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Abstract: What information-processing strategies and general principles are sufficient to enable
self-organized morphogenesis in embryogenesis and regeneration? We designed and analyzed a
minimal model of self-scaling axial patterning consisting of a cellular network that develops activity
patterns within implicitly set bounds. The properties of the cells are determined by internal ‘genetic’
networks with an architecture shared across all cells. We used machine-learning to identify models
that enable this virtual mini-embryo to pattern a typical axial gradient while simultaneously sensing
the set boundaries within which to develop it from homogeneous conditions—a setting that captures
the essence of early embryogenesis. Interestingly, the model revealed several features (such as
planar polarity and regenerative re-scaling capacity) for which it was not directly selected, showing
how these common biological design principles can emerge as a consequence of simple patterning
modes. A novel “causal network” analysis of the best model furthermore revealed that the originally
symmetric model dynamically integrates into intercellular causal networks characterized by broken-
symmetry, long-range influence and modularity, offering an interpretable macroscale-circuit-based
explanation for phenotypic patterning. This work shows how computation could occur in biological
development and how machine learning approaches can generate hypotheses and deepen our
understanding of how featureless tissues might develop sophisticated patterns—an essential step
towards predictive control of morphogenesis in regenerative medicine or synthetic bioengineering
contexts. The tools developed here also have the potential to benefit machine learning via new
forms of backpropagation and by leveraging the novel distributed self-representation mechanisms to
improve robustness and generalization.

Keywords: biological computation; developmental patterning; distributed information processing;
collective phenomena; causal information flow; biological circuits; artificial embryogeny

1. Introduction

How does a developing embryo self-organize into a patterned structure arranging
the various differentiated morphological features using input information from its own
cells [1,2]? In essence, how does an embryo compute its own pattern [3–9]? Morphogenesis,
whether embryonic or regenerative, is an intriguing paradigm for computer science, in
addition to biology and biomedicine, because it provides proof-of-principles of a dynamic,
strongly embodied computational architecture [10–12]. The results of its computations
alter the architecture and structure of the computing medium in real-time. Morphogenesis
is extremely robust (reviewed in [13]), partly because it has evolved to maintain reliable
signaling and morphological decision-making while it itself is actively remodeling. While
progress in molecular genetics has made huge strides in uncovering the mechanisms
necessary for morphogenesis, there are still significant gaps in a mature understanding of
the strategies and meso-scale design principles sufficient to enable the right combination
of reliability and plasticity [14–16]. How do cellular collectives make decisions with
respect to signaling and cell behavior that reliably result in the correct species-specific
target morphology?
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To answer such questions, various conceptual and computational models have been
developed [17–24]. Lewis Wolpert, a pioneer in this field, introduced the concept of
“positional information”, where a morphogen gradient develops along an axis that the
cells could use to decode their relative positions and make morphogenetic decisions in
embryogenesis or regeneration [25]. He used the famed metaphor of the ‘French-flag’ to
characterize a gradient-like pattern and later proposed models for how such patterns could
be developed, sustained and even regenerated [25–27]. Pattern formation is a dynamical
and multifaceted phenomenon that is not restricted to embryogenesis. For instance, a
variety of biological systems possess capabilities of regenerative patterning, that is, adult
forms can regenerate full patterns from sub-regions when severed [28]. To understand
patterning in its various forms, therefore, several conceptual and mathematical models
have been developed since Wolpert’s work. A few notable concepts include “organizers”,
morphogenetic fields, epimorphosis, morphallaxis and intercalation [20,29,30]. The concept
of intercalation, for instance, explains how an arbitrary piece of a planarian regenerates the
whole worm; the anterior and posterior poles of the stump have non-adjacent “positional
values” relative to their neighbors, the continuity of which is then gradually restored
leading to the formation of the full original pattern. Most notable mathematical models of
patterning are based on either simple diffusion or the more complicated reaction-diffusion
mechanisms [19,21,22,24], with some exceptions like the ”clock and wavefront model” [31].
A model introduced by Alan Turing, known as “Turing patterns”, for instance, is based
on a mechanism of “short-range activation and long-range inhibition” driven by inherent
dynamical instabilities [32]. A variety of computational models that view cells as discrete
entities (“agents”) containing memory and performing actions or use artificial neural
networks in the background for morphogenetic decision-making have been attempted as
well [33–38]. Even though these models explain certain aspects of patterning in concise
and intuitive ways, they do not reveal the full underlying dynamical richness of this
nonlinear phenomenon. For instance, a typical analysis of Turing patterns predicts the
size and wavelength of the emergent patterns using mathematical expressions involving
the ratio of the activator and inhibitor diffusion coefficients obtained by linearizing the
model. Even though this approach is useful, it still lacks the full picture of a nonlinear
computational account of patterning that moreover is also interpretable. Such an account
may be invaluable for systematically addressing the inverse patterning problem where
one wishes to modify the underlying regulatory systems to achieve desired patterning
outcomes [13,39].

One of the central challenges with respect to models is thus an understanding of
the high-level information-processing principles they leverage towards the patterning
outcomes. For instance, the “balancing model” proposed by Wolpert represents cells as
point-entities that make linear measurements such as computing simple averages. As
helpful as the model is in hypothesizing high-level principles, they do not elucidate the
underlying biological complexity. Models based on reaction-diffusion or artificial neural
networks, on the other hand, capture some of the biological complexity but suffer from the
drawback that it is difficult to elucidate the underlying nonlinear causal relationships using
conventional analysis techniques [40,41].

Information theory offers tools [42–44] to overcome some of the above-mentioned
barriers by inferring the complex causal relationships among the components of a system
from timeseries data using a probabilistic perspective [45], although not without chal-
lenges [46]. In the same way, dynamical systems offer tools to infer “dynamic causal
models” (DCM) [47] that elucidate the causal relationships underlying a dynamical phe-
nomenon from a deterministic (non-probabilistic) perspective [45]. These efforts to explicate
the information-processing mechanisms of complex dynamical models have given birth to a
new field dedicated to solving the problem of “interpretability” [48]. As a representative ex-
ample, the method of “saliency map” elucidates the parts of an input image that an output
neuron of an image-recognizing ANN is most sensitive to by computing the mathematical
derivative of the output with respect to the input [49,50], thereby revealing the character
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of that neuron in a human-interpretable way. Although saliency map and its variants [50]
have been used to characterize the high-level information-processing principles of ANNs,
they have not been used to similarly analyze non-neural biological models, to the best of
our knowledge. With the advent of differentiable programming [51], the time is ripe for
the extension of those methods to non-neural recurrent dynamical models. In summary,
the limitations of conventional analysis methods’ inability to reveal effective information-
processing principles can now be surpassed by extending the techniques developed for
interpreting ANNs. Besides, we can now develop methods to more closely link computa-
tion in systems whose outputs modify the computing medium and use machine learning
to discover morphogenetic control strategies that serve as hypotheses for developmental
biology or design policies for synthetic bioengineering.

The goal of this paper is thus two-fold: (1) to design a minimal nonlinear dynamical
model of generic pattern formation using plausible biological priors; and (2) to characterize
the high-level organizational principles that the model employs by applying analysis
methods that are extensions of conventional methods used for ANNs.

2. Model and Methods

We designed a minimal model of bounded axial patterning—a phenomenon that com-
monly occurs during embryogenesis and regeneration where a featureless tissue develops
an epidermis (boundary) and an axis within it (e.g., anterior-posterior, dorsal-ventral, etc.)
along which distinct morphological features later appear (Figure 1). Rather than simulating
any one species’ morphogenesis, we seek to understand axial polarity, a generic mechanism
used throughout biology [52–60].
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it (Figure 1). Even though the model is simplified, it captures certain biological priors that 
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ical signaling) with features supporting the implementation of planar cell polarity, local 
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of the model (Figure 2). It consists of a bounded (finite) linear chain of cells, each charac-
terized by a ‘cell type’, and connected by edges representing gap-junctions [61] that allow 

Figure 1. Schematic of the modeled biological phenomenon and how machine-learning is used to
design the model. (a) During early embryogenesis, a relatively featureless embryo develops distinct
axial patterns along with a distinct outer layer known as the epidermis (figure of larva was inspired
by [1] (p. 11)). The distinct colors represent the origin of the differentiation of the embryo into distinct
morphological features. The cells on the boundary (thick empty circles) represent the epidermis.
(b) A model with unknown parameters is trained using machine-learning, that uses gradient-descent-
like methods to ‘backpropagate’ the error between the observed and target patterns to the model
parameters, to produce the desired pattern.

The functional output sought in this model is to develop an axial pattern of positional
information at the same time marking the boundary (epidermis) within which to develop
it (Figure 1). Even though the model is simplified, it captures certain biological priors that
orchestrate embryogenesis, such as intra-cellular network control (e.g., genetic, biochemical
signaling) with features supporting the implementation of planar cell polarity, local inter-
cellular connectivity, and bounded development. The following are the main features of the
model (Figure 2). It consists of a bounded (finite) linear chain of cells, each characterized
by a ‘cell type’, and connected by edges representing gap-junctions [61] that allow them to
communicate physiologically. Every cell, furthermore, contains a self-regulating connection
representing autocrine signaling in biological cells that gives them a capacity to regulate
themselves [62] (p. 238). The cell type, along with the gap junctions and self-regulating
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connections, dictates the cell’s behavior (response to inputs). The dynamical state (out-
put) of a cell is referred to as its “activity level” that is steered by its interactions with
the neighboring (input) cells’ activity levels; this represents the cell’s emergent positional
information and identity within the tissue. The connection weights and the cell types are
themselves dynamic variables whose properties are determined by an “intrinsic signaling
controller” that each cell possesses internally with an architecture shared across all cells,
representing the generic signaling networks that biological cells possess (e.g., genetic net-
works, biochemical signaling networks, etc.). The dynamic nature of the gap-junctions
represents the dynamically changing permeability of their biological counterparts due to
voltage-gating, for example [63]. Furthermore, since a gap-junction connects two adjacent
cells, its dynamic weight is jointly determined by the cells’ intrinsic controllers. Every cell
also possesses a “boundary-marker” state, a dynamical variable representing the extent to
which the cell is deemed to lie at the boundary—the higher the value of the state, the larger
is the cell deemed to be at the boundary. Like the activity state, the boundary-marker state
of a cell depends on the boundary-marker states of the neighboring cells as well as itself.
These boundary-marking signals are generated by a second intracellular controller known
as the “boundary signaling controller”. The function of the boundary-marker is to dampen
all the activities of a cell to a degree proportional to the level of the boundary-marker
(Figure 3)—the more a cell tends to be a boundary cell, the more dampened its overall
activity is, including the patterning state, cell properties and the internal controller states.
This feature represents the biological setting where the embryonic epidermis is relatively
less active compared to the inner cells. In this regard, the boundary-marker represents the
antagonistic version of “growth factors” that biological cells signal to neighboring cells
to divide [64]. Another important feature of the model is that the intrinsic controller is
designed to support the implementation of planar cell polarity (PCP) that gives the cell a
sense of polarity, a feature that is known to play an important role in the development of
organism-level axial polarity [65,66]. In the model, specifically, the anterior (left) column of
the intrinsic controller influences the anterior gap-junction weight, whereas the posterior
(right) column influences the posterior gap-junction weight (Figure 2). This arrangement
allows machine-learning to assign distinct modes of behavior to the two polar columns,
thereby effectively functioning as PCP (described in more detail below). Lastly, the fact
that every cell in the model possesses two separate internal controllers tasked with unique
functionalities represents the biological analogue of multiple signaling networks working
in concert inside a cell, representing for example the biochemical and bioelectrical control
systems [67].

In summary, while the cells communicate over the gap-junctions to form the target
pattern within a boundary, their internal signaling networks help build the tissue-level
intercellular network and the network-boundary themselves.

The formal definition of the model is depicted in Figure 3. The model is defined by a
set of recurrent ordinary differential equations (ODE) that describe how the variables of the
model, namely, the activity states (s), cell types (p), gap-junction weights (jg), self-weights
(js), boundary-marker states (b), intrinsic controller states (r) and the boundary-marker
states (y) interact with each other. These variables are ultimately governed by a set of
parameters (shown in red in Figure 3) that are trained by machine-learning. We used a
specific machine-learning method called backpropagation through time (BPTT) to identify
appropriate model parameters that solve the patterning problem. This system models
the following aspects of biology. The machine learning loop represents the role of the
evolutionary process, which selects for effective morphogenesis by providing cells with a
genome encoding the correctly parametrized regulatory network. As occurs in biological
evolution, this parameterization process is external to the lifetime of an individual creature
and its genomically specified network. In turn, the specific networks produced by the
training algorithm represent the results of genomes—the operation of individuals during
the morphogenesis of their embryonic development.
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Figure 2. Schematic of the model of axial pattern development. The model comprises of a finite
linear chain of cells (a total of 12 cells comprise the model used in this work). We hypothesize that
the following elements will be sufficient to implement emergent axial patterning. Every cell has
two kinds of signaling networks, one that determines the properties of the cell, namely the cell type
and the gap-junction weights, and the other that signals to the cell the extent to which it lies at the
boundary. These two factors are expected to act in concert in simultaneously detecting the boundaries
and developing a gradient-like phenotypic pattern within the detected boundaries where the pattern
would be expected to taper off. The intrinsic controller is a 3 × 3 lattice (totaling 9 nodes), and
the boundary controller is a 2 × 3 lattice (totaling 6 nodes), depicted as part of the representative
cells n and (n + 1) in the middle. As the connections indicate, the anterior and posterior (1st and
3rd) columns of the intrinsic controller influence the anterior and posterior gap-junction weights
respectively, and the central column influences the cell’s self-weight. In the same way, the most
anterior and posterior (1st and 3rd) columns of the boundary controller signal to the anterior and
posterior cells, respectively. Finally, in each cell, the cell state influences all the nodes of either
controller, the cell type is influenced by all of the intrinsic controller nodes, and all of the boundary
controller nodes are influenced by the cell’s own boundary-marker level.

The specific problem that the model learned to solve comprises of two main features
(details below): (1) a network activity state pattern that is shaped like a simple gradient, with
positive values at the anterior and negative values at the posterior and tapering off (goes to
zero) at either pole; and (2) a boundary marker pattern where the boundary cells have double
the value compared to the cells in between (a value of 2 was set as the target for the stop cells
and 1 for the rest). These target patterns were meant to serve as idealized axial polarity and
boundary marker patterns to encourage the model to develop patterns that approximately
match them.

The method of BPTT broadly involves instantiating a model with random parameters
chosen from a specific range, simulating the model for a certain number of steps, then
calculating the loss as the difference in the observed network activity and boundary marker
patterns with the corresponding set targets and finally backpropagating the loss back to
the parameters. The loss function involved a simple mean squared error (MSE) between
the observed and the target patterns with equal weights assigned to the network-activity
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and the boundary-marker patterns. This process was repeated (over several thousands
of iterations) until a model with a satisfactory performance was obtained. The param-
eters u, v, l and m were initialized in the interval [−1, 1], and the parameter jmax in the
interval [1, 2]. The initial conditions of all the variables were set to 0 during the train-
ing. We utilized the software package Pytorch [68], that employs automatic differentiation
techniques, to implement BPTT.
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Figure 3. Formal definition of the model. All variables and parameters are continuous in that they
can in principle assume any value on the real number line. The parameters (red) are trained and
thus fixed during simulations. All variables are scaled by the boundary marker level b, except itself,
representing its dampening effect (akin to a time constant)—the greater the value of b (the greater the
cell tends to be a boundary cell), the more dampened its overall activity, including the patterning state,
cell properties and internal controller states, is. Subscripted parameters and variables denote unique
projections of the corresponding parameters and variables that can be inferred from the connectivity
diagram shown in Figure 2. In cases where the value of a variable is determined by inputs from
multiple controllers, such as the gap-junctions and the boundary-markers, the averaging operator g()
computes the means of those contributions. The case of gap-junction weight updates exemplifies these
concepts. The weight of every gap-junction j(n−1)n is determined by the intrinsic controllers of cells
(i− 1) and i, specifically by the posterior column in the controller of the anterior cell and the anterior
column of the posterior cell. Accordingly, the dimension of rg would be 3× 2× (n− 1), where the
dimensions 3× 2 represents the three nodes each of the two controller columns. This rg would then
be partially vectorized, with the two columns contributing to each gap-junction concatenated into one,
yielding a matrix with dimensions 6× (n− 1). In the same way, the dimension of ug would be 2× 6,
representing the two gap-junctions each contributed to by one column of the generic cell’s intrinsic
controller totaling six nodes (three nodes per column). Thus, the multiplication of ug with rg yields
a matrix of dimensions 2× (n− 1). Finally, the averaging operator g() computes the column-wise
mean of the previous matrix resulting in a 1× (n− 1) vector of updates to all the gap-junctions.
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We sought to explore potential information-processing strategies and general princi-
ples that biological systems may employ for the purpose of developmental patterning. To
that end, we answer the following questions in this paper: (1) can the model be trained
to solve the patterning problem? and (2) how does a successful model work, specifically,
how is the information about the target network activity pattern organized in the intrinsic
controllers? To answer the second question, we formulated a measure of causal influence
(CI) to quantify a graded measure of information—the more a variable x is said to causally
influence a variable y in the context of the model’s full state, the more x is deemed to
contain information about y in that context. Specifically, we quantify the amount of infor-
mation contained by variable x(t) about variable y(t + τ) via a measure of CI at timescale
τ, defined as ∂y(t + τ)/∂x(t), evaluated in the context of the overall model state at t; the
higher the absolute value of this derivative is, the greater is the causal influence. We ascribe
the causality of this measure to the necessity and sufficiency of x(t) to impart a change
in y(t + τ) in a local sense; a small change in x(t) in one direction will cause a change in
y(t + τ) in precisely one direction depending on the sign of the derivative. Moreover, CI is
directional and asymmetric by definition; it flows from the source x at time t to the target
y at time (t + τ).

In the rest of the paper, we use this formulation of multi-timescale causal influence to
quantify the amount of information about patterning activity state s(t + τ) contained in
the intrinsic controller states r(t), defined as the following Jacobian tensor evaluated at the
full network state at t:

Js(τ) =

[
∂si(t + τ)

∂rj,k(t)

]
i×j×k

; i, k = 1, . . . , n and j = 1, . . . , 9 (1)

Here, i indicates the influenced cell, j the intrinsic controller node and k the influencing
cell. This Jacobian tensor can be coarse-grained and visualized as a causal network that de-
picts how information is generated, hence organized, at the network level. A causal network
of the model is defined as a directed network whose nodes represent variables (e.g., genetic
states, patterning activity states, etc.) of the original model and a connection represents a
non-zero influence between the connected variables. A unique causal network exists for
every possible timescale τ and time t, and for every possible pair of variables X and Y (they
could represent the same variable). Due to its association with arbitrary timescales τ ≥ 1, a
causal network can only be generated via mathematical integration; hence, we refer to this
method as “causal network integration”. In this sense, our method could be considered as
a nonlinear generalization of methods that employ network-structure-based integration
techniques, such as eigenvector centrality, that implicitly assume linear dynamics [69,70].
We utilized the software package Pytorch [68], built on automatic differentiation techniques,
to integrate the model. A discrete version of this method has been developed to integrate
Boolean networks and cellular automata [71] (pp. 124–132).

The main difference between CI and most existing measures of information-processing
and causality such as transfer entropy, Granger causality, etc. is that CI is a deterministic
measure while the others are statistical in nature. This is because CI is computed off a
directed acyclic graph (commonly referred to as DAG) representation of the operations
in the dynamical model known as the “computational graph” using the chain rule [68],
whereas the statistical measures utilize probability distributions that are either observed or
inferred from the empirical data [72]. In other words, CI captures causality based on the
linkage among the computational operations in a dynamical model, whereas the statistical
measures of causality are based on empirical correlations in a dataset. A natural limitation
of CI in its present form is that it requires a differentiable model and cannot be computed
over data alone.
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3. Results

We hypothesized that the biologically inspired minimal dynamical model can solve
the patterning problem using self-organization alone, that is, without the aid of any external
instructions or special initial conditions. We found that the model can indeed solve this
problem in this way. We also found, using the causal network integration approach, that
the model dynamically breaks symmetry and integrates into a macroscale network with
emergent patterns whose characteristic features explain the shape of the activity pattern.
Below, we describe these results in detail. We start with a description of the results of the
training and the overt patterning of the best-trained model, followed by a depiction of
how the patterning behavior is reflected in the activity of the internal controllers and in
single-cells, concluding with a characterization of the causal network machinery that links
the controller activity to the overt behavior. The results of the parallel in-depth analysis of
the boundary-marker patterning are presented in SI (Figures S2–S8).

3.1. The Model Learns to Generate the Correct Activity Patterns and Mark Boundaries

We simultaneously trained a set of 100 models for about 100,000 iterations, a majority
of which (72%) attained satisfying performance with an average MSE loss of about 0.04
and a minimum of about 0.02, compared to the performance of a set of random untrained
models with an average MSE loss of about 6.1 (Figure 4), where the ideal loss is 0.0. Thus,
machine-learning helped discover hypotheses (coded in the form of models) about how
biological systems might solve the patterning problem. In the following sections, we
analyze the best-performing model to decipher those hypotheses (information-processing
strategies). We chose to analyze a single representative top-performing model because its
behavior is qualitatively similar to the average behavior of the top-performing ensemble
(Figure S1).
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Figure 4. Training performance. Models trained using machine-learning have low performance
errors (blue) compared to the random models (red). The line of blue dots at the bottom comprises the
set of top-performing models (72% of the trained models) with similar scores.

3.2. Analysis of Cellular Activity and Structural Patterns
3.2.1. The Model Develops Network Activity and Boundary-Marker Patterns Establishing
a Correct Axial Gradient Pattern within the Tissue

The model develops the network activity pattern and marks the boundaries starting
from homogeneous conditions as expected (Figure 5). This process takes about 4000 time-
steps, equaling 40 simulation-seconds, with every second comprising a sequence of 100 syn-
chronized dynamical updates of the model’s variables. Specifically, the network develops
an axial gradient pattern where the activity states drop mostly smoothly from high positive
values to low negative values along the anterior-posterior axis, with the activities of the
boundary cells (positions 1 and 12) tapering off towards zero (Figure 5a). In total, this
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constitutes a 98.4% match with the target pattern relative to the maximum mismatch of
the sign-flipped target pattern. The overall (normalized) shape of the boundary-marker
pattern, where the boundary cells have the highest levels of the marker and the difference
between the marker levels of the adjacent cells is the largest for the boundary cells, matches
the target with a score of 96.1% (Figure 5b). We also found that although the normalized
pattern persists, the network-activity pattern slowly heads toward a flat shape over a long
period of time. This behavior is compatible with biological examples where the positional
information patterns persisting through key developmental stages disappear during the
maintenance phase of adulthood or under the impact of significant aging.
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Figure 5. Patterning and boundary-marking behavior of the best-performing model. When initialized
from homogeneous conditions and run for 4000 time-steps, the (a) network activity state pattern con-
verges to a pattern (solid black) that closely matches the target pattern (red), and (b) the normalized
boundary marker pattern reaches (solid black) a state where the cells at anterior and posterior poles
have the highest levels as desired (target in red). The dashed black lines represent the initial states,
and the solid black lines depict the patterns during the last 100 time-steps.

3.2.2. The Gap Junctions and Cell Types Also Self-Organize into Patterns Even Though
They Were Not Specifically Selected for That Purpose

The properties of the individual cells differentiate into characteristic states depending
on the relative position of the cell, when initiated from homogeneous conditions (Figure 6).
That is, the individual cells’ properties also assume a pattern that reflects the system-level
pattern, even though no specific associated targets were provided to them during training.
This suggests that patterning at the lower levels (cell properties) may be necessary for pat-
terning at the higher levels (cell states). Furthermore, it can be observed that the asymptotic
patterns of the self-weights and cell types are almost bilaterally symmetrical. This means
that the cells on the opposite sides of the center behave in symmetrical ways; oppositely
signed activity levels tend to change in the opposite directions (as expected). The main
reason why the network-level pattern of the asymptotic gap junction weights (Figure 6a) is
not bilaterally symmetrical about the center is due to the requirement that the activity states
of the anterior and posterior halves should be of opposite signs; thus, the anterior weights
are more positive compared to the posterior side, resulting in relatively more positive
change in the activity states of the anterior compared to the posterior (Figure 3).
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Figure 6. Cellular properties of the best-performing model. When initialized from homogeneous
conditions and run for 4000 time-steps, the (a) intercellular gap-junction weights and the self-weights
and (b) the cell types converge to characteristic shapes (black). Note that the model has eleven
gap-junctions connecting the twelve cells in a chain, and every cell has a self-weight and a cell type.

The PCP-like structure of a single cell (Figure 7) is an important factor that contributes
to both the formation of the network-level GJ weights (Figure 6a) and the activity pattern
(Figure 5a). This PCP feature is reflected in the organization of the intrinsic controller,
discovered by machine-learning, with positive weights of the anterior column and negative
weights of the posterior column that, respectively, control the left and right GJs of the cell
(Figure 7b). This symmetry-breaking phenomenon manifests in biology in a variety of
equivalent ways on an ontogenetic timescale [73] and could be considered analogous to the
reorganization of magnetic domains in ferromagnetic materials due to the application of
external forces (Figure 7a).

3.2.3. The Model Successfully Regenerates and Rescales the Pattern despite Not Being
Selected for Those Abilities

The model has not only learned to solve the patterning problem it was trained for, but
also to regenerate and rescale patterns—abilities that were not rewarded for during the
training. Specifically, when a fully developed pattern is partly reset, where just the state of
a small portion in the middle portion is retained, the model successfully regenerates the
rest of the pattern (Figure 8a). Likewise, when the model is started from almost double
the number of cells under homogeneous conditions as before, the model develops a larger
rescaled version of the original pattern (Figure 8b). These observations suggest that the
model has learnt an abstract representation of the pattern independent of the details of
its generator (the model). The information-processing strategy partly underlying this
ability is that almost every intrinsic controller node in every cell contains information
about the network-level pattern, as described below. We hypothesize that this system-level
redundancy helps the network generate the pattern regardless of the network conditions.

3.2.4. The Model Generates the Same Qualitative Patterns Regardless of the Initial Network
Conditions: Robustness

The model is surprisingly robust to a wider variety of initial conditions (Figure 9).
That is, it not only regenerates and rescales patterns under homogeneous initial conditions,
but it also canalizes random initial conditions (not seen during training) into the same qual-
itative patterns. In other words, the model exhibits characteristics of universal robustness,
which could be attributed to a distributed information-representation mechanism, also
hypothesized to be responsible for regeneration and rescaling, described in more detail
below. Moreover, the model also shows a slight dependency on the initial conditions (since
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the simulations do not converge to the exact same pattern), analogous to biological embryos
typically developing phenotypes with slight variations [74,75].
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Figure 7. Single cells possess an intrinsic controller structure with characteristics resembling PCP.
(a) A schematic illustrating the concept of PCP using the analogy of magnetic domains. Ferromagnetic
materials contain domains within which the magnetic orientations are aligned (indicated by the
arrows). The overall random pattern of orientations (left) could be modified by the application of
external forces, such as magnetic fields, or temperature forcing it to assume non-random shapes
(right). (b) Likewise, the application of a target gradient-like pattern (Figure 5) enables machine-
learning to organize the initially random intrinsic controller weights into PCP-like patterns over
phylogenetic timescales. Specifically, the three anterior controller weights (blue) that control the
anterior GJ and the three posterior controller weights (red) that control the posterior GJ of a single
cell were randomly initialized in the interval [−1, 1] during the training. At the end of training, the
anterior and posterior controller weights of the representative model culminated with categorically
distinct values, the anterior set positive and the posterior negative, giving the cell a character of
polarity. The inset shows a blow-up of a single cell together with its intrinsic controller (Figure 2).

3.3. Analysis of Intracellular Controller Activity Patterns
3.3.1. Internal Controller Activity Patterns Simultaneously Correlate with Cellular
Properties and Network Activity Patterns

The states of the intrinsic controller nodes converge to patterns that simultaneously
resemble the cell properties and the network activity patterns, depending on whether
the states are normalized or not. Specifically, while the absolute intrinsic controller node
states resemble the pattern of cellular properties (gap-junction weights, self-weights and
cell types) (Figures 6 and 10a), their relative states resemble the network activity pattern
(Figures 5a and 10b). This representation strategy makes sense since it is the same controller
nodes that simultaneously influence the cell properties and are influenced by the cell state
(Figure 2). Another interesting observation is that while the normalized activity state
patterns of some of the intrinsic controller nodes resemble the original network activity
pattern, others resemble its sign-flipped version (Figure 10b). One possible explanation
for this partial inverse patterning activity is that it acts like a brake and helps the system
balance the pattern, that is, it keeps the pattern from either exploding or flattening out
(described in further detail in Section 3.4.2).
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Figure 8. Regenerative and rescaling behaviors of the network activity. (a) Regeneration: the model is
run for 4000 time-steps following homogeneous conditions, as before, leading to the blue pattern, then
all states but that of the middle two cells are zeroed out (green) and run for another 4000 time-steps
resulting in the final pattern (red). Even though the blue and red patterns do not exactly coincide
they are qualitatively similar to each other. (b) Rescaling: the model is simulated in the same way as
Figure 5a, except with 22 cells instead of the original 12 cells. With almost double the number of cells,
the model takes about 3.5 times longer (14,000 time-steps) to settle, and moreover it converges (last
100 time-steps shown) to a smoother pattern compared to the 12-cell case.
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Figure 9. The pattern attractor-space of the activity state. The model converges to patterns (black)
that are qualitatively similar to the target pattern (red) when started from a set of 1000 random initial
conditions (grey). The initial conditions specifically involved a randomized initial number of ‘active’
cells whose activity states were drawn from the interval [−1, 1] and boundary-marker states from the
interval [1, 2] with uniform probabilities. In the case of the ‘non-active’ cells, the activity states were
set to 0 and the boundary-marker states were set to 2. The internal controller states were set to 0 in
both cases.
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Figure 10. The intrinsic controller nodes’ activities simultaneously resemble the cell-properties and
the network-activity patterns. Each line in the plot represents the asymptotic activity of a particular
controller node across the network. That is, each line represents (a) the vector (ri,1(τ), . . . , ri,n(τ)) for
a particular controller node i ∈ {1, . . . , 9} at τ = 4000 and (b) its cell-normalized version ( ˆri1, . . . , ˆrin)
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3.3.2. Isolated Cells Contain Relevant but Insufficient Information Required to Generate
the Network-Level Patterns

A potential explanation for why the internal controller activity patterns correlate with
the cellular activity patterns, as described above, is that the controllers are inherently fine-
tuned to the cell’s activity. That is, when a single cell is isolated from the network and the
cell activity state is clamped, thus acting as the external input to the intrinsic controller, most
controller node states tend to linearly correlate with the clamped input state (Figure 11a).
However, the asymptotic GJs and cell type do not differentiate as a function of the input
(Figure 11b). It is especially surprising that the GJ weights do not assume distinct values
even though the anterior and posterior GJs are controlled by categorically distinct weights
emanating from the intrinsic controller that give the cell a PCP-like character (Figure 7).
These observations suggest that while the intrinsic controller is sensitive to single-cell
activity, the cellular properties can only assume meaningful values in the collective context,
a need that even the PCP-nature of the cell cannot mitigate. The learned sensitivity of the
intrinsic controller is a sensible information-representation strategy, since the patterning
activity states of a cell ultimately depend on the gap junction weights and the cell types
that are in turn controlled by the internal signaling networks. On the other hand, it is
evident that not all the information required for patterning is contained in single cells,
as appropriately differentiated gap-junction weights and cell types are necessary for that
purpose (Figure 6).

3.4. Analysis of Intercellular Causal Network Patterns
3.4.1. Every Cell in the Collective Contains the Full Causal Information about the
Network-Level Patterns Explaining the Model’s High Degree of Robustness

We measured the causal influence exerted by the initial state of every internal controller
node of every cell over the asymptotic network activity. The resulting patterns of causal
influence (Figure 12) closely resemble the phenotypic patterns themselves, suggesting
that almost every intrinsic controller node of every cell contains information about the
network activity pattern in the context of the network (isolated single cells contain only
partial information, as described above). This observation points to a distributed and
“universal” information-representation strategy that the model employs that could also
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explain its ability to generate the same patterns regardless of the initial network conditions
as described above. In other words, the network is tightly integrated, and the global pattern
information is accessible to every gene of every cell.
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Figure 11. Single cells contain relevant but insufficient dynamical information about the network-
level pattern. When a single cell is isolated and its external input, namely the cell activity state, is
clamped and simulated for 2000 time-steps (half the time required by the network to converge), then
(a) the internal controller nodes converge to states that clearly discriminate between the various
clamped inputs. However, (b) the cell properties, namely the cell type, the two gap-junction weights,
the self-weights converge to the same values in the respective categories regardless of the clamped
input. In both cases, the states were centered at their respective mean values.
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vector
(

ˆ∂s1(3500)
∂rj,k(0)

, . . . ,
ˆ∂sn(3500)

∂rj,k(0)

)
for a specific controller node j ∈ {1, . . . , 9} in the influencing cell

k ∈ {1, . . . , n} where,
ˆ∂si(τ)

∂rj,k(0)
=

∂si (τ)
∂rj,k (0)

−min
1≤i≤n

∂si (τ)
∂rj,k (0)

max
1≤i≤n

∂si (τ)
∂rj,k (0)

−min
1≤i≤n

∂si (τ)
∂rj,k (0)

.

Furthermore, the various spatially segregated regions (columns) of the controllers ex-
hibit symmetrically flipped causal influence patterns, reflecting their PCP-like organization
at the network level (as labelled in Figure 12). Specifically, while the posterior column of the



Entropy 2022, 24, 107 15 of 22

intrinsic controller display patterns resembling the network activity pattern, the anterior
column exhibits a sign-flipped version of the same. These observations could again be
partly attributed to the PCP-like organization at the level of the single cell (Figure 11). As
noted above, this may also be a representation of the orientational symmetry of the axis.

3.4.2. The Network Dynamically Integrates into an Organization with Macro-Scale
Modules Explaining the Overall Shape of the Functional Patterns

To make sense of the above results at the network level, we computed networks
of causal influence between cells, where a connection from cell j to cell k represents a
significant causal influence of the initial state of some internal controller node of j on the
state of k at τ.

The resulting causal networks show features characteristic of increasing complexity,
symmetry-breaking, long-range influence, and the emergence of macro-scale modules with
increasing timescales (Figure 13). In particular, the modular organization of the causal
network attractor suggests a high-level mechanism for the gradient-shape of the asymptotic
network activity pattern. For instance, while the anterior half of the network influences
itself with positive feedback loops it influences the posterior half with negative influence,
partly explaining why the anterior half of the activity pattern state is positive-valued while
the posterior half is negative-valued. The overall mixed-feedback organization explains
why the whole pattern tends to balance itself (neither flattens out nor explodes). Likewise,
the causal network attractor associated with the patterning of the boundary-marker reveals
an organizer-like role played by the boundary cells in that they are the only cells that
influence the rest of the network (Figure S6).
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Figure 13. Causal network integration behind the network activity pattern developed under homoge-
neous initial conditions. An arrow from cell j to cell k represents the causal influence ∂sk(τ)/∂ri,j(0)

where ∃i : ∂sk(τ)/∂ri,j(0) is a statistical outlier in the set
{

∂sk(τ)
∂r1,j(0)

, . . . , ∂sk(τ)
∂r9,j(0)

}
. Blue links represent

positive influence and red links represent negative influence. Multiple arrows originating from a cell
may be associated with distinct intrinsic controller nodes of the originating cell.

This emergent modular organization cannot be explained by the structure of the
original (symmetric) model itself, nor by that of the causal networks corresponding to
lower timescales. In this way, the method of causal network integration partly helps close
the gap between the structure and function of a complex dynamical model by focusing on
the circuit-space rather than the conventional state-space.
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3.4.3. Rescaling the Model Rescales the Causal Networks, Explaining Why the Phenotypic
Patterns Rescale

The causal network integration approach offers further insights into the underlying
mechanisms of patterning. It partly explains why rescaling the model (doubling the number
of cells) results in the rescaling of the phenotypic patterns (Figure 8b)—the underlying
causal network itself rescales (Figure 14). The macroscopic features of the rescaled causal
network attractor (Figure 14b), for instance, preserve most of the modular structure of the
original causal network (Figure 13), with the exception of the appearance of a couple of
extra positive edges.
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network attractor underlying the network-activity pattern. The (a) causal network attractor and (b)
its schematized version following rescaling of the model and simulating it with homogeneous initial
conditions. The causal network attractor following regeneration is not shown, as it looks identical to
the original (Figure 13).

3.4.4. The Overall Structure of the Mean Causal Network Explains the Model’s Ability to
Canalize Random Initial States into the Same Patterns

One of the emergent abilities of the model is to canalize random initial states (not seen
during training) to similar pattern attractors (Figure 9). The reason is that the underlying
causal networks corresponding to each of those random initial conditions themselves
canalize into a mean attractor causal network whose overall features match those that
corresponds to the homogenous case described above. For instance, the mean causal
network attractor underlying network activity patterning (Figure 15) is characterized by
the same anterior-positive and posterior-negative influences as the homogeneous case
(Figure 13). The reason why the causal networks themselves canalize would involve
investigations that are beyond the scope of this paper.
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4. Discussion

We have shown here that it is possible to train, using machine-learning, a recurrent self-
organizing dynamical model incorporating biological priors to form gradient-like activity
patterns from homogeneous conditions, that is, without the aid of externally supplied
positional information or special initial conditions. We have also revealed the multi-
timescale causal relationships among the components of the model, thereby describing the
high-level mechanistic logic of pattern formation that the model employs.

One of the surprising findings of this work is the ability of the model to rescale the
final pattern to an arbitrary number of cells (Figure 8b) despite not having been specifically
trained to do so. This unexpected, emergent feature of this system mimics an interesting
and important aspect of biology—plasticity. Numerous examples (for example, as reviewed
in [13]) exist of robust, coherent organisms forming from the same genome despite drastic
changes in the number, size, or type of cells [76–79]. The question of how certain types of
search and encodings produce specifications of machinery with the ability to handle novel
circumstances remains an open and important field of inquiry [80–82]. Our results reveal
how physiological networks can embody a robust phenotypic patterning mechanism. We
propose that this capability could be leveraged by evolution so that mutations resulting in
an altered size of the organism need not require compensating mutations of the patterning
mechanism. In other words, modularity potentiates evolution [83] by enabling a plasticity
that allows organisms to maintain adaptive function (and thus fitness) while evolution
explores changes in cell number.

From the perspective of morphogenesis, the causal network attractors described here
could be conceived as a decoding of the “developmental program” encoded in the model’s
architecture and its learned parameters. In other words, these causal networks could be
understood as forms of the developmental program itself. Moreover, the same underlying
model could have multiple causal networks (different projections of a single developmental
program), each responsible for a unique function, such as activity-patterning or boundary-
marking, as we show here. In other words, starting from the 1st order “physiological”
network we have uncovered 2nd order “physiocausal” networks. Thus, our work offers
new perspectives and tools to achieve one of the major goals of developmental biology—to
uncover the developmental programs that organisms use for morphogenesis [1].

From the perspective of computation, the causal networks could be viewed as high-
level algorithms that the underlying biophysical machinery (model) employs for the pur-
pose of axial pattern development. By “computation” we mean information-processing or
transformation of information that serves a purpose (e.g., survival or adaptive function of
an organism) [84]. One might ask—isn’t the model an algorithm itself? It is what one might
call a “low-level” algorithm. In a conventional algorithm (e.g., a computer program), there
may be different paths that could be taken, via if-then conditions, for example. Exactly
which path is taken depends on the inputs to the program. Moreover, a recurrent program
that feeds the output back to itself could take different paths at different times depending
on the dynamic inputs. All this suggests that even a conventional algorithm may not offer
a complete explanation of the dynamic phenomenon it generates. This then raises the
question: what is the ultimate high-level algorithm that describes how the given inputs are
transformed into the final observed outputs in a non-recurrent and feed-forward manner?
Our causal influence analysis offers a solution in this regard for our model—the causal
network attractors are the high-level algorithms that offer a visual explanation for how the
initial conditions are transformed into the final axial pattern. Through this analysis we also
found that even though high-level algorithms, in principle, depend on initial conditions,
they are all qualitatively similar to each other in our case (Figure 15). This makes sense
in the context of development, as it ought to be robust enough to canalize multiple initial
conditions to the same final pattern.

Viewed through the lens of the theory of computation, our model can be seen as an
instance of autonomous sequential logic circuits—a type of finite state machine that does
not involve external inputs. This is an appropriate class of models for developmental
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processes, as they are characteristically autonomous (with exceptions for environmentally
triggered phenotypes, such as reviewed in [85]) and sequential at the large scale. The main
limitation of this class of automata is that they are not capable of universal computation
since they do not employ stacks or external tapes. At this point there is no indication that
general-purpose computation is required of embryogenesis.

One of the striking features of the causal network attractors is long-distance influence:
the relatively more significant asymptotic influence of the intrinsic controller of a cell on
the activity state of another cell than itself, an emergent feature that is not baked in the
original model (Figure 2). A biological analogue of this phenomenon would be the genes of
one cell asymptotically controlling the features of another cell, that is, genetic control may
not be local even though they may appear to generate only the features of the containing
cell. If biological organisms indeed employ such an information-processing principle,
then it would have therapeutic implications such as non-local genetic intervention. For
example, might a more effective gene therapy for cancer require the hacking of the genes of
neighboring healthy cells rather than themselves? Another striking feature of the causal
network attractors is their modularity; cells organize into modules that tend to contain
causal influences amongst themselves. Modularity is not a new concept in biology, although
conventional views have focused on the overt model structure [86], and only recently has
the focus widened to encompass its dynamical aspects [87–89]. The causal network inte-
gration approach offers a novel perspective on dynamical modularity through temporally
integrated models. Such higher-order structures may lie waiting to be discovered in a
variety of published biological regulatory models, containing potential high-level insights.
For instance, could it be possible that the capacity of GRNs for associative memory [90] is
due to a high-level causal network that is equivalent to a characteristic minimal network
that is necessary and sufficient for the implementation of the memory? Overall, the tools
developed here provide a new lens through which to view emergent phenomena.

Our work also offers new tools for solving the problem of top-down control in biol-
ogy [13,91], where one of the open challenges is to systematically edit a complex regulatory
system so that it generates a desired outcome. One way the causal network integration
approach may mitigate this challenge is by offering a way to close the gap between the struc-
ture and function of a complex system by focusing on the circuit-space of the system. By
offering a circuit-centric explanation of the function of a system at the top-most (asymptotic)
timescale, this method thereby offers a systematic way to modify the underlying model
by working the changes back down to the smallest timescale. Even though we have not
worked out the details of how it could be implemented, we suspect that it would involve
inferring a higher-order network model that dictates how the causal networks themselves
change over time. A successful solution to the problem of top-down control would have
a wide impact on biology via prescriptions for systematic interventions into biochemical
networks that underlie disease. It would also impact the field of machine-learning by way
of novel mechanisms of systematic supervised learning that could leverage the information
contained in the macroscale structure of the causal networks.

Our work shows that the method of causal network integration has the potential to
generate multi-timescale insights into how information is organized in the network. This
approach of the analysis of a dynamical system focuses on the circuit-space (the space of
circuits, as opposed to the space of states, induced by the model), whereas conventional
approaches tend to focus on the state-space of the system. By casting the emergent dynamics
at multiple scales in the circuit space, this approach brings us a step closer to closing the
gap between the structure and the function of a complex dynamical system. In this regard,
our method also contributes to the theory of complex systems by complementing and
potentially generalizing existing approaches to characterizing canalization [88], control [92],
collectivity [70,93], coarse-graining [94–96] and criticality in complex nonlinear dynamical
systems [97,98].

All the code developed for this project can be found at: https://gitlab.com/smanicka/
MinimalDevelopmentalComputation (accessed on: 4 January 2022).

https://gitlab.com/smanicka/MinimalDevelopmentalComputation
https://gitlab.com/smanicka/MinimalDevelopmentalComputation
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//www.mdpi.com/article/10.3390/e24010107/s1: Figure S1: Behavior of the best-performing model
is representative of the ensemble of the top-performing models; Figure S2: Regenerative and rescaling
behaviors of the boundary-marker; Figure S3: The pattern attractor-space of the boundary-marker
level; Figure S4: The boundary controller nodes’ activities simultaneously resemble the boundary-
marker and the network-activity patterns; Figure S5: Individual nodes in the boundary controller
network of every cell possess information about the network-level boundary-marker pattern that
they control; Figure S6: Causal network integration behind the boundary-marker pattern developed
under homogeneous initial conditions; Figure S7: Rescaling the model (double the number of cells)
rescales the corresponding causal network attractor underlying the boundary-marker pattern; Figure
S8: The mean causal network attractors associated with the boundary-marker patterning.
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