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Abstract: The global prevalence of nonalcoholic fatty liver disease (NAFLD) or metabolic associated
fatty liver disease (MAFLD), as it is now known, has gradually increased. NAFLD is a disease
with a spectrum of stages ranging from simple fatty liver (steatosis) to a severe form of steatosis,
nonalcoholic steatohepatitis (NASH), which could progress to irreversible liver injury (fibrosis) and
organ failure, and in some cases hepatocellular carcinoma (HCC). Although a liver biopsy remains the
gold standard for accurate detection of this condition, it is unsuitable for clinical screening due to a
higher risk of death. There is thus an increased need to find alternative techniques or tools for accurate
diagnosis. Early detection for NASH matters for patients because NASH is the marker for severe
disease progression. This review summarizes the current noninvasive tools for NAFLD diagnosis and
their performance. We also discussed potential and newer alternative tools for diagnosing NAFLD.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD), now known as metabolic associated fatty
liver disease (MAFLD), is a common liver disease that affects 25% of the population world-
wide [1,2]. Even though NAFLD is more prevalent among Hispanics, previous studies
reported that NAFLD is increasingly becoming an issue in other populations [1,2]. Impor-
tantly, NAFLD has become more prevalent in children (~10%), particularly in children with
obesity (34%) [3]. NAFLD is a disease with a broad spectrum of liver conditions without
other known causes. The patients could progress from simple steatosis characterized by
excessive hepatic triglyceride accumulation to a more severe form of fatty liver (nonal-
coholic steatohepatitis, NASH) with and without fibrosis [4]. Although the majority of
NAFLD patients will not progress, those with NASH and fibrosis are at risk of developing
severe liver complications and mortality [5,6]. Thus, significant efforts are being made to
understand the critical steps of NASH development from simple steatosis to fibrosis for
developing early and accurate diagnostic tools for patient risk stratifications.

Currently, the gold standard assessment for NASH and fibrosis is a histological as-
sessment of the liver (liver biopsy) [7]. However, liver biopsy is unsuitable for population
screening due to its limitations, including the invasiveness that could lead to complications,
such as bleeding, pain, and in some instances death [8]. As a result, there is an urgent
need to address and develop alternative noninvasive diagnostic tools. Therefore, this
review summarizes the current noninvasive methods for detecting NAFLD and discusses
newer promising tools, including genetic approaches, noncoding RNAs, and extracellular
vesicles (EVs).

2. NAFLD Pathogenesis

Understanding the pathogenesis of NAFLD is crucial for identifying the important
molecular biomarkers crucial for accurate diagnosis. NAFLD is a multifactorial disease
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associated with unhealthy lifestyles and diets, metabolic dysregulation, genetics, oxida-
tive stress, and altered gut–liver axis, all of which might influence disease development
and progression. Detailed pathogenesis and molecular mechanisms have been described
before [9].

Currently, the new proposed name for NAFLD is MAFLD. In the early 1980s, the term
NAFLD was applied to patients with liver histological characteristics similar to those found
in cases of alcohol-associated liver disease (ADL) yet the patients did not have heavy
alcohol consumption [10]. Later, various publications showed that fatty liver is associated
with type 2 diabetes mellitus (T2DM), obesity, and insulin resistance [10,11]. Thus, MAFLD
is proposed as the new name for this liver condition, in which MAFLD accurately describes
the liver manifestations of multi-metabolic disorders [10,12]. According to the current
consensus, the diagnosis of MAFLD requires patients to have hepatic steatosis with any of
the following metabolic disorders, such as obesity, T2D, and metabolic syndromes [10,12].
With the inclusion of metabolic disorders, different subtypes within the MAFLD patients are
almost inevitable. Each subtype could have a different prognosis based on its pathophysio-
logical progression. [10,12]. Since the MAFLD term was introduced recently, the diagnosis
of MAFLD in clinical settings would require further investigation.

Dysregulation of the metabolic features drives early NAFLD/MAFLD disease develop-
ment and steatosis. Overnutrition, insulin resistance, and obesity contribute multiple insults
that modulate excess hepatic lipid accumulation [13]. Among the lipids or triglycerides
(TG) in the liver, about 59% are from the circulating free fatty acids (FFAs) from adipocytes,
followed by de novo liver lipogenesis (DNL) and dietary fats [14]. Lipolysis is a process of
TG breakdown into FFAs by lipase enzymes to meet energy requirements. The activation
of β-adrenergic leads to cyclic adenosine phosphate (cAMP) production [15]. These cAMPs
bind to protein kinase A (PKA) and stimulate the phosphorylation of lipase enzymes [16].
Adipose triglyceride lipase (ATGL), currently known as patatin-like phospholipase domain
containing 2 (PNPLA2), drives the first step in lipolysis. This PNPLA2 lipase hydrolyzes
the ester bond of TG into diacylglycerol (DAG), and hormone-sensitive lipase mediates the
hydrolysis of DAG to monoacylglycerol (MAG). Following this, the monoglyceride lipase
catalyzes the hydrolysis of MAG to glycerol and FFAs [15]. Usually, circulating FFAs are
higher during fasting and decrease upon feeding due to insulin signaling, suppressing lipol-
ysis. However, in subjects with insulin resistance, higher lipolysis causes a more significant
rise in circulating FFAs [9]. Mechanistically, upon insulin binding, insulin receptor substrate
(IRS) is activated and phosphorylates phosphoinositide 3-kinase (PI3K) and protein kinase
B (PKB), also known as AKT (PI3K/AKT pathway), to initiate insulin-mediated effects [15].
One of the enzymes activated in this pathway is phosphodiesterase 3B (PDE3B), and this
enzyme catalyzes the hydrolysis of cAMP to inhibit lipolysis. In contrast, tumor necrosis
factor-α (TNF) promotes lipolysis by p44/42/Jun kinases and thus inhibits insulin signal-
ing [17]. Therefore, uncontrolled lipolysis due to insulin resistance in adipocytes highlights
the role of adipocytes in liver steatosis. This finding is also supported by the increased
rate of circulating FFAs associated with higher fat mass [18], thus further confirming that
MAFLD is more accurate to describe the NAFLD condition.

Besides lipolysis, liver DNL also contributes to steatosis. DNL is a biochemical process
that synthesizes FFAs from the acetyl-CoA subunits from glycolysis. The process starts
with converting the acetyl-CoA to malonyl-CoA via acetyl-coenzyme A carboxylase (ACC)
and finally to saturated fat, palmitate [19]. Two transcription factors regulate DNL. One
is sterol regulatory element-binding protein 1c (SREBP1c), currently known as sterol reg-
ulatory element-binding transcription factor 1 (SREBF1) [19]. SREBF1 activation leads to
the transcription of lipogenic genes, such as the ACC, stearoyl-CoA desaturase 1 (SCD1),
fatty acid synthase (FASN), and the elongation of long-chain fatty acids family member
6 (ELOVL6) [20]. The other factor is the carbohydrate regulatory element-binding protein
(ChREBP) [19]. In contrast to SREBF1, higher glucose uptake into the liver and glycolysis
activate the ChREBP. Although the exact ChREBP mechanism is partly understood, the sug-
gested mechanism is that hyperglycemia stimulates the transcriptional activity of ChREBP.
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Together with SREBF1, these transcription factors activate the downstream lipogenic genes
and thus could explain the association of NAFLD with T2D or hyperglycemia.

Most NAFLD patients will not progress to NASH; however, those with NASH are at
risk of developing severe liver diseases [5,6]. Even though the exact mechanism of NASH
development is partly understood, lipotoxic and damaged hepatocytes could drive NASH
progression [21,22]. In order to minimize lipid accumulation, the liver adapts to increase
the disposal of FFAs via mitochondrial β-oxidation. However, this adaptation is lost in
NASH individuals due to oxidative stress [23]. Increased reactive oxygen species (ROS)
levels lead to reduced expression of peroxisome proliferator-activated receptor α (PPARA),
which is a crucial transcriptional factor in FFA oxidation, thus causing the dysregulation of
lipid oxidation [24,25]. Another feature is the liver inflammation that distinguishes NASH
from steatosis. The adipose-derived cytokine TNF interferes with insulin signaling and con-
tributes to hepatic inflammation [26]. The dysregulated metabolic molecules from steatosis,
such as FFAs, cholesterol, oxidized low-density lipoproteins (OxLDLs), glucose, and ad-
vanced glycation end products (AGEs), could also initiate the pro-inflammatory media-
tors [27]. Notably, an animal model of NAFLD showed that hepatic resident macrophages
(Kupffer cells) engulfed cholesterol crystals and became activated [28]. Activated Kupf-
fer cells secrete TNF to amplify the effects of insulin resistance and activate the nuclear
factor-κB (NFKB) and C-C motif chemokine ligand 2 (CCL2) [22]. Both NFKB and CCL2
are essential for activating the pro-inflammatory macrophages and monocytes to initiate
liver inflammation [22]. Maintaining the inflammatory liver environment further activates
the hepatic stellate cells (HSCs), a critical step for fibrosis development.

Hepatic fibrogenesis is driven by HSC activation and proliferation. Usually, HSCs are
quiescent non-proliferative cells, and their activations lead to extracellular matrix (ECM)
protein synthesis and production [29]. Lipotoxic hepatocytes and Kupffer cells could
trigger HSC activation via the release of the pro-fibrotic cytokines (TNF, platelet-derived
growth factor (PDGF), and transforming growth factor-β (TGFB)). The increase of α-smooth
muscle actin (ACTA2) and desmin (DES) productions change the HSC phenotypes into
proliferative and contractile shapes [29]. These activated HSCs also promote the secretion of
pro-inflammatory cytokines, including CCL2 and interleukins (IL-6 and IL-8), to maintain
the inflammatory environment and promote the fibrogenic environment further [30]. Thus,
as collagen deposition becomes more evident in liver tissue, the patients have progressed
to cirrhosis. Therefore, understanding NAFLD pathogenesis will allow for an accurate
diagnosis for early intervention.

3. Current Noninvasive Diagnostic Methods

Current noninvasive methods for detecting NAFLD focus on the two elements:
(1) quantification of serum or plasma biomarkers and (2) measurement of liver stiffness via
imaging techniques, such as ultrasound- or magnetic resonance-based tools.

3.1. Serum Biomarkers

Most serum or blood biomarkers are incorporated into predictive models to diagnose
NAFLD (Table 1). One such model is the diagnosis of steatosis index that includes the fatty
liver index [31], hepatic steatosis index [32], SteatoTest [33], lipid accumulation product
(LAP) [34], index of NASH (ION) [35], NAFLD liver fat score (LFS) [36], triglyceride-
glucose index (TyG) [37], serum keratin 18 fragment (CK-18) [38], and visceral adiposity
index (VAI) [39]. These index models’ diagnostic performance is acceptable; however, the
performance is suboptimal when it comes to distinguishing steatosis grades [31–36,38].
Moreover, these indexes cannot differentiate among NAFLD individuals with and without
NASH [40].
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Table 1. Summary of the serum or plasma biomarker indexes used to diagnose NAFLD.

Index Models Clinical Markers Serum or Blood Markers Reference

Steatosis
FLI BMI, WC GGT, TG [31]
HSI BMI, Diabetes Status AST/ALT ratio [32]

SteatoTest Age, Sex, BMI ALT, GGT, TG [33]
LAP Age, Sex, BMI, WC ALT, AST, GGT, Glucose level, TG [34]

ION Sex, Waist-to-hip ratio,
Diabetes status TG, ALT, HOMA-IR [35]

NAFLD-LFS Diabetes and MetS status Serum-insulin, AST/ALT ratio [36]
TyG Age, Sex, BMI, SBP, DBP HbA1c, Uric acid, HDL-C [37]
VAI Age, BMI, PCOS diagnosis ALT, GGT, TG, DHEA-S, SHBG, HOMA-IR [39]

NASH
HAIR Waist-to-hip ratio ALT, TG, FP-insulin, FP-glucose, C-peptide levels [41]

Palekar score Age, Sex, BMI, AST, AST/ALT ratio, Fasting-insulin, QUICKI, HA [42]

oxNASH Age, BMI 9- & 13-HODEs, 9- & 13-oxoODEs, Free-radical
mediated oxidation of LA [43]

Gholam score Diabetes and MetS status ALT, AST, GGT, HbA1c, TG, [44]

NAFIC score Age, Sex, Diabetes status Serum ferritin, Fasting-insulin, Immunoreactive
insulin, Type IV collagen 7S [45]

NashTest Age, Sex, Height, Weight
Alpha2macroglobulin, Apolipoprotein A1, AST,

Cholesterol, Haptoglobin, GGT, TG, Total bilirubin
Transaminases ALT

[46]

NASH Score Age, Sex, BMI, Diabetes status AST, Fasting-insulin and circulating CK-18 fragment
concentrations, PNPLA3 genotype [47]

NASH ClinLipMet Score Age, Sex, BMI, MetS status AST, Fasting-insulin, Glu, Gly, Ile, LysoPC16:0, PE40:6,
TG48:0, Ser, PNPLA3 genotype [48]

acNASH Age AST, SCr [49]

Fibrosis

NFS Age, BMI, Hyperglycemia,
Diabetes, Hypertension status Albumin, Platelet count, AST/ALT ratio [50]

BARD BMI, Diabetes status AST/ALT ratio [51]
APRI Age, Diabetes status ALP, AST, Platelet count [52]
FIB-4 Age ALT, AST, INR, Platelet count [53]

FibroTest Age, Sex Alpha-2 macroglobulin, Apolipoprotein A1, GGT,
Gamma-globulin, Haptoglobin, Total bilirubin [54]

FibroMeter Body weight, MetS status ALT, AST, Ferritin, Glucose, Platelet count [55]

ELF Age, Sex Collagen IV (T59106R), Collagen VI, HA, laminin,
MM2, MM9, PIIINP, TIMP-1, Tenascin [56]

Hepascore Age, BMI, Diabetes status Aminoterminal peptide of procollagen-III,
HA, TIMP-1 [57]

Abbreviation: ALT: alanine transaminase; ALP: alkaline phosphatase; APRI: aspartate transaminase-to-platelet
ratio index; AST: aspartate transaminase; BMI: body mass index; DHEA-S: dehydroepiandrosterone sulphate;
DBP: diastolic blood pressure; FP: fasting plasma; FLI: fatty liver index; GGT: gamma-glutamyltransferase;
HbA1c: hemoglobin A1c; Glu: glutamate; Gly: glycine; glycosylated hemoglobin A1c; HA: hyaluronic acid;
HDL-C: high-density lipoprotein cholesterol; HIS: hepatic steatosis index; HODE: hydroxy-octadecadenoic acids;
HOMA-IR: homeostasis model assessment of insulin resistance; Ile: isoleucine; IRI: immunoreactive insulin;
LA: linoleic acid; LAP: lipid accumulation product; LysoPC16:0: lysophosphatidylcholine; MetS: metabolic
syndrome; MM: matrix metalloproteinase; NFS: NAFLD fibrosis score; NAFLD-LFS: NAFLD liver fat score;
NASH: nonalcoholic steatohepatitis; oxoODE: oxo-octadecadenoic acids; PCOS: polycystic ovary syndrome;
PE40:6: phosphoethanolamine 40:6; PIIINP: N-terminal propeptide of type III collagen; QUICKI: quantitative
insulin sensitivity check index; SBP: systolic blood pressures; SCr: serum creatinine; Ser: serine; SHBG: sex
hormone binding globulin; TG: triglycerides; TIMP-1: tissue inhibitor of matrix metalloproteinase 1; TyG:
triglyceride-glucose index; VAI: visceral adiposity index; WC: waist circumstances.

Other serum biomarkers are for the diagnosis of NASH (Table 1). One such is cir-
culating CK-18 levels, which could differentiate between patients with NASH and those
with steatosis [58], though its performance is moderate [59]. Similar to steatosis, most
serum or clinical biomarkers are incorporated into the predictive models to identify NASH,
such as HAIR [41], Palekar score [42], oxNASH [43], Gholam score [44], NAFIC score [45],
NashTest [46], NASH Score [47], NASH ClinLipMet Score [48], and acNASH [49]. More-
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over, some of these serum markers overlap with those in the steatosis indexes (Figure 1).
Unfortunately, none of these NASH indexes could differentiate NASH from steatosis with
high sensitivity and specificity.

Figure 1. Graphical representation of the NAFLD indexes and the overlapping molecules. Abbrevia-
tion: ALT: alanine transaminase; ALP: alkaline phosphatase; APRI: aspartate transaminase-to-platelet
ratio index; AST: aspartate transaminase; BMI: body mass index; DHEA-S: dehydroepiandrosterone
sulphate; DBP: diastolic blood pressure; FP: fasting plasma; FLI: fatty liver index; GGT: gamma-
glutamyltransferase; HbA1c: hemoglobin A1c; Glu: glutamate; Gly: glycine; glycosylated hemoglobin
A1c; HA: hyaluronic acid; HDL-C: high-density lipoprotein cholesterol; HIS: hepatic steatosis in-
dex; HODE: hydroxy-octadecadenoic acids; HOMA-IR: homeostasis model assessment of insulin
resistance; Ile: isoleucine; IRI: immunoreactive insulin; LA: linoleic acid; LAP: lipid accumulation
product; LysoPC16:0: lysophosphatidylcholine; MetS: metabolic syndrome; MM: matrix metallo-
proteinase; NFS: NAFLD fibrosis score; NAFLD-LFS: NAFLD liver fat score; NASH: nonalcoholic
steatohepatitis; oxoODE: oxo-octadecadenoic acids; PCOS: polycystic ovary syndrome; PE40:6: phos-
phoethanolamine 40:6; PIIINP: N-terminal propeptide of type III collagen; QUICKI: quantitative
insulin sensitivity check index; SBP: systolic blood pressures; SCr: serum creatinine; Ser: serine; SHBG:
sex hormone binding globulin; TG: triglycerides; TIMP-1: tissue inhibitor of matrix metalloproteinase
1; TyG: triglyceride-glucose index; VAI: visceral adiposity index; WC: waist circumstances.

Other models or indexes are intended for diagnosing and grading fibrosis (Table 1 and
Figure 1). Examples are the NAFLD fibrosis score (NFS) [50] and the BARD score [51] that
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are more specific to NAFLD whereas the other indexes were developed originally to diag-
nose hepatitis patients, e.g., the aspartate transaminase-to-platelet ratio index (APRI) [52],
FIB-4 [53], FibroTest [54], and proprietary indexes, such as the FibroMeter [55], enhanced
liver fibrosis (ELF) [56], and Hepascore [57]. Of these indexes, NFS and FIB-4 are the most
accurate, with high sensitivity for identifying individuals without advanced fibrosis, thus
eliminating those patients that do not need further assessment [60]. Moreover, FIB-4 is
more favorable because its formula only uses simple parameters readily available from
the standard clinical reports [60]. Unfortunately, both indexes require extra investigations
if the individuals are positive for advanced fibrosis, and in some cases (~30%) the diag-
nosis is unclear even with these indexes [61]. A newly identified plasma marker, Pro-C3
(N-terminal type III collagen propeptide), is reported to be more reliable than the existing
indexes (FIB-4, APRI, and NFS) for identifying individuals with NAFLD and advanced
fibrosis [62], though this finding requires further validation with a larger cohort. Serum
or plasma markers are easy means of diagnosing NAFLD in clinical settings and are often
used together with ultrasound techniques to confirm the diagnosis. For example, the FLI
index combined with ultrasound as a reference is commonly used to diagnose steatosis,
though this practice has moderate sensitivity. Another option is the HIS index combined
with ultrasound reference, though the accuracy is still sub-optimal. The NAFLD-LFS is
superior to FLI and HIS because it uses proton magnetic resonance spectroscopy (H-MRS)
as a reference. Since H-MRS is not standard clinic equipment, FLI and HIS indexes with
ultrasound remain the recommended option for diagnosing steatosis [63]. As for fibrosis,
most indexes are generally accurate in diagnosing advanced fibrosis. NFS and FIB-4 are the
most recommended and commonly used to screen individuals without significant fibrosis
due to their high sensitivity. Thus, these indexes are used as triage in primary care [63].
Unfortunately, these indexes cannot differentiate the individuals with NASH. Identification
of NASH-specific markers is vital as the presence of NASH determines the worst outcome
in the patients.

3.2. Imaging-Based Techniques

Besides the serum or blood markers, most NAFLD clinical assessments require
imaging-based techniques, such as elastography, to confirm the diagnosis. There are
two elastography-based tools: ultrasound- and magnetic resonance-based [60]. The ultra-
sound (US) tool is the most commonly used and recommended for diagnosing NAFLD
and steatosis [60]. The US abdominal image shows echogenicity—the ability to reflect US
waves—allowing for visual contrasts between the liver and kidneys and observation of the
intrahepatic vessels, liver parenchyma, and diaphragm [60]. Most conventional abdominal
US detects the echogenicity of the liver and grades the steatosis into three stages: (1) grade
0 steatosis with less than 5% of fat-laden hepatocytes, (2) grade 1 steatosis with 6–33%
of fat-laden hepatocytes, (3) grade 2 steatosis with 34–66% fat-laden hepatocytes, and (4)
Grade 3 steatosis with more than 66% of fat-laden hepatocytes [64]. Although this method
is commonly used due to its low cost and quick diagnosis, in a meta-analysis of 34 studies,
the pooled sensitivity and specificity of conventional US for diagnosing steatosis stages
(moderate and severe) were 85% and 93%, respectively [65]. However, in individuals with
obesity, these accuracies are reduced [66]. Thus, the sensitivity of conventional US to detect
steatosis is compromised when the degree of steatosis is less than 20% and has limited use
in overweight and obese individuals [64].

A quantitative US tool uses the speed of shear waves in the liver tissue and converts
this speed into a liver stiffness measurement (LSM) in kilopascals (kPa) [60,67]. The most
commonly used quantitative US tool is transient elastography (TE); other tools are acoustic
radiation force impulse imaging (ARFI) and strain elastography (SE) [67]. TE, more com-
monly known as Fibroscan (Echosens, Paris, France), is a vibration-controlled TE device
that uses the controlled attenuation parameter (CAP). CAP measures the attenuation of
US waves crossing the liver tissue to determine the presence of steatosis and its grades.
CAP is often evaluated together with LSM and is available on both M and XL probes
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of the Fibroscan system [67–69]. In a meta-analysis of 19 studies and 2735 NAFLD pa-
tients, the CAP on the M-probe optimal cut-off values for different steatosis grades were
248 (237–261) dB/m for mild steatosis for above grade 0 steatosis, 268 (257–284) dB/m for
significant steatosis (above grade 1), and 280 (268–294) dB/m for severe steatosis (above
grade 2) [70]. However, the CAP only moderately differentiated steatosis grades (≥11%,
≥33%, and ≥66%) with area under the receiver operating curve (AUROC) scores of 0.82,
0.86, and 0.88, respectively [70]. The plausible reasons for these moderate accuracies are
that several covariates could influence the CAP values, including NAFLD stage, diabetes,
and body mass index (BMI) [70]. Notably, the CAP on the M-probe often overestimated
liver fibrosis in individuals with steatosis [71]. Some studies showed that this limitation
could be eliminated by using the CAP on the XL probe [72], though the CAP values on both
probes give similar readings [73,74]. Nevertheless, only two studies reported the usage of
the XL probe; therefore, more studies are needed to confirm this. Other US manufacturers
also developed their proprietary technology to quantify the attenuation of the US wave.
One example is the Canon Medical Systems (Tochigi, Japan) that uses attenuation imaging
(ATI) in the Aplio i800 US systems [75]. In this ATI, the attenuation coefficient is calculated
in decibels per centimeter per megahertz (dB/cm/MHz) and is displayed in a real-time
color-coded map. Previous studies investigated the diagnostic potential of ATI compared
to CAP and found that ATI offers slightly better accuracy in the grading of steatosis [76–78].

Another imaging technique to diagnose steatosis is magnetic resonance-based elastog-
raphy (MRE) [60]. A meta-analysis of eight studies reported that MRE pooled sensitivity
and specificity were 89% and 84%, respectively, and the AUROC to diagnose steatosis
was 0.92 [79]. Like ultrasound, adding the proton-density fat fraction (PDFF) in magnetic
resonance imaging (MRI) makes steatosis grading possible. The MRI-PDFF performs better
than CAP in diagnosing all grades of steatosis [80]. Three studies, including American [81],
Japanese [82], and Dutch [83] populations, showed that MIR-PDFF has better AUROC
than the CAP-ultrasound. At present, neither MRE nor ultrasound tools could reliably
differentiate NASH from simple steatosis. The MRI-based tool shows some potential for
overcoming this problem, as the new LiverMultiScan (Perspectum Diagnostics) could
distinguish NASH individuals (AUROC: 0.80) from simple steatosis cases [84]. However,
this finding requires further validation.

In terms of fibrosis and cirrhosis, Fibroscan/TE has a range of good-to-excellent
accuracies for diagnosing advanced fibrosis and cirrhosis. A meta-analysis of nine studies
using the M-probe to diagnose advanced fibrosis and cirrhosis showed that the pooled
sensitivity and specificity were 85% and 92%, respectively, for both fibrosis and cirrhosis [85].
Another meta-analysis of 19 studies (four studies using the XL-probe) reported that the
AUROC between the M- and XL-probes for diagnosing advanced fibrosis and cirrhosis do
not differ [86]. Nonetheless, TE is still the most recommended tool to diagnose NAFLD and
fibrosis. As the TE has a 94–100% negative predictive value, it can rule out the individuals
with no fibrosis with high accuracy [87]. Besides TE, MRI-based tools can also diagnose or
detect fibrosis. Two meta-analysis studies showed that the 2D-MRE has a high diagnostic
performance in detecting advanced fibrosis (AUROC: 0.93 and 0.96, respectively) [86,88].
Moreover, the diagnostic performance of 3D-MRE is even better than 2D-MRE (AUROC:
0.96 vs. 0.92, respectively). However, 3D-MRE takes a long time to process results [89].
Another MRI-based tool is the application of acoustic radiation force impulse imaging
(ARFI) for diagnosing fibrosis and cirrhosis. A systematic review and meta-analysis of
29 studies revealed that the ARFI has high diagnostic accuracy for diagnosing advanced
fibrosis with pooled sensitivity and specificity of 92% and 85%, respectively, and AUROC
of 0.94 [90]. The above tools are excellent for diagnosing severe or advanced fibrosis,
yet suboptimal for detecting early fibrosis. It is also important to note that most of these
noninvasive tools for diagnosing NAFLD, NASH, and fibrosis are not optimized for the
presence of type 2 Diabetes (T2D) [60]. Since individuals with T2D are at risk for NAFLD
and advanced fibrosis [91], optimization and validation are needed to assess the actual
accuracy of these imaging techniques in T2D individuals. At present, most imaging
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techniques (US and MRI-based) are excellent for detecting the presence of steatosis and
fibrosis and their grading. However, the accuracies are compromised when the steatosis
grade is too low (grades 0–1) and the patients have metabolic syndromes (T2D and obesity).
Recent reports suggested that MRI-PDFF is superior among the imaging techniques (AUC:
0.946) in detecting hepatic steatosis in clinical settings [92]. Unfortunately, none of these
imaging techniques could differentiate between NASH and the early fibrosis stage; thus,
liver biopsy remains the gold-standard method.

4. Alternative Diagnostic Tools
4.1. Genetics of NAFLD

Another potential biomarker or alternative diagnostic tool is provided by the genetics
of NAFLD. Previous genome-wide association studies (GWAS) reported several genetic
variants associated with NAFLD risk [93,94]. The single nucleotide polymorphism (SNP)
of the patatin-like phospholipase domain-containing 3 (PNPLA3) gene, rs738409 (C > G),
results in a missense variation (I148M) which inhibits this enzyme’s activity and subse-
quently causes higher hepatic fat accumulation (75% higher) [95,96]. The PNPLA3 gene
encodes the lipid droplet-associated repressor that binds competitively to the co-activator
of ATGL, thus causing higher lipid accumulation [94,97]. Individuals with variant G nu-
cleotide have a 3.2-fold greater risk of developing hepatic fibrosis, and NASH is more
prevalent in GG individuals than CC (odds ratio: 3.49) [96]. Moreover, a meta-analysis of
13,817 individuals showed that the I148M variant pooled odds ratio for NASH was 2.54.
The odd ratios according to the genotypes were 1.75 for heterozygotes and 4.44 for ho-
mozygotes [98]. The I148M variant has become the most significant genetic determinant of
NAFLD in various populations currently [93,94]. Moreover, the penetrance of this variant
in the European population is comparable to monogenic liver disease mutation effects,
with the homozygous GG having a high odds ratio (12.19) of developing HCC in NAFLD
patients [99,100].

The frequency of the PNPLA3 I148M variant significantly correlated with ethnicity and
population prevalence of NAFLD. The I148M variant is relatively common, with a frequency
of 26% (combined population). This I148M frequency is much higher for Hispanics (49%)
and lowest for Africans (12–17%) [95]. Consistent with these frequencies, the Hispanics
have higher NAFLD prevalence (45%), whereas the lowest NAFLD prevalence is in the
Africans (24%) [1], thus suggesting that the variant I148M may explain the variability in
hepatic steatosis between the different ethnic groups. Important findings relating to the
PNPLA3 genetic risk are that this variant I148M effect was independent of insulin resistance
and could be modulated by dietary conditions [95]. Individuals with I148M have higher
liver fat levels, but no effect was observed in their glucose tolerance, liver enzymes, and C-
reactive proteins [95]. However, Hispanic children with this variant have higher liver fats
when they have carbohydrate-rich diets [101]. The ChREBP transcription factor regulates
PNPLA3 expression, and high levels of carbohydrates activate the ChREBP transcription
factor to facilitate lipid metabolism and regulation [102]. Thus, the disruption of the enzyme
activity by the variant I148M confers susceptibility in the individuals when consuming
carbohydrate-rich diets, suggesting a genetic and nutritional relationship. Importantly,
this SNP is incorporated in the predictive model to diagnose NASH [47,48], indicating its
potential as a biomarker for NAFLD and NASH.

Besides the PNPLA3 gene, previous GWAS studies also reported other genes associ-
ated with NAFLD. One such is the transmembrane 6 superfamily, member 2 (TM6SF2)
gene and its SNP rs58542926 (G > A) that results in a variant E167K. This variant was linked
with higher liver triglyceride levels and a greater risk of having advanced fibrosis [103–105].
In contrast, this variant also associates negatively with the level of liver triglyceride-rich
lipoproteins, thus causing a low risk of cardiovascular disease (CVD) [105,106]. The TM6SF2
gene encodes an endoplasmic reticulum (ER) transmembrane protein. A loss of this protein
function causes lower secretion of very low-density lipoprotein (VLDL) and increases
hepatic lipid accumulation [107], thus partly explaining the low risk of CVD. Other re-
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ported GWAS genes are the glucokinase regulatory protein (GCKR) gene and its genetic
variant SNP rs780094 [108,109], membrane-bound O-acyltransferase domain-containing
7 (MBOAT7) and its SNP rs641738 [110,111], and hydroxysteroid 17β-dehydrogenase
(HSD17B13) SNP rs72613567 [112–114]. The latter SNP is protective and reduces NAFLD
risk [115]. The HSD17B13 variant rs72613567 is a splice variant at the last exon, caus-
ing a truncated mRNA transcript and loss of function [115]. Although the role of the
HSD17B13 enzyme is partly understood, this variant rs72613567 causes the reduction of
lipid droplets and chronic liver injury with no effect on hepatic steatosis [116]. Notably,
there is a relationship between the HSD17B13 rs72613567 variant and the PNPLA3 I148M
variant. In individuals carrying the PNPLA3 I148M variant, the HSD17B13 rs72613567
variant lowered the effects of the I148M variant on livery injury and hepatic enzyme lev-
els [115,117,118]. Since the HSD17B13 gene is primarily expressed in the liver [119], this
genetic alteration could potentially be a therapeutic target for NAFLD. From the GWAS
studies, the genetics of NAFLD have significant potential as a diagnostic tool. Among
these genetic variants, the screening of PNPLA3 I148M could identify individuals at risk
for developing NAFLD as early as 3.1 years [120]. Moreover, the genotype of PNPLA3
I148M is included in two clinical indexes, the NASH score and the ClinLipMet score,
with AUROCs of 0.778 and 0.866, respectively [48]. Cumulative genetic risk scores (GRS)
comprising PNPLA3, TM6SF, and HSD17B13 variants predicted a 12-fold higher risk of
cirrhosis and up to a 29-fold higher risk of HCC in 445,452 individuals [121]. Although
genetic screening could diagnose early, the implementation of genetic screening is still not
currently recommended by the American Association for the Study of Liver Diseases for
clinical settings [122], though this may change in the future [123].

4.2. Noncoding RNAs in NAFLD

Recently, studies have indicated that noncoding RNAs (ncRNAs) could regulate
NAFLD progression (Table 2) [124–126]. The ncRNAs are RNAs that do not encode func-
tional proteins and are generally grouped based on their sizes, (1) small ncRNAs (microR-
NAs) and (2) large ncRNAs, including the long noncoding RNAs and circular RNAs. Some
of these ncRNAs are stably present in the circulating samples, such as blood and urine,
and therefore have enormous potential to be biomarkers for NAFLD.

Table 2. Summary of the noncoding RNAs in NAFLD.

Noncoding RNAs Target Molecules Expression Role in NAFLD Reference

MicroRNAs
miR-122 SREBF1, DGAT2, FASN, P4HA1 High Steatosis, liver fibrosis [127]

miR-138, -143 BCL2, TGFB High Liver fibrosis [128]
miR-181b PTEN High Liver fibrosis [129]
miR-192 ALCAM, EREG, MSN, Zeb2 Low Liver fibrosis [130,131]
miR-21 Foxa2, Foxo1, Hnf4a, Stat3, Ppara High Steatosis [132–135]

miR-221 COL1A1 High Liver fibrosis [136]
miR-29a TGFB, NFKB Low Liver fibrosis [137]

miR-33a,b SREBF1, SREBF2 High Steatosis [138]
miR-34a-5p Ppara, Sirt1 High Steatosis [139,140]

miR-99a TNF, mTOR/SREBF1 Low Steatosis [141,142]
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Table 2. Cont.

Noncoding RNAs Target Molecules Expression Role in NAFLD Reference

LncRNAs
APTR PRC2 High Liver fibrosis [143]
FLRL2 ARNTL Low Inflammation, steatosis [144]
GAS5 miR-222 High Liver fibrosis [145]
H19 Ptbp1l, Srebf1 High Steatosis [146]

HIF1A-AS1 TET3 Low Liver Fibrosis [147]
HOTAIR miR-29b, DNMT1, PRC2 High Liver fibrosis [148,149]
HOTTIP miR-148a High Cirrhosis [150]
HULC MAPK High Liver fibrosis [151]
LFAR1 Smad2/3, Tgfbr1 High Liver fibrosis [152]

LncRNA-ATB miR-200a, CTNNB1 High Liver fibrosis [153]
LncRNA-P21 miR-181b, miR-17-5p High Liver fibrosis [129,154]

LncSHGL Hnrnpa1 Low Steatosis [155]
MALAT1 Srebf1 High Inflammation, liver fibrosis [156]

MEG3 TP53, miR-21 High Liver fibrosis [157,158]
SRA Foxo1, Pparg High Steatosis [159]

SCARNA10 PRC2 High Liver fibrosis [160]
TUG1 miR-29b High Cirrhosis [161]

CircRNAs

cMTO1 miR-17-5p/SMAD7,
miR-181b-5p/PTEN Low Liver fibrosis [162,163]

circFBXW4 miR-181b-5p, SREBF1 Low Liver fibrosis [164,165]
circPSD3 miR-92b-3p, SMAD7 Low Liver fibrosis [166]

circPWWP2A miR-203, FSTL1 High Liver fibrosis [167]
circRNA_002581 miR-122, Slc1a5, Plp2, Cpeb1 High NASH [168]

circRNA_0046366 miR-34a, PPARA Low Steatosis [169]
circRNA_0046367 miR-34a, PPARA Low Steatosis [170]
circRNA_0067835 miR-155, FOXO3A High Liver fibrosis [171]
circRNA_0074410 miR-9-5p Low Liver fibrosis [172]
circRNA_021412 miR-1972, LPIN1 Low Steatosis [173]

circRSF1 miR-146a-5p, RAC1 High Liver fibrosis [174]
circTUBD1 miR-146a-5p, TLR4 High Liver fibrosis [175]
circUBE2K miR-149-5p, TGFB2 High Liver fibrosis [176]

Abbreviation: ALCAM: activated leukocyte cell adhesion molecule; APTR: Alu-mediated p21 transcriptional regu-
lator; ARNTL: aryl hydrocarbon receptor nuclear translocator-like protein 1; BCL2: B-cell lymphoma 2; CircRNA:
circular RNA; COL1A1: alpha-1 type I collagen; CPEB1: cytoplasmic polyadenylation element binding protein
1; CTNNB1: beta catenin; DGAT2: diacylglycerol O-acyltransferase; DNMT1: DNAmethyl transferase 1; EREG:
epiregulin; FASN: fatty acid synthase; FLRL2: fatty liver-related lncRNA 2; FOXA2: forkhead box transcription
factor A2; FOXO1: forkhead box transcription factor O1; FSTL1: Follistatin-like 1; GAS5: growth arrest-specific 5;
H19: H19 imprinted maternally expressed transcript; HIF1A-AS1: HIF1A antisense RNA 1; HNF4A: hepatocyte
nuclear factor 4 alpha; HOTAIR: HOX transcript antisense RNA; HOTTIP: HOXA transcript at the distal tip;
HULC: highly upregulated in liver cancer; LFAR1: liver fibrosis-associated lncRNA 1; LncRNA: long noncoding
RNA; LncRNA-ATB: long noncoding RNA activated by TGFB; LPIN1: Lipin 1; MALAT1: metastasis-associated
lung adenocarcinoma transcript 1; MAPK: mitogen-activated protein kinase; MEG3: maternally expressed 3;
MIRT2: myocardial infarction-associated transcript 2; MSN: moesin; mTOR: mammalian target of rapamycin;
NFKB: nuclear factor kappa-light-chain-enhancer of activated B cells; P4HA1: prolyl 4-hydroxylase subunit alpha
1; PLP2: proteolipid protein 2; PPARA: peroxisome proliferator-activated receptor alpha; PPARG: peroxisome
proliferator-activated receptor gamma; PRC2: polycomb repressive complex 2; PTBP1L: Polypyrimidine tract-
binding protein 1; PTEN: phosphatase and tensin homolog; RAC1: Ras-related C3 botulinum toxin substrate
1; SCARNA10: small cajal body-specific RNA 10; SIRT1: sirtuin 1; SMAD: SMAD family members; SLC1A5:
solute carrier family 1 member 5; SRA: steroid receptor RNA activator; SREBF1: sterol regulatory element-binding
transcription factor 1; STAT3: signal transducer and activator of transcription 3; TET3: ten-eleven-translocation
3; TGFB: transforming growth factor beta; TNF: tumor necrosis factor; TGFBR1: TGFB receptor; TLR4: toll-like
receptor 4; TP53: tumor suppressor p53; TUG1: taurine up-regulated 1; UBE2K: ubiquitin-conjugating enzyme E2
K; ZEB2: zinc finger E-box binding homeobox 2.

4.2.1. MicroRNAs

Among ncRNAs, microRNAs (miRNAs) are the most well-known in the context of
NAFLD (Table 2) [177]. MiRNAs are small, single-stranded ncRNAs (~22 nucleotides) that
negatively regulate gene expression by complementary binding to messenger RNAs (mR-
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NAs). The majority of these miRNAs are transcribed from their genes during the canonical
pathway centered around the microprocessor complexes of Drosha and Dicer. The de-
tailed biogenesis of miRNAs has been described recently [178]. One miRNA, miR-122,
is highly expressed in the liver, and this miRNA is known to maintain a healthy liver
and function [125,177]. Low miR-122 expression in the hepatocytes leads to steatohep-
atitis, lowers plasma cholesterol levels, reduces fatty acid (FA) synthesis, and increases
FA oxidation. Consistently, miR-122 regulates the genes involved in lipid and cholesterol
metabolism, such as SREBF1, diacylglycerol O-acyltransferase 2 (DGAT2), FASN, and prolyl
4-hydroxylase subunit alpha 1 (P4HA1) [127]. Moreover, this low miR-122 expression
was more evident in the liver of NASH individuals (10-fold lower) when compared to
steatotic liver cases [177]. In contrast, serum miR-122 expression was higher in NAFLD
patients than healthy controls and was much higher in NASH individuals [179]. Since
this miRNA is preferably localized near the membrane of lipid-rich hepatocytes [92], high
serum miR-122 may come from damaged hepatocytes [180]. Thus, a change of miR-122
expression could reflect the status of the liver organ, and therefore could be used as a
biomarker for NAFLD progression.

Besides miR-122, other miRNAs also regulate steatosis and lipid metabolism. One such
is the miR-21 that is higher in liver tissue and circulating plasma of NAFLD individuals
and animal models [132,133]. Inhibition of the miR-21 expression alleviated steatosis by
upregulation of the key regulators of lipid metabolism, such as hepatocyte nuclear factor 4
alpha (Hnf4a), forkhead box transcription factors (Foxa2 and Foxo1), Ppara, and the signal
transducer and activator of transcription 3 (Stat3) [134,135]. Another miRNA is the miR-
34a that is also higher in the liver tissue of NAFLD animal models [139,140]. Similar to
miR-21, the inhibition of miR-34a alleviated steatosis by the upregulation of Ppara and
sirtuin 1 (Sirt1) expression [139,140]. One of the most abundant miRNAs in the liver is
miR-99a, which was reduced in the serum samples of NAFLD individuals [181]. This
miRNA is involved in the negative regulation of inflammatory signals by targeting the
TNF [141] and mammalian target of rapamycin (mTOR)/SREBF1 [142]. The miR-33 family
members, miR-33a and miR-33b come from the introns of SREBF1 and -2 genes [138].
SREBF1 regulates the genes for fatty acid synthesis, and SREBF2 regulates cholesterol
metabolism [182]. Therefore, inhibition of the miR-33a increases cholesterol transporter
(ABCA1) expression, HDL production, and circulating levels [182], suggesting that miR-33
plays a role in dyslipidemia. This finding is partly correct, as the levels of plasma miR-33
members were found to be higher in familial hypercholesterolemia children compared to
a healthy group. Their levels also correlated with cholesterol, LDL and LDL/HDL ratio,
and APOB levels [183], confirming their roles in lipid metabolism.

Another liver-specific miRNA is miR-192, mainly implicated in fibrosis via the TGFB/SMAD
pathway [184]. Following liver injury, the activation of the TGFB1 signal decreased the
binding of hepatocyte nuclear factor family factors to the promoter region of miR-192 and
subsequently reduced this miRNA expression [185]. Therefore, this miR-192 inhibition
increases the expression of its targets such as epiregulin (EREG), activated leukocyte cell
adhesion molecule (ALCAM), and moesin (MSN), and these molecules are involved in
epithelial-to-mesenchymal transitions (EMT) [130]. A study of an animal model of liver
injury supported this finding, as miR-192 also negatively regulates zinc finger E-box binding
homeobox 2 (Zeb2) expression. This Zeb2 is a well-known EMT modulator [131], critical
for fibrosis formation. Similar to miR-122, circulating miR-192 was found to be higher in
NASH patients [186] and could be used as a biomarker for NASH.

These circulatory miRNAs are used in a diagnostic panel to identify and diagnose
NAFLD. A panel of five serum miRNAs, miR-122, miR-34a, miR-375, miR-192, and miR-
21, was specific enough to differentiate NAFLD individuals from drug-induced liver
injury cases [187]. A systematic review and meta-analysis revealed that from 27 studies
three miRNAs (miR-122, miR-34a, and miR-99a) could significantly diagnose NAFLD,
with pooled AUROC results of 0.86, 0.85, and 0.87, respectively [188]. Importantly, miR-
34a has the lowest heterogeneity and thus has the highest potential as a biomarker for
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NAFLD [188]. This panel of miRNAs (miR-122, miR-34a, and miR-99a) has a greater
AUROC of 0.91 to differentiate NASH from simple steatosis. Moreover, this miRNA panel
accuracy is the best when the individuals have a body mass index (BMI) of more than
30kg/m2 [188]. Another recent study of the Korean population showed that a panel of four
miRNAs (miR-192-5p, miR-21-5p, miR-4449, and miR-151a-3p) also have moderate AUROC
(0.875) to distinguish NASH individuals from simple steatosis individuals [189]. Although
miRNAs could diagnose NASH, more studies are needed to validate these findings for
clinical settings.

4.2.2. Long Noncoding RNAs

Similar to miRNAs, long noncoding RNAs (lncRNAs) also do not produce protein
products, and they could regulate multiple processes in NAFLD [190]. LncRNAs could
regulate gene expression in a manner of cis- or trans-regulation via epigenetic regulation,
chromatin remodeling, and transcriptional and post-transcriptional regulations. Mech-
anistically, the lncRNAs act as (1) scaffolds or platforms to provide a site for molecular
interactions, (2) decoys to prevent protein interactions, and (3) sponges to compete for the
binding of RNA molecules (miRNAs) and prevent their downstream actions [191]. Since
previous reviews have comprehensively discussed the biogenesis, classification, functions,
and roles of lncRNAs in NAFLD [190], only selected and most significant lncRNAs are
discussed here.

A few lncRNAs regulate hepatic steatosis (Table 2). One such is the lncRNA H19
imprinted maternally expressed transcript (H19), which is one of the essential lncRNAs in
hepatic steatosis. In a study of H19 knockout mice, H19 lncRNA acts as a scaffold to facili-
tate the interaction between the polypyrimidine tract binding protein 1 (Ptbp1l) and Srebf1,
thus activating downstream lipogenesis genes [146]. In another study of high-fat diet mice,
H19 lncRNA acts as a sponge to miR-130a to upregulate peroxisome proliferator-activated
receptor gamma (Pparg) expression, concomitant with hepatic steatosis [192]. The miR-130a
inhibits hepatic steatosis by suppressing the expression of NAFLD-related genes, includ-
ing Pparg, Srebf1, Scd1, Acc1, and Fasn [192]. Therefore, the interaction between H19 and
miR-130a to regulate Srebf1 could be the primary driver for hepatic steatosis. Another
lncRNA is the steroid receptor RNA activator (SRA). This lncRNA negatively regulates
the expression of Atgl and promotes hepatic steatosis via the suppression of fork-head
box protein O1 (Foxo1) and Pparg which promotes the transactivation of the Atgl enzyme.
Silencing SRA expression in the mice restored Atgl expression, prevented FA oxidation,
and relieved hepatic steatosis [159]. Besides SRA, the metastasis-associated lung adeno-
carcinoma transcript 1 (MALAT1) lncRNA is an inflammatory lncRNA associated with
diabetic conditions [193]. In animal and cell models of NAFLD, MALAT1 expression was
higher, and this upregulation caused an increase of Srebf1 mRNA and protein expression
and promoted hepatic steatosis [156]. Further investigation revealed that MALAT1 interacts
with the Srebf1 protein to stabilize it, thus leading to lipid lipogenesis gene activations [156].
In contrast to the above lncRNAs, a specific liver lncRNA, lncRNA suppressor of hepatic
gluconeogenesis and lipogenesis (lncSHGL, also known as B4GALT1-AS1, the human ho-
molog) is a protective lncRNA for hepatic steatosis [155]. This lncRNA suppressed fatty
liver accumulation and hyperglycemia in high-fat diet mice by recruiting the heteroge-
neous nuclear ribonucleoprotein A1 (Hnrnpa1) to increase the rate of calmodulin (Cam)
protein translation [155]. This CAM protein suppresses the mTOR/SREBF1 pathway and
activates the PI3K/AKT pathway, alleviating hyperglycemia and hepatic steatosis [155,194].
This lncRNA B4GALT1-AS1/Hnrnpa1/Cam axis could be used as a therapeutic target for
individuals with NAFLD and T2D.

Some lncRNAs regulate hepatic fibrosis. One such is liver-specific lncRNA, liver
fibrosis-associated lncRNA 1 (LFAR1), and this lncRNA expression was higher in the
animal model of fibrosis [152]. LFAR1 acts as a scaffold to allow for the binding of the
Smadfamily protein complex, Smad2/Smad3, to the receptor of Tgfb1, in turn activating the
downstream fibrosis-related genes in TGFB signaling [152]. Another lncRNA is the HOX
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transcript antisense RNA (HOTAIR). This lncRNA expression is higher in the animal and
cell model of fibrosis [195]. Mechanistically, HOTAIR acts as a sponge to miR-148b, a known
negative regulator of the DNA methyltransferase 1 (DNMT1) [148]. In this study of both
human and mouse hepatic stellate cell (HSC) lines [148], an increase of DNMT1 expression
leads to hypermethylation on the promoter region of another lncRNA, maternally expressed
3 (MEG3), and suppressed this lncRNA expression. Furthermore, HOTAIR also acts as
a scaffold at the MEG3 promoter region and recruits the polycomb repressive complex
2 (PRC2) to initiate H3K27 methylation, further suppressing MEG3 gene transcription [148].
MEG3 is anti-fibrotic lncRNA which increases tumor suppressor p53 (TP53) expression
to initiate HSCs apoptosis [157], thus preventing the activation and proliferation of HSCs
upon the TGFB1 signal. Additionally, MEG3 acts as a sponge to miR-21, a regulator of
cholesterol metabolism [158]. The suppression of miR-21 action increased the expression of
LDL receptor-related protein 6 (LRP6), thus alleviating lipid accumulation [158]. Another
reported lncRNA is the Alu-mediated p21 transcriptional regulator (APTR), a recently
recognized cell cycle and proliferation regulator [143]. High expression of APTR was
observed in animal models and human patients with fibrosis [143]. Silencing of APTR
expression prevented an accumulation of extracellular matrix protein (ECM) and HSCs
activation [143].

The lncRNAs are also incorporated into panels for diagnosing NAFLD and NASH.
Although the data are still limited, one study investigated the diagnostic potential of
serum expression of Lnc-SPARCL1-1:2 in NAFLD. In this study [196], Lnc-SPARCL1-1:2
has moderate sensitivity and specificity to distinguish NASH individuals from healthy
controls and NAFLD with steatosis. However, this lncRNA could significantly identify
NASH individuals from NAFLD individuals who do not have steatosis, with AUROC
of 0.974, a sensitivity of 90%, and a specificity of 100% [196]. Similarly, another study
used the plasma expression of lncRNA TCONS_00016452/LEXIS to identify the NASH
individuals. In this study [197], the expression of LEXIS was higher in NASH than simple
steatosis individuals, but the diagnostic performance was moderate with an AUROC of
0.743. In another study of NAFLD individuals, the ratio of serum expression of TGFB2 to
its associated lncRNAs, TGFB2-OT1, was included in a panel together with FIB-4 markers,
and this panel was able to identify fibrosis with high accuracy (AUROC: 0.891) [198].
In the same study [198], this ratio of TGFB2/TGFB2-OT1 in a panel with Fibroscan was
also able to identify fibrosis in individuals with similar AUROC. For NASH identification,
the serum expression of lncRNA RP11-128N14.5 has similar diagnostic potential with serum
AST level; despite that, this lncRNA expression was higher in NASH individuals [198].
Furthermore, a combination of lncRNA RP11-128N14.5 expression with the clinical markers
did not improve the diagnostic performance. Therefore, the possibility of identifying novel
NASH-specific lncRNAs as biomarkers for early diagnosis is still open, and it is still to be
determined whether these lncRNAs could be used in primary care settings.

4.2.3. Circular RNAs

Circular RNAs (circRNAs) are large ncRNAs that do not encode for functional proteins
and are the products of the transcription process, though circRNAs are derived from the
back-splicing events [199–201]. This back-splicing process produces covalently closed
loop RNAs that contain either exons or introns or mixtures of both, with no 5′-cap or
3′-tail [199–201]. Like lncRNAs, circRNAs also cis- and transregulate target molecules with
similar mechanisms, such as miRNA sponges and protein decoys, but have additional
regulatory roles towards parental genes [199–201].

Although the information about circRNAs in NAFLD is scarce, there are some circR-
NAs that are known to regulate hepatic steatosis. Two circRNAs act as a sponge to miR-34a:
circRNA_0046366 [169] and circRNA_0046367 [170]. Both circRNAs prevent the binding
of miR-34a to PPARA and alleviate hepatic steatosis by restoring the lipid metabolism
pathways and genes [169,170]. Another circRNA is circRNA_021412 that acts as a sponge
to miR-1972. This inhibition of miR-1972 causes an increase of Lipin 1 (LPIN1) expres-
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sion, and LPIN1 is a co-activator of PPARA [173]. Therefore, the combined actions of
circRNA_021412, circRNA_0046366, and circRNA_0046367 to suppress the miRNAs that con-
trol PPARA signaling may be an alternative therapeutic target to reduce hepatic steatosis.

In NASH, an experimental study of a NASH animal model identified one circular
RNA, circRNA_002581, as a central modulator in NASH [168]. This circRNA was higher
in NASH mice, and the computational network analysis revealed that this circRNA could
act as a miR-122 sponge. Inhibition of miR-122 action leads to the increased expression of
three genes (Slc1a5, Plp2, and Cpeb1), validated with real-time PCR. All of these three genes
are involved in NAFLD [168].

Some circRNAs regulate fibrosis. One such is circUBE2K from the parental gene of
ubiquitin-conjugating enzyme E2 K (UBE2K). In a human HSC cell line study, circUBE2K
was found to act as a sponge to miR-149-5p and increase TGFB2 expression to initiate
the expression of fibrosis genes (ACTA2 and COL1A1) [176]. Another circRNA is cir-
cRNA_0074410, which acts as a sponge to miR-9-5p [172]. Although no target gene was
identified in this study of the human HSC cell line [172], a previous study revealed that
this miR-9-5p could regulate both TGFB receptors and suppress TGFB signaling [202].
circPWWP2A also regulates TGFB signaling, as this circRNA is a sponge to miR-203, thus
removing the suppression of follistatin-like 1 (FSTL1) expression, and therefore, FSTL1
could interact with SMAD proteins to facilitate TGFB signaling [167]. Two circRNAs are
sponges to miR-146a-5p, circTUBD1 [175] and circRSF1 [174]. A loss of miR-145a-5p causes
the activation of HSCs via toll-like receptor 4 (TLR4) [175] and Ras-related C3 botulinum
toxin substrate 1 (RAC1) [174]. Other circRNAs promote fibrosis via other pathways
than the TGFB. One such is circRNA_0067835, which acts as a sponge to miR-155 and
induces FOXO3A suppression [171]. Knockdown of circRNA_0067835 caused a reduction
of FOXO3A due to higher miR-155 expression and inhibition of HSC proliferation via the
suppression of the PI3K/AKT pathway [171].

There are several circRNAs that negatively regulate fibrosis. An example is circ_0007874,
or cMTO1, which acts as a sponge to miR-17-5p and increases SMAD7 expression, a nega-
tive regulator of TGFB signaling [162]. Another circRNA that regulates SMAD7 expression
is circPSD3, which acts as a sponge to miR-92b-3p [166]. Besides the TGFB pathway, circR-
NAs could also alleviate hepatic fibrosis via a different pathway. Another study of cMTO1
showed that cMTO1 could act as a sponge to miR-181b-5p [163]. The suppression of miR-
181b-5p action leads to higher expression of the phosphatase and tensin homolog (PTEN),
a negative regulator of the PI3K/AKT pathway [163]. Similar to cMTO1, circFBXW4 acts
as a sponge to miR-181b-5p, and this suppression leads to higher expression of SREBF1
and inhibition of the PI3K/AKT pathway [164,165]. Although information about the role
of circRNAs in NAFLD is still new and limited, these findings showed that understanding
these circRNA functions would be beneficial, as some of these circRNAs are pro-fibrotic and
some are anti-fibrotic. Investigation of their diagnostic potential with respect to NAFLD in
large and various population cohorts is also needed before this marker could be used in
primary care settings.

4.3. Extracellular Vesicles in NAFLD

Inter-cellular communication is not limited to direct contact in cell-to-cell interaction,
there being adjacent communication via the secretion of information-bearing membrane
lipid vesicles known as extracellular vesicles (EVs) [203]. Generally, EVs are grouped
according to their sizes and biogenesis as (1) exosomes (the smallest, 30–150 nm, generated
from the intraluminal vesicles within multi-vesicular bodies (MVBs) fused with the plasma
membrane), (2) microvesicles (MV, 50–1000 nm, formed by outward budding of the plasma
membrane), and (3) apoptotic bodies (100–5000 nm, produced when membrane blebbing
occurs during apoptosis) [203].

Although the research on EVs in NAFLD is still new, the findings show that EVs
could play significant roles in NAFLD progression, as summarized previously [203,204].
For example, lipotoxicity in hepatocytes could lead to cell apoptosis and trigger inflamma-
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tion. Thus, lipotoxic hepatic EVs could be the main drivers for the NAFLD progression
to NASH. Lipotoxic hepatocytes could initiate macrophage activation to an inflammatory
phenotype (M1) through the NFKB pathway [205]. Excessive lipid accumulation initiated
death receptor 5 (DR5)/caspase signaling which activates Rho-associated protein kinase
1 (ROCK1) and subsequently enriches the TRAIL receptor on EVs to initiate macrophage
activation [205]. Another example is nucleotide-binding oligomerization domain-like recep-
tor protein 3 (NLRP3) inflammasome activation. Lipotoxic hepatic EVs could activate the
NLRP3 inflammasome in macrophages and neighboring hepatocytes [206]. Mechanistically,
the lipotoxic hepatic EVs may contain molecules or modulators to initiate inflammatory
responses in other cells. This mechanism is partly understood as hepatic EVs were enriched
with miR-192-5p which activated macrophage M1 polarization via RICTOR/AKT/FOXO1
signaling inhibition [207]. EVs also could modulate fibrosis formation. One example is that
lipotoxic hepatic EVs could be internalized by the HSCs and cause the activation of HSCs.
In a study of a mouse model of steatosis, these lipotoxic hepatic EVs have enrichment of
miR-128-3p in their vesicles, and this miRNA regulates multiple fibrosis-related genes,
including Pparg [208]. Another study of hepatic excessive lipid accumulation revealed that
lipotoxic hepatic EVs have higher levels of miR-122 and miR-192 in their vesicles. These
miRNAs initiate HSC activation by increasing the expression of fibrosis-related genes [209].

Although EVs are detectable in circulating biofluids, their origins are essential to
determine the specificity of the disease. A recent study of a mouse model of NAFLD
showed that hepatic EVs could be isolated using nanoscale flow cytometry by detecting
the surface markers of asialoglycoprotein receptor 1 (ASGR1) and cytochrome P450 family
2 subfamily E member 1 (CYP2E1) on the EVs [210]. In this study of the NASH mouse
model [210], there was an enrichment of hepatic EVs in mice with early signs of NAFLD
before the histological appearance of liver inflammation. The levels of these EVs remained
high until the end of the study and correlated strongly with the NASH parameters [210].
Since this area of research is still new, the information about the diagnostic potential of these
EVs for NASH and NAFLD identification is still limited, though the prospect is promising.

4.4. Metabolomics in NAFLD

Another potential area for developing a diagnostic tool for NAFLD and NASH is the
metabolomics of NAFLD. Metabolomics is a study of all metabolites, the small molecules,
intermediates, and products of cell metabolism [211,212]. A recent systematic review of
11 studies showed that half of these studies reported higher levels of circulating branched-
chain amino acids (BCAAs), including leucine, isoleucine, and valine in NAFLD [211].
Enrichment of these BCAAs could activate the mTOR pathway, causing the inhibition of
fatty acid conversion to triglycerides and increasing lipid accumulation (steatosis) [213].
Besides BCAAs, the levels of phosphatidylcholine (PC) and sphingolipids are lower in
NAFLD [211]. A low level of PC is related to adipocyte turnover, in which the size of the
adipocytes was higher to compensate for the need for higher lipid storage [214], thus indi-
cating that the metabolites could also reflect the status of adipocytes. Recently, metabolomic
profiling of NAFLD patients at different stages showed that several metabolites increase
with the severity of NAFLD. Glycocholic acid, taurocholic acid, phenylalanine, and BCAAs
all increase according to severity from steatosis to NASH and NASH to cirrhosis. Notably,
an ensemble machine learning (EML) model built to handle these metabolites could di-
agnose NAFLD with more than 80% accuracy [215]. Although the findings are limited,
the potential of metabolomics for diagnosing NAFLD and its stages is promising enough
for future validation.

5. Conclusions and Future Directions

Almost all current tools and technologies for diagnosing NAFLD could diagnose
advanced fibrosis and cirrhosis well, though gaps remain with respect to the identification
of good markers for NASH and early fibrosis. Liver biopsy remains the gold-standard
method to assess NASH; however, the development of noninvasive tools to limit or avoid
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the usage of liver biopsy has become a research priority. Therefore, understanding and iden-
tification of biomarkers specific to different stages of NAFLD, notably NASH, are of great
importance. Alternative biomarkers, such as circulating noncoding RNAs, genetic markers,
and extracellular vesicles, show significant potential. Therefore, these most promising new
biomarkers should be further developed and validated in various populations.
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