Skip to main content
. 2022 Jan 3;12(1):101. doi: 10.3390/diagnostics12010101

Table 1.

Conditions for training different segmentation models.

Model Backbone Pre-Proc. Augmentation
Model 1 Efficient0 N/A DA
Model 2 Efficient0 HE DA
Model 3 Efficient0 HE DA + Gaussian noise (0.5) + gamma correction (0.5) + grid distortion (0.1) + elastic transform (0.1) + affine transform (0.1)
Model 4 Efficient7 HE DA + Gaussian noise (0.5) + gamma correction (0.5)
Model 5 Efficient7 HE DA + Gaussian noise (0.5) + gamma correction (0.5) + grid distortion (0.1) + elastic transform (0.1) + affine transform (0.1)

Abbreviations: HE, histogram equalization; DA, default augmentation (horizontal flip: 0.5, rotation: a range of ±25°, random contrast: 0.1, random brightness 0.1, gamma correction: 0.1, Gaussian noise: 0.1, contrast limited adaptive histogram equalization 0.1).