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Abstract: Nanosized multi-drug delivery systems provide synergistic effects between drugs and
bioactive compounds, resulting in increased overall efficiency and restricted side effects compared to
conventional single-drug chemotherapy. In this study, we develop an amphiphilic heparin-poloxamer
P403 (HP403) nanogel that could effectively co-load curcuminoid (Cur) and cisplatin hydrate (CisOH)
(HP403@CisOH@Cur) via two loading mechanisms. The HP403 nanogels and HP403@CisOH@Cur
nanogels were closely analyzed with 1H-NMR spectroscopy, FT-IR spectroscopy, TEM, and DLS,
exhibiting high stability in spherical forms. In drug release profiles, accelerated behavior of Cur
and CisOH at pH 5.5 compared with neutral pH was observed, suggesting effective delivery of the
compounds in tumor sites. In vitro studies showed high antitumor activity of HP403@CisOH@Cur
nanogels, while in vivo assays showed that the dual-drug platform prolonged the survival time of
mice and prevented tail necrosis. In summary, HP403@CisOH@Cur offers an intriguing strategy
to achieve the cisplatin and curcumin synergistic effect in a well-designed delivery platform that
increases antitumor effectiveness and overcomes undesired consequences caused by cisplatin in
breast cancer treatment.

Keywords: poloxamer P403; multi-drug delivery; heparin; MCF-7; nanogel

1. Introduction

Cisplatin (Cis-diamminedichloroplatinum (II)) is a standard first-line treatment for
human breast cancer [1–6]. It is one of the prime anticancer drugs for many types of solid
tumors and the first platinum compound approved by the FDA for treating testicular and
ovarian cancer since 1978 [3–6]. However, the toxicity of cisplatin has caused many side
effects on the kidney, marrow failure, chronic neurotoxicity, etc., leading to drug resistance
and limiting dosage during treatment. Moreover, the poor selectivity between normal and
tumor tissue has hindered cisplatin’s prospect in clinical fields [6,7]. Several approaches
have been developed to improve the therapeutic efficiency of cisplatin and overcome
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its limitations, such as novel platinum drugs, nanosized delivery systems, combination
therapy treatment with other anticancer drugs, or phytochemical compounds (polyphenols,
flavonoid, etc.) [2,4,6,7]. Among the regimens, therapeutic formulations of cisplatin and
phytocompounds proved synergistic effects in cancer treatment and reduction of drug side
effects, contributing to the expansion of its clinical usage [8–10].

Curcumin (Cur), a polyphenol derivative that originated in turmeric rhizome (Curcuma
longa L.), has been shown to prevent skin cancer, stomach cancer, and bowel cancer in
mice [11–17]. Besides having broad biological activity and excellent pharmacokinetics,
curcumin is also non-toxic to small and large animals, even at high concentrations [18–21].
More interestingly, recent reports have revealed that Cur can create a synergistic effect
with Cis, enhance tumor-proliferative inhibition and control side effects caused by mono-
cisplatin regimens [8–10,22–26].

However, Cis and Cus are both hydrophobic compounds and have poor oral bioavail-
ability [2,11]. In this study, we have attempted to load Cis and Cur into amphiphilic drug
nano-carriers. Ideally, such nanosystems allow specific drug targeting, improving efficacy,
and minimizing systematic toxicity [27,28]. One candidate of interest is poloxamer, a group
of amphiphilic and biocompatible polymers [29]. Poloxamer has the symmetric triblock
copolymer structure PEO-PPO-PEO, consisting of hydrophilic PEO regions (poly (ethylene
oxide)) and hydrophobic PPO regions (poly (propylene oxide)) [30,31]. The hydrophobic
cores containing water-insoluble drugs are surrounded by the hydrophilic shell, thus in-
creasing the solubility and permeability of loaded compounds [32]. Within this category,
poloxamer P403 is a prospective material due to its high ratio of PPO (as compared to
poloxamer P407, pluronic F127), low critical micelle concentration (CMC) value, and con-
siderable internal space [33]. The poloxamer-based drug-carrier system can also achieve
higher oral availability by inhibiting the drug efflux mediated by P-glycoprotein [34].

Currently, poloxamer has often been conjugated with several biocompatible polymers,
such as chitosan, gelatin, heparin, polyacrylic, dendrimer, etc. [31,35,36]. It is because
poloxamer micelles alone couldn’t provide a durable, long-term drug-release profile; some
even exhibit low biocompatibility. The grafted copolymers serve as multifunctional nanogel
platforms for delivering various bioactive molecules while amplifying their biological
interactions [30,34,37–40]. Heparin-based platforms exhibited a prominent potential for
clinical applications due to their high biocompatibility and inherent interactions with
cells [30,34,41]. Heparin is readily used in chemotherapy due to its high binding affinity to
angiogenic growth factors that tumor tissues often overexpressed [42,43].

In this work, amphiphilic heparin-conjugated poloxamer P403 (HP403) nanogel was
developed as carrier systems for CisOH and Cur. The physicochemical properties of the
nano-carriers—particle size, drug entrapment efficiencies (EE), drug delivery efficiency
(DL), and drug release—were characterized. In vitro cytotoxicity and in vivo assays were
investigated in human breast cancer cell lines (MCF-7 cells) and xenograft assay models,
respectively. The result could partially clarify the synergistic effect of aquated cisplatin and
Cur in a well-designed delivery platform in antitumor activity.

2. Results and Discussion
2.1. Characterizations of the Amphiphilic HP403 Copolymer

The characteristic resonance peaks of the p-nitrophenyl chloroformate (NPC)-activated
P403 appear at 1.10 and 3.35–3.70 ppm in 1H-NMR (Figure 1A). The aromatic proton sig-
nals of NPC moiety resonate at 7.39 ppm (m) and 8.27 ppm (l). The activation of the
NPC molecule and P403 was confirmed with a new signal at 4.45 ppm (f) [44,45]. The
chemical shift from 4.45 ppm (f) to 4.22 ppm (k) occurs due to the NPC substitution by
3-amino-1-propanol, which indicates the successful synthesis of NPC-P403-OH. The 1H-
NMR spectrum of aminated heparin H-DAB (Figure 1B) shows the resonance signal at
1.59–1.75 ppm (i) characterized for methylene proton (–CH2–) on DAB [46]. The combi-
nation of heparin and DAB resulted in a signal of –CH2–NH– at 2.88–3.03 ppm (j), which
belongs to the binding site of heparin and DAB carboxylate [47]. There are also signals for
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heparin proton at 1.99 ppm and 3.22–5.33 ppm [29,48]. The evidence indicates the success-
ful synthesis of H-DAB. Figure 1C shows the 1H-NMR spectrum of HP403. Characteristic
signals of P403 were 1.09 ppm (a) and 3.67 ppm (b), corresponding to the resonance of
the –CH3 proton in PPO and the OCH2–CH2O– proton in PEO. Proton signals of heparin
appeared at 1.99 ppm and 3.22–5.32 ppm. Notably, the linkage between H-DAB and NPC-
P403-OH resulted in the resonance of methylene protons (–CH2–CH2 and –CH2–NH) at
1.74 ppm (i) and 3.11 ppm (j). In addition, there was no signal of aromatic protons of NPC.
The signal performing a direct bond between the methylene and carbonate group of NPC
(–CH2–O–NPC) at 4.43 ppm (f) did not occur. The only signal recorded at 4.22 ppm (k)
belongs to methylene protons of CH2–O– Ami linkage. This result proves that NPC moiety
was substituted by H-DAB amine groups in the grafted process of two polymers.
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Figure 1. 1H NMR spectra of NPC-P403-OH (A); H-DAB (B); HP403 (C).

2.2. Size Distribution and CMC Value of HP403

The TEM result in Figure 2 shows that the HP403 nanogel has spherical shapes with
an average particle size of 61.4 ± 20.2 nm. The average particle size measured by DLS
shown in Figure 2C ranged 94.12 ± 3.85 nm at 25 ◦C with PI = 0.39 ± 0.07, which indicated
that the nanogel system has high stability (Figure 2D).
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Figure 2. TEM image (A), diameter histogram (B), DLS particle size distribution (C), and stability (D)
of the HP403 nanogel.

The CMC of the HP403 copolymer was 40.97 ± 4.04 ppm, measured with iodine and
UV-Vis spectroscopy. CMC is a crucial parameter to the nanogel formation of amphiphilic
copolymers, especially in drug-delivery applications. The assembling of micelles through
hydrophobic interactions helps to balance and stabilize drug release [49]. Within the HP403
structure, P403 is responsible for micelle self-assembly. Insoluble drugs are contained in the
PPO hydrophobic core of poloxamer. The complex is shielded by the hydrophilic regions
consisting of PEO and heparin with hydrogen bonding or electrostatic interactions. This
unique structure makes nanogels an ideal and highly stable drug delivery system [30,50].

2.3. Drug Entrapment Efficiency and Loading Efficiency of HP403

In this experiment, Cur was loaded into HP403 copolymer through hydrophobic
interactions between Cur and PPO regions of P403. CisOH was complexed to carboxy-
late/sulfate groups on heparin. The structure and encapsulation efficiency of HP403
towards Cur and CisOH were determined through FT-IR, UV-Vis and ICP-MS spectroscopy
(Nex-ION 2000, Perkin Elmer, Waltham, MA, USA).

FT-IR spectra in Figure 3 show the typical signals of both heparin and P403: peaks
2951.95 cm−1 and 2874.03 cm−1 belongs to the C-H valence oscillations of -CH2 and -CH3
groups on poloxamer P403; peaks 3434.99 cm−1 and 3285.97 cm−1 are the -OH and -NH
valence vibrations on the Cis molecule, respectively [51]. A new absorption oscillation
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appeared in the HP403@CisOH spectrum at 1712.01 cm−1 (A). The signal indicated a com-
plex formed between CisOH and the heparin carboxylate group, which shifted the C=O
carboxylate signal from 1631.89 cm−1 to 1712.01 cm−1. Furthermore, two new infrared
absorption bands in HP403@CisOHs spectrum at 1298.02 cm−1 (B) and 845.96 cm−1 (C)
are symmetric valence vibration of S=O bond due to the complex formation sulfate group
and a part of the sulfonate group on heparin with CisOH [52]. The FT-IR spectroscopy
in Figure 3 demonstrates the successful synthesis of HP403@CisOH product within the
simultaneous appearance of HP403, CisOH, and the complex of CisOH and anionic groups
on heparin. Furthermore, the spectrum of HP403@CisOH@Cur contained characteristic
signals of both HP403@CisOH and Cur (peak 1627.98 cm−1 for C=C aromatic ring, peak
1509.02 cm−1 for C=O and C=C) [53]. The result proves that Cur was loaded and encapsu-
lated in the HP403@CisOH nanogel system, and the HP403@CisOH@Cur nanoparticles
were successfully synthesized. The DL and EE results of HP403@CisOH@Cur were calcu-
lated from formulas (1) và (2) in Section 4.3 shows that HP403@CisOH could load up to
30.39% and 75.98% CisOH, respectively. While the HP403@CisOH@Cur system successfully
encapsulated 22.3% (DL) and 55.75% (EE) of CisOH; and 4.4% (DL) and 88% (EE) for Cur.
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TEM images were used to evaluate the morphology of HP403@CisOH@Cur nanoparticles.
Figure 4 shows that HP403@CisOH@Cur had an average particle size of 125.72 ± 18.01 nm.
The DLS result of HP403@CisOH@Cur nanogel was 162.9 nm with PI = 0.27, indicate
the sample has high stability. An increment in dual drug-loaded nanogels was recorded
due to loading a high amount of Cur in the hydrophobic domains and platinum complex
formation resulting in expanding its particle size.
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of the HP403@CisOH@Cur nanogel.

2.4. In Vitro Drug-Release Assay and Drug-Release Kinetics

The release of CisOH and Cur from the nanogel was investigated at pH 5.5 and 7.4.
Figure 5A shows that, in the first 12 h, about 37.91% and 42.15% of Cur were released at
pH 7.4 and 5.5, respectively. There was no burst drug release at this early stage, indicating
that Cur was not adsorbed on the surface of the nanogel and was completely enclosed
within the hydrophobic structural region of the nanogel. This resulted in a slow and
sustained release of curcumin during the first 12 h at both pH media. The rate of Cur
release then gradually increased over the next 84 h; higher Cur release was observed at
pH 5.5. Approximately 75.70% of Cur was released at pH 5.5 and 59.04% of Cur was
released at pH 7.4 after 96 h. Figure 5 shows that CisOH and Cur are both released more
efficiently at pH 5.5. The acidic environment helped to accelerate the release of drugs,
especially CisOH. It was beneficial for the system’s activities because tumors usually have a
lower pH than healthy tissue. This result also corresponded to some previous publications
of platinum carrier systems [54,55]. Figure 5B CisOH was not completely released from
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the HP403@CisOH@Cur system after 96 h. The release rate of CisOH only reached 68% in
pH 5.5 and 47.43% in pH 7.4, which lead to the conclusion that HP403@CisOH@Cur was
a potential slow-release carrier system. The drug-releasing process was inhibited by the
complex between Cis and heparin’s carboxylate/sulfate groups, as well as the conjugation
between CisOH and the amine/amide groups of heparin [53,56]. In the blood circulation
(pH 7.4), the bonds in the carrier system are stabilized to prevent unwanted toxicity and
non-specific effects of the drug. Once the drug-loading systems reach tumor tissues, the
drug is rapidly released by the reaction of HP403@CisOH@Cur in the acidic environment
of the tumor.
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Figure 5. Released profiles of Cur (A) and CisOH (B) from the HP403@CisOH@Cur drug-loading
system and control samples at physiological conditions, pH 5.5 and pH 7.4 (37 ± 1 ◦C; n = 3).

Drug delivery systems aim to overcome the problems of retention, release, activation,
localization, and drug targeting with precise timing, dosage, and location. Biodegradable
polymers are used as drug transporters in vitro or in vivo. By tuning their structure and
drug release, we can control the kinetics of those drug carriers. The drug release kinetics
of HP403 nanogel have been studied to understand the release mechanism of CisOH
and Cur in vitro as a premise for future in vivo tests. Experimental data on the release
of Cur and CisOH were processed through Solver and Data Analysis programs. The k
and R2 kinetic constants were shown in Table 1. Our results showed differences in the
value of regression parameters R2. The R2 values of different models followed this order:
Korsmeyer–Peppas > Higuchi > Zero-order > First-order. The release of CisOH and Cur
from HP403@CisOH@Cur at pH 7.4 and pH 5.5 followed the Korsmeyer–Peppas model.
The diffusion exponent (n) of the system ranges from 0.2056 to 0.4271, calculated from the
Korsmeyer–Peppas kinetic equation. Table 1 showed n < 0.45, indicating that CisOH and
Cur were released from HP403@CisOH@Cur following Fickian diffusion [57,58].

The changes in particle size and PDI of HP403@CisOH@Cur after redispersion in an
aqueous medium for 96 h were shown in Figure 6. At 72 h, there was no significant change.
The particle size was less than 250 nm, and the PDI was less than 0.5. The results indicated
a narrow size distribution of HP403@CisOH@Cur after redispersion in an aqueous medium
at 72 h. At 96 h, particle size and PDI increased to more than 300 nm and more than 0.8,
respectively. Our results show that HP403@CisOH@Cur can maintain its structural stability
in an aqueous medium for 72 h.
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Table 1. Release parameters for Cur and CisOH of HP403@CisOH@Cur were obtained after fitting
the drug-release data to four different mathematical models of drug release kinetics.

Cur Formulation pH

Mathematical Models for Drug-Release Kinetics

Zero Order First Order Higuchi Power Law

k0 R2 k1 R2 kH R2 K n R2

Free Cur pH 5.5 0.5537 0.8730 0.1318 0.8011 1.1075 0.8730 3.1978 0.3933 0.9629

HP403@CisOH@Cur pH 5.5 0.0986 0.8957 0.0278 0.7948 0.1972 0.9097 1.2726 0.4225 0.9801

Free Cur pH 7.4 1.2622 0.8779 0.1307 0.8104 1.0962 0.8779 2.8779 0.4271 0.9590

HP403@CisOH@Cur pH 7.4 0.0782 0.8430 0.0245 0.8104 0.1563 0.8430 1.5877 0.2929 0.9748

Cis Formulation pH

Mathematical Models for Drug-Release Kinetics

Zero Order First Order Higuchi Power Law

k0 R2 k1 R2 kH R2 k n R2

Free CisOH pH 5.5 1.0435 0.9746 0.2614 0.9569 2.0870 0.9746 5.2155 0.2433 0.9880

HP403@CisOH@Cur pH 5.5 0.1047 0.7598 0.0395 0.7519 1.0624 0.9141 2.7966 0.2646 0.9579

Free CisOH pH 7.4 1.0797 0.9719 0.2657 0.9498 2.1594 0.9719 5.4818 0.2359 0.9992

HP403@CisOH@Cur pH 7.4 0.0706 0.8752 0.0307 0.8641 0.6281 0.9615 1.9985 0.2056 0.9965
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2.5. Cytotoxicity of HP403@CisOH@Cur Nanogels

The biocompatibility of the HP403 carrier system is evaluated via SRB staining on
fibroblasts. The results show that the cell survival rate reached 90% at 48 h after exposure
to 100 µg/mL HP403. Therefore, the HP403 carrier was biocompatible and non-toxic. In
contrast, Cis was extremely lethal to normal cells, with IC50 = 0.61 ± 0.03 µg/mL. Many
clinical studies have also reported that Cis attacks both cancer and healthy tissues, causing
severe side effects to patients taking chemotherapy drugs. However, once the drug is
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loaded into nanogel carrier systems in CisOH form, the hydrolysis of the complex inside
the nanogel causes a slow release of the cisplatin hydrate. This process can reduce the
toxicity of the Cis and may prolong drug bioavailability.

The cytotoxicity assay of HP403@CisOH and HP403@CisOH@Cur on the breast cancer
cell line MCF-7 was performed by SRB staining, as shown in Figure 7. After 48 h, drug-
loaded HP403 nanogels exhibited high inhibition towards MCF-7 cells. At 10 µg/mL,
the HP403@CisOH system has a cytotoxic percentage of 52.76 ± 2.53%, higher than
40.45 ± 1.3% of HP403@CisOH@Cur. The above results indicated that the CisOH and Cur
combination could reduce the side effects of CisOH but diminish the cytotoxic potential to-
wards MCF-7 cancer cells of the drug-carrying nanogel system. IC50 value of HP403@CisOH
is 8.5 ± 0.7 µg/mL, which is smaller than 19.99 ± 0.89 µg/mL of HP403@CisOH@Cur.
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The results prove that HP403@CisOH@Cur can provide a synergistic effect against
the proliferation of breast cancer cell MCF-7. Cisplatin is a powerful chemotherapeutic
agent which induces apoptosis primarily through binding to DNA and inhibiting DNA
replication [22]. However, the mechanism is not tumor-specific, and therefore cisplatin
often attacks normal tissues during therapy. In addition, Cis resistance was frequently
observed throughout the cases, leading to clinical failure [6,7]. Curcumin is an antioxidant
with significant anti-inflammatory and anti-neoplastic activities. Several clinical studies
have shown that curcumin can attenuate undesirable toxicity caused by cisplatin and
reverse cisplatin resistance in cancer cells, which eventually enhances the therapeutic
effect [8–10,22–26]. Furthermore, curcumin is rapidly metabolized under physiological
conditions; thus, curcumin encapsulation in nanoparticles may contribute to retaining its
bioactivity [18–21].

2.6. Antitumor Effect of HP403@CisOH@Cur Nanogel on Xenografted Mouse Assay

Mice of uniform weight were used to ensure correlation between treatments. The
formulations were injected through their tail veins. Mice body weight and tumor volume
were recorded over 13 days. The results are shown in Figures 8 and 9.
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As shown in Figure 8, mice maintained a stable weight in control (NaCl 0.9%) and
HP403 samples. In contrast, there was considerable body mass loss after injecting cisplatin,
HP403@CisOH, and HP403@CisOH@Cur. In the cisplatin and HP403@CisOH formulations,
there were four dead mice on day eight, which could indicate that the formulated platinum
contents could be too high resulting in high toxicity with investigated animals. The same
loaded platinum amount in HP403@CisOH@Cur was quite high, reaching 22.3% (DL) and
55.75% (EE), which led to a decrease in the nanogel’s drug-holding capacity. Moreover,
nearly 60% CisOH was released rapidly in the first 12 h at pH 5.5. These reasons might
be responsible for the significant body weight loss after 13 days. Although, there were no
mice that died in the treatment regimen after thirteen days, which could partially indicate
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synergistic effect of Cur in the dual delivery system. Further studies should reduce the
amount of CisOH loaded in HP403@CisOH@Cur to increase clinically potential application
of the drug delivery system. In Figure 9, we continue to observe two opposite trends: tumor
volume was reduced in cisplatin, HP403@CisOH, and HP403@CisOH@Cur treatments but
increased in control (NaCl 0.9%) and HP403 samples. There were no significant differences
between NaCl and HP403 samples during the 13 days of testing. Tumors in both cases
expanded rapidly and increased by nearly 60% after the last day. In contrast, tumor
reduction was observed in cisplatin, HP403@CisOH, and HP403@CisOH@Cur. On day
eight, the tumor decreased by 80%, 78%, and 70% of the original volumes, respectively.
Thus, it can be seen that HP403 had significant enhancing effects on the anti-cancer ability of
cisplatin. Furthermore, mice injected with HP403@CisOH@Cur can survive to day 13 and
achieved 90% tumor volume loss. It indicated the dual curcumin and cisplatin nanocarrier
system was the most effective regimen in inhibiting cancer cells growth.

It was observed in Figure 10C that necrosis occured at the tail area of mice injected
with Cisplatin. These may be due to cisplatin’s high toxicity and bioaccumulation in the
injected sites, causing inflammation that leads to necrosis. In Figure 10D, the tail of mice
treated with HP403@CisOH suffered from inflammation and blood congestion. In contrast,
the tail appearance of HP403@CisOH@Cur-treated model (Figure 10E) was normal, similar
to the control and HP403 samples. Our results correspond with previous studies that
reported curcumin’s anti-inflammatory activity that contributed to suppressing the side
effect [13–15].

Gels 2022, 8, x FOR PEER REVIEW 11 of 19 
 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

20

40

60
T

um
or

 v
ol

um
e 

ch
an

ge
 (%

)

Time (days)

 NaCl 0.9%  
 HP403
 Cisplatin     
 HP403@CisOH
 HP403@CisOH@Cur

80

0

20

40

60

80

0

20

40

60

80

_100

_80

_60

_40

_20

 
Figure 9. Change in tumor volume of mice after various formular injections. 

 
Figure 10. Tail at injection site of treatments (A) NaCl (B) HP403 (C) Cis (D) HP403@CisOH (E) 
HP403@CisOH@Cur. 

Besides the above assays for tracking the effectiveness of treated models, histological 
staining is one of the gold standards to evaluate the biopsy of cancer tissue. Hematoxylin 
and eosin (HE) staining results could further clarify the density of cancer cells in tumor 
tissue. The HE stained images of the xenografted tumors before treatment (Figure 11A) 
and after treatment with NaCl 0.9% and HP403 (Figure 11B,C) show hyperproliferation of 
MCF-7 cancer cells inside tumor, indicated by their stained nuclei with dark purple color. 
The proliferation of MCF-7 cells was also confirmed by superoxide dismutase immuno-
histochemical staining of tumor (data not shown here). In Figure 11D–F, Cis, 
HP403@CisOH, and HP403@CisOH@Cur treatments inhibited cancer cell proliferation 
leading to decreased cell density, degraded cytoplasmic region, and shrunk or disap-
peared nuclei. Compared to Cis and HP403@CisOH-treated models (day 8), the 
HP403@CisOH@Cur-treated model (day 13) exposed a lesser cell density with acquired 
lighter purple color. These results could indicate that co-loaded Cur contributed to reduce 
side-effects of the Cis and CiOH-treated models and prolong the life span of the mice. 

Figure 10. Tail at injection site of treatments (A) NaCl (B) HP403 (C) Cis (D) HP403@CisOH
(E) HP403@CisOH@Cur.

Besides the above assays for tracking the effectiveness of treated models, histological
staining is one of the gold standards to evaluate the biopsy of cancer tissue. Hematoxylin
and eosin (HE) staining results could further clarify the density of cancer cells in tumor
tissue. The HE stained images of the xenografted tumors before treatment (Figure 11A)
and after treatment with NaCl 0.9% and HP403 (Figure 11B,C) show hyperproliferation of
MCF-7 cancer cells inside tumor, indicated by their stained nuclei with dark purple color.
The proliferation of MCF-7 cells was also confirmed by superoxide dismutase immunohis-
tochemical staining of tumor (data not shown here). In Figure 11D–F, Cis, HP403@CisOH,
and HP403@CisOH@Cur treatments inhibited cancer cell proliferation leading to decreased
cell density, degraded cytoplasmic region, and shrunk or disappeared nuclei. Compared
to Cis and HP403@CisOH-treated models (day 8), the HP403@CisOH@Cur-treated model
(day 13) exposed a lesser cell density with acquired lighter purple color. These results could
indicate that co-loaded Cur contributed to reduce side-effects of the Cis and CiOH-treated
models and prolong the life span of the mice.
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3. Conclusions

In this study, we have developed a biocompatible heparin-poloxamer P403 platform
to efficiently deliver cisplatin (in hydrate form) and Cur via complexation and hydrophobic
interaction. The particle size distribution of HP403 was below 100 nm by (TEM and DLS).
CisOH and Cur were successfully loaded into HP403 nanogel with 22.3% and 4.4% effi-
ciency, respectively. In vitro kinetic results of HP403@CisOH@Cur showed that CisOH and
Cur were sustainably released from the nanogel via a diffusion mechanism. The in vitro
studies indicated that HP403@CisOH@Cur might provide a synergistic effect against the
proliferation of MCF-7 breast cancer cells. According to the in vivo anti-tumor assay using
the xenografted mouse model, the HP403@CisOH@Cur nanogel could reduce the tumor
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volume by 90% without mice dying after being treated for 13 days. The preliminary results
indicated that the nanocarrier system of curcumin and cisplatin were highly effective at
inhibiting the growth of cancer cells and partially reducing side effect. A further inves-
tigation should be proposed with a reduced dosage of the loaded platinum content to
significantly reduce drug toxicity and exploit the effects of a dual drug delivery system in
cancer treatment.

4. Materials and Methods
4.1. Chemicals

Acros Organics (USA) provided Heparin sodium, 3-amino-1-propanol (Ami), 1,4-
diaminobutane (DAB), silver nitrate (AgNO3), 1-ethyl-3-3-dimethylaminopropyl carbodi-
imide (EDC), p-nitrophenyl chloroformate (NPC), N-hydroxysuccinimide (NHS). Sigma-
Aldrich provided cis-Dichlorodiamineplatinum (II) (Cis), 99.99%, Curcuminoid (Cur), and
poloxamer P403. Dialysis membranes (3.5 kDa and 12–14 kDa MW cut-off) were obtained
from Repligen Corporation (Rancho Dominguez, Los Angeles, CA, USA).

4.2. Synthesis of Poloxamer P403-Conjugated Heparin Copolymers (HP403)

HP403 graft copolymer was prepared through the conjugation between a NPC-
activated P403 (NPC-P403-OH) and aminated heparin (H-DAB), as shown in Figure 12.
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− or COCH3).

4.2.1. Synthesis of NPC-P403-OH

P403 (2.5 mmol) was activated with NPC (7.5 mmol) at 70 ◦C under vacuuming and
stirring. After 8 h, we reduced the temperature back to R.T. and redissolved the sample in
20 mL THF before precipitating in a diethyl ether:hexane mixture (1:1 v/v), repeated three
times. NPC-P403-NPC precipitant was obtained after rotary evaporation.

NPC-P403-NPC (1.5 mmol) was dissolved in THF (25 mL). Then, Ami (0.75 mmol in
25 mL THF) was drop-wised into the NPC-P403-NPC solution under stirring at R.T. for
12 h. NPC-P403-OH precipitant was obtained in viscous form after precipitation in a 1:1
(v/v) mixture of diethyl ether:hexane and rotary evaporation.

The chemical structure of NPC-P403-OH was analyzed via 1H-NMR spectrometry
(Bruker, Billerica, MA, USA).
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4.2.2. Synthesis of H-DAB

DAB-aminated heparin derivatives (H:DAB = 1:3 mmol/mmol) with EDC/NHS as
the carbodiimide coupling reagent.

4.2.3. Synthesis of HP403 Copolymer

NPC-P403-OH was dissolved in water at 4 ◦C and slowly added to the H-DAB solution.
The reaction lasted for 24 h at 15 ◦C. The sample was dialyzed with distilled water through
the cellulose membrane (MWCO 12–14 kDa) for five days before freeze-drying. Product
characteristics, structure, and morphology were determined using 1H-NMR and TEM. The
critical micelle concentration (CMC) was investigated by the iodine probe method [49,59]
and calculated via the piecewise function. The data were recorded three times.

4.3. Synthesis of HP403 Nanogel Coloading Curcumin and Cisplatin Hydrate (CisOH)

CisOH preparation referred to our previous reports [34]. In short, the reaction was
carried out in an N2 atmosphere at room temperature with degassed DI water. The molar
ratio of AgNO3 (0.88 mmol) and Cis (0.44 mmol) was 2:1. At 48 h after reaction, CisOH
was obtained after centrifugation to remove the AgCl precipitate.

Cur (5 mg) was dissolved in 5 mL ethanol:dichloromethane (DCM) solvent at a ratio of
7:3 (v/v). HP403 (100 mg in 10 mL solution at 20 ◦C) under ultrasonic condition was added
dropwise into Cur solution (30 min, temperature below 20 ◦C). The system was evaporated
to remove solvent and dissolved by 5 mL of water. Then, the sample was centrifuged
(15 min, 5000 rpm) and freeze-dried to obtain the HP403@Cur product (Figure 13).
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CisOH (40 mg) solution was added dropwise into HP403@Cur products under con-
stant magnetic stirring in a 20 ◦C nitrogen atmosphere for 24 h. Then, we dialyzed the
achieved solution three times with distilled water at room temperature using cellulose
membranes (MWCO 3.5 kDa, 20 min/each). HP403@CisOH@Cur product was obtained
after freeze-drying (Figure 13). Product characteristics, structure, and morphology were
analyzed by the Bruker AM500 FT NMR spectrometer (Bruker, Billerica, MA, USA) and
TEM-1400 instrument (JEOL Ltd., Tokyo, Japan). The percentage of CisOH and Cur suc-
cessfully co-loaded into HP403 nanogel was determined by inductively coupled plasma
mass spestrometer (ICP-MS, NexION 2000, Perkin Elmer, MA, USA), and UV-Vis (Agilent,
Santa Clara, CA, USA). Drug loading (DL%) and entrapment efficiency (EE%) of micelle
polymer or nanogel were referred to published formulas [31,33,50]

EE (%) =
Weight of the drug in micelles
Weight of the feeding drugs

× 100% (1)

DL (%) =
Weight of the drug in micelles

Weight of copolymers and drugs
× 100% (2)

4.4. Release Profile and Kinetics of Drugs
4.4.1. The Release Profile of Curcumin

HP403@CisOH@Cur in 2 mL DI water. The control sample was Cur reconstituted in
2 mL ethanol. Each solution was placed in a dialysis bag (MW cut off 3.5 kDa) and immersed
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in 20 mL PBS buffer at pH 5.5 and pH 7.4, respectively. Tween 80 was added into the dialysis
environment to increase Cur dispersion and prevent its precipitation. The system was
magnetically stirred at 100 rpm, 37 ◦C ± 1 ◦C. Cur content measurement was taken with
1 mL dialysis solution at given time points via an Agilent 8453 UV spectrophotometer
(Agilent, Santa Clara, CA, USA). Simultaneously, 1 mL of PBS buffer containing Tween 80
was added to restore the initial volume. Cur was calculated as follows:

CR (%) =
t=∞

∑
t=0

Mt

M0
× 100 (3)

Of which: Mt is the amount of Cur in the release environment at t (hours); M0 is
the amount of Cur in HP403@CisOH@Cur. To investigate the Cur-released profile of
HP403@CisOH@Cur, we analyzed obtained data with Korsmeyer–Peppas models, first-
order, and zero-order. Regression results were indicated by the regression coefficient
(R2) [60,61].

4.4.2. The Release Profile of CisOH

The methods to study the CisOH release profile were similar to Cur. However, we
prepared CisOH control samples with 2 mL DI water. CisOH contents were determined by
platinum measurements via ICP-MS (NexION 2000, Perkin Elmer, MA, USA) (inductively
coupled plasma mass spestrometer) and AOAC (association of analytical communities).
The CisOH release experiments were also repeated 3 times.

4.4.3. Stability Test of HP403@CisOH@Cur Nanogel

HP403@CisOH@Cur was dispersed in DI water after 96 h storage at 37 ◦C. All tests
were performed at 37 ◦C by DLS HORIBA SZ-100 nanoparticle size analyzer (Horiba Ltd.,
Kyoto, Japan) to investigate HP403@CisOH@Cur’s stability at 0, 12, 24, 48, 72 and 96 h
at 37 ◦C. Experiments were measured in triplicate for each sample, and the results are
expressed as mean ± SD.

4.5. In Vitro Cytotoxic Assay on MCF-7 Cell Line

The cytotoxicity assay of HP403, HP403@CisOH and HP403@CisOH@Cur was per-
formed on the breast cancer cell line MCF-7 using SRB assay. [62]. The experiments
were conducted at the Molecular Biology Laboratory of the University of Science, Viet-
nam National University, Ho Chi Minh City, Vietnam. Briefly, 5 × 103 MCF-7 cells were
incubated each well in 96-well plates. The IC50 value, inhibitory activity of free Cis,
HP403@CisOH, and HP403@CisOH@Cur against MCF-7 proliferation were calculated and
compared among samples.

4.6. In Vivo Anti-Tumor Activity

Male white mice (Mus musculus var. Albino), at 6–7 weeks old and weighing 25–30 g,
were provided by the Stem Cell Institute, University of Sciences, Vietnam National Univer-
sity, HCMC. Mice were raised in laboratory conditions of 20–30 ◦C, humidity of 30–50%
under a 12 h–light–dark photoperiod.

Methods of creating an immunodeficiency mouse model and mouse model with
heterogeneous tumors followed the Department of Animal Physiology and Biotechnol-
ogy’s procedure, University of Sciences, Vietnam National University, HCMC. Animal
experiments described in this study were performed in compliance with institutional guide-
lines and according to protocol approved by the Animal Care and Use Committee of the
University of Science under Ethics approval number 500B/KHTN-ACUCUS (9 June 2021).

The total of 25 mice that successfully carried tumors was randomly divided into
5 treatments (5 mice each treatment): physiological saline NaCl 0.9% (100 µL/dose), HP403
(12 mg per kg body weight), Cis (3 mg per kg body weight), HP403@CisOH (3 mg
Cis per kg body weight), HP403@CisOH@Cur (3 mg Cis per kg body weight, and Cur:
HP403 = 5:100 wt/wt).
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The drug was injected through tail veins every 3 days for 13 days with each dose of
3 mg Cis per kg body weight. Body weight and tumor size were measured daily. The
largest and smallest diameter of the tumor was recorded to calculate the tumor volume. At
the end of 13 days of the drug trial, tumors were collected and preserved in formalin 10%
solution, then underwent hematoxylin and eosin staining to observe density of tumor cells
after various treatments.

4.7. Data Analysis

ORIGIN 8.5.1 (OriginLab Inc., Northampton, MA, USA) was used to perform statistical
analysis. All experiments were carried out for at least three independent replications and
data were expressed as the mean ± SD. One-way ANOVA or two-way ANOVA tests and
Tukey multiple comparison tests were used to determine statistical differences. A * p < 0.05,
** p < 0.01, *** p < 0.001 indicated statistical significance, while ns p ≥ 0.05 meant that the
difference was not statistically significant.

The Materials and Methods should be described with sufficient details to allow others
to replicate and build on the published results. Please note that the publication of your
manuscript implicates that you must make all materials, data, computer code, and protocols
associated with the publication available to readers. Please disclose at the submission stage
any restrictions on the availability of materials or information. New methods and protocols
should be described in detail while well-established methods can be briefly described and
appropriately cited.

Research manuscripts reporting large datasets that are deposited in a publicly available
database should specify where the data have been deposited and provide the relevant
accession numbers. If the accession numbers have not yet been obtained at the time of
submission, please state that they will be provided during review. They must be provided
prior to publication.

Interventionary studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided approval and the corresponding
ethical approval code.
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