may also ameliorate glucose homeostasis and 
lipid profile in diabetic mice[15].

From a clinical point of view, obese children treated with the probiotic Lactobacillus 
casei shirota for 6 mo presented with loss of weight, improved lipid metabolism, and 
an increase in the number of Bifidobacterium spp. and acetate concentration in the feces
[16]. Likewise, patients with type 2 DM treated with probiotics containing Lactobacillus 
acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12 for 6 wk had improved 
glucose and lipid profiles, which were associated with lower levels of systemic inflam-
mation and increased concentration of acetate[17]. Additionally, modification of gut 
microbiota by dietary weight loss intervention decreased circulating succinate levels 
and improved the metabolic profile in a cohort of individuals with type 2 DM and 
obesity[6].

Pharmacological interventions or xenobiotics may also have effects on gut 
microbiota. Metformin is the most frequently administered medication to treat patients 
with insulin resistance and type 2 DM. This drug may alter the gut microbiota 
composition through an increase in the Bacteroidetes and Verrucomicrobia phyla and 
the mucin-degrading Akkermansia muciniphila, Bacteroides, and Escherichia genera, as 
well as in butyrate and propionate production, emphasizing maintenance of the 
integrity of the intestinal barrier, regulation of bile acid metabolism and improvement 
in glucose homeostasis[18,19]. Importantly, metformin may have these benefits in 
newly diagnosed DM[20].

Sodium-glucose cotransporter 2 inhibitors represent the most recently approved 
class of oral medications for the treatment of type 2 DM. Dapagliflozin decreased the 
Firmicutes-to-Bacteriodetes ratio in diabetic mice, which was correlated with 
improvement in vascular function[21]. In a rodent model of type 1 DM, inhibition of 
SGLT2 reduced the intermediate metabolite succinate and increased butyrate levels, as 
well as decreased norepinephrine content in the kidney[22]. Hence, the impact of 
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SGLT2 inhibitors on the gut microbiota is an area of active research.
Likewise, GLP-1 agonists reduced the abundance of the species of the Firmicutes 

phylum (Lachnospiraceae and Clostridiales) and increased the abundance of the 
species representing the Proteobacteria (Burkholderiales bacterium YL45) and Verruco-
microbia (Akkermansia muciniphila), as well as Firmicutes (Clostridiales and Oscillos-
piraceae) phyla in obese mice[23]. In particular, body weight loss was associated with 
increased abundance of Akkermansia muciniphila, a mucin-degrading SCFA-producing 
species, whose abundance is decreased in obesity and has a negative correlation with 
markers of gut permeability and inflammation. Notably, the GLP-1 agonist liraglutide 
can prevent weight gain by modulating gut microbiota composition in both obese and 
diabetic obese animals[24].

In the cardiometabolic disease setting, lipid-lowering drugs, such as statins, may 
also play an important role in modulating gut microbiota. In vitro studies have 
documented increased levels of SCFA production, including propionate, butyrate and 
acetate[25]. These drugs may increase the abundance of the Bacteroides, Butyricimonas 
and Mucispirillum genera, which is associated with a decrease in the inflammatory 
response, including lower levels of interleukin (IL)-1β and IL-6, and higher levels of 
transforming growth factor β-1 in the ileum, and improved hyperglycemia[26]. In 
humans, obesity is associated with a microbiota signature based on the abundance of 
the Bacteroides genus profile, displaying the lowest abundances of Akkermansia and 
Faecalibacterium, as well as a decrease in the butyrate production potential[27]. 
Importantly, statin therapy resulted in a lower prevalence of a proinflammatory 
microbial community type in obese individuals.

In conclusion, the gut microbiota imbalances and maladaptive responses have been 
implicated in the pathology of insulin resistance, DM, and obesity[28]. Host-gut 
microbiota interaction is suggested to play a contributory role in the therapeutic effects 
of antidiabetics, statins, and weight-loss-promoting drugs. Therefore, additional 
studies combining untargeted metabolomics and proteomics are essential to identify 
further microbial metabolites or proteins and to determine how they interact with the 
host targets in improving host metabolism.
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