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Abstract
UV RESISTANCE LOCUS 8 (UVR8) mediates photomorphogenic responses and acclimation to UV-B radiation by regulating
the transcription of a series of transcription factors (TFs). However, the origin and evolution of UVR8-mediated signaling
pathways remain largely unknown. In this study, we investigated the origin and evolution of the major components of the
UVR8-mediated signaling pathway (UVR8, REPRESSOR OF UV-B PHOTOMORPHOGENESIS [RUP], BRI1-EMS-
SUPPRESSOR1 [BES1], BES1-INTERACTING MYC-LIKE 1 (BIM1), WRKY DNA-BINDING PROTEIN 36 (WRKY36), MYB
DOMAIN PROTEIN 73/77/13 [MYB73/MYB77/MYB13], and PHYTOCHROME INTERACTING FACTOR 4/5 [PIF4 and PIF5])
using comparative genomics and phylogenetic approaches. We showed that the central regulator UVR8 presented a con-
servative evolutionary route during plant evolution, and the evolutionary history of downstream negative regulators and
TFs was different from that of green plant phylogeny. The canonical UVR8-CONSTITUTIVELY PHOTOMORPHOGENIC
1(COP1)/SUPPRESSOR OF PHYA-105 (SPA)-ELONGATED HYPOCOTYL 5 (HY5)-RUP signaling pathway originated in chlor-
ophytes and conferred green algae the additional ability to cope with UV-B radiation. Moreover, the emergence of multiple
UVR8-mediated signaling pathways in charophytes laid the foundations for the cross-talk between UV-B signals and endog-
enous hormone responses. Importantly, we observed signatures that reflect plant adaptations to high UV-B irradiance in
subaerial/terrestrial environments, including positive selection in UVR8 and RUPs and increased copy number of some vital
TFs. These results revealed that green plants not only experienced adaptive modifications in the canonical UVR8-COP1/
SPA-HY5-RUP signaling pathway, but also diversified their UV-B signal transduction mechanisms through increasing cross-
talk with other pathways, such as those associated with brassinosteroids and auxin. This study greatly expands our under-
standing of molecular evolution and adaptive mechanisms underlying plant UV-B acclimation.
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Introduction
The high-energy UV-B radiation (280–315 nm) in sunlight
has a wide range of detrimental effects on organisms. Many
ancient photosynthetic organisms (such as diatoms, cyano-
bacteria, and green algae) have evolved the capacity to syn-
thesize sunscreen to protect themselves against UV-B
damage (Rozema et al., 2002; Balskus and Walsh, 2010). In
addition to the adverse effects of high UV-B irradiance, it
has been reported that low-level UV-B can mediate photo-
morphogenesis and stress responses in Arabidopsis
(Arabidopsis thaliana) and other plant species, such as inhi-
bition of hypocotyl elongation and accumulation of flavo-
noids and anthocyanins (Lee, 2016; Jenkins, 2017; Podolec
et al., 2021). During the conquest of land, green plants have
evolved complex mechanisms to appropriately respond to
drastic changes of UV-B irradiance (Fernández et al., 2016;
Han et al., 2019). Although a series of downstream transcrip-
tion factors (TFs) and target genes responsive to UV-B radia-
tion have been extensively studied in A. thaliana (Huang
et al., 2014; Liang et al., 2018; Yang et al., 2018; Qian et al.,
2020; Tavridou et al., 2020; Yang et al., 2020), the origin and
evolution of the UV RESISTANCE LOCUS 8 (UVR8)-medi-
ated signaling pathway in green plants remain largely
unclear.

UVR8 has been characterized as the exclusive UV-B pho-
toreceptor in green plants, and plays a vital role in UV-B
perception and signaling (Rizzini et al., 2011; Liang et al.,
2019). UVR8 was first identified in A. thaliana, and its
orthologs were subsequently identified in other green
plants, including chlorophytes, charophytes, bryophytes,
and other angiosperms, except for gymnosperms (Favory
et al., 2009; Tilbrook et al., 2016; Soriano et al., 2018; Han
et al., 2019). Moreover, experimental analyses in green al-
gae, moss, and liverwort revealed the functional conserva-
tion of UVR8 in UV-B perception and signal transduction
(Tilbrook et al., 2016; Soriano et al., 2018). All the identified
UVR8 possessed highly conserved functional domains: the
RCC1 domain, the Gly-Trp-Arg-His-Thr (“GWRHT”) motif,
and the Val-Pro (“VP”) core in the C27 domain (Wu et al.,
2012; Jenkins, 2014a, 2014b). Three “GWRHT” motifs in
UVR8 formed a tryptophan triad (W233, W285, and
W337), and W233 and W285 were the main UV-B sensor
(Christie et al., 2012; Podolec et al., 2021). There have been
two different types of UVR8-mediated signaling pathway:
(1) Without UV-B irradiation, UVR8 forms a homodimer in
cytoplasm maintained by interactions of charged amino
acids across the dimer interaction surface (Figure 1, A; O
Hara and Jenkins, 2012; Liang et al., 2019). UV-B radiation
triggers the dissociation of UVR8 homodimer, and the ac-
tive UVR8 monomer inhibits the E3 ubiquitin ligase
CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1),
thereby stabilizing COP1 target TFs (ELONGATED
HYPOCOTYL 5 [HY5]) that in turn promote UV-B-induced
gene expression changes (Figure 1, B; Rizzini et al., 2011;
Liang et al., 2019; Podolec et al., 2021). The monomeric
UVR8 can be regulated by REPRESSOR OF UV-B

PHOTOMORPHOGENESIS 1 (RUP1) and RUP2, which facili-
tate the redimerization of UVR8 to complete the UVR8
photocycle (Gruber et al., 2010; Ren et al., 2019). (2)
Current studies have shown that UVR8 can directly/indi-
rectly interacts with specific TFs and transduce UV-B signal,
such as WRKY DNA-BINDING PROTEIN 36 (WRKY36),
BRI1-EMS-SUPPRESSOR1 (BES1), BES1-INTERACTING MYC-
LIKE 1 (BIM1), MYB DOMAIN PROTEIN 73/77 (MYB73/
MYB77), MYB DOMAIN PROTEIN 13 (MYB13), and
PHYTOCHROME INTERACTING FACTOR 4/5 (PIF4 and
PIF5) (Figure 1, B; Liang et al., 2018; Yang et al., 2018;
Sharma et al., 2019; Qian et al., 2020; Tavridou et al., 2020;
Yang et al., 2020). For instance, active UVR8 monomer
interacts with WRKY36, and removes it from HY5, inducing
the expression of HY5 (Yang et al., 2018). BES1 and BIM1
are two TFs in the brassinosteroids (BRs) signaling cascade,
and UVR8 interacts with them to regulate the BR-induced
genes (Liang et al., 2018). UVR8 inhibits lateral root devel-
opment by interacting with MYB73/MYB77 in a UV-B-
dependent manner (Yang et al., 2020). UVR8 also interacts
with MYB13 to induce the expression of genes related to
auxin response and flavonoid biosynthesis (Qian et al.,
2020). It has been reported that UVR8 triggers the degrada-
tion of PIF4 and PIF5 to regulate hypocotyl growth
(Sharma et al., 2019; Tavridou et al., 2020). Although these
more recently discovered UV-B-mediated signaling path-
ways have been extensively characterized in A. thaliana at
functional level, their origin and evolution in plant still
need further investigations.

Green plants comprise the early-branching chlorophytes
and streptophytes, and streptophytes are divided into two
groups: streptophytes algae (charophytes) and land plants
(embryophytes) (Leliaert et al., 2012; de Vries et al., 2016). It
is documented that land plants originated from
Zygnematophyceae (one clade of charophytes) (Zhong et al.,
2013, 2014; Leebens-Mack et al., 2019; Su et al., 2021). Most
chlorophytan green algae lived in water where UV-B doses
are filtered, whereas subaerial/terrestrial charophytes and
land plants are directly exposed to high doses of UV-B.
Previous studies have showed that all chlorophytan green al-
gae contained single-copy UVR8 orthologs, while some bryo-
phytes, monocots, and eudicots possessed two or more
copies (Fernández et al., 2016; Tilbrook et al., 2016; Han
et al., 2019). The drastic changes in UV-B radiation might
drive the evolution of UVR8-mediated signaling pathways in
different lineages of green plants, and the changes in copy
number might be an adaptive mechanism under heteroge-
neous evolutionary scenarios. Thus, a better understanding
of the origin and evolution of UVR8-mediated signaling
pathways would provide insights into the plant
terrestrialization.

The conservation of structure and function of UVR8-
COP1/SPA-HY5 complex has been widely studied, but the
origin and evolution of other critical components (such as
RUP, BES1, BIM1, WRKY36, MYB73, and MYB77) remained
unclear. In this study, we performed extensive searches for
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orthologs of the vital components of UVR8-mediated signal-
ing pathway using genomic and transcriptomic data of
Archaeplastida. Multispecies comparative genomic, phyloge-
netic and positive selection analyses were conducted to in-
vestigate the gene gain/loss events and molecular
adaptations in UVR8-mediated signaling pathway. Our stud-
ies provide comprehensive views of the evolutionary history
of UVR8-mediated signaling pathway, and advance our un-
derstanding of the UV-B-responsive mechanisms during the
plant evolution.

Results and discussion

The evolutionary conservation of UVR8
UV-B penetration in water is lower than that in terrestrial
environments, and thus plants may co-evolve with ambient
UV-B levels during the transition from aquatic to land. UVR8
is a plant-specific UV-B photoreceptor that can perceive low
fluence rates of UV-B radiation to mediate plant metabolism
and induce the photomorphogenic response (Huang et al.,
2014; Jenkins, 2014a, 2014b). UVR8 uses the conserved

tryptophans (W233, W285, and W337 in AtUVR8) in three
“GWRHT” motifs to sense and transduce UV-B signal, rather
than using typical chromophore (Wu et al., 2012). We con-
ducted similarity searches to identify homologs of UVR8, and
then reconstructed the phylogenetic tree of UVR8 homologs
to systemically identify UVR8 orthologs. Homologs are genes
that shared sequence similarities, and orthologs are genes in
different species that have evolved from a common ancestral
gene via speciation, suggesting high possibility of similar func-
tion retention of orthologs during evolution. Based on the
similarity searches and phylogenetic analyses, we identified
UVR8 orthologs containing the conserved “GWRHT” motif in
major clades of green plants (i.e. chlorophytes, charophytes,
bryophytes, lycophytes, ferns, gymnosperms, and angiosperms;
Figure 2). No UVR8 orthologs were found in red algae and
glaucophyte. Consistent with previous studies, our results also
supported the notion that UVR8 was a specific photoreceptor
in green plants (Fernández et al., 2016; Han et al., 2019).

We further inspected the phylogenetic tree of UVR8
orthologs, and found that it followed the widely accepted
green plant phylogeny (Figure 2). Our phylogenetic results
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strongly supported that the earliest diverging clade of UVR8
was chlorophytan green algae, and the charophyte UVR8
formed a paraphyletic assemblage, covering four clades of
charophyte algae (Figure 2). Our study reported that UVR8
orthologs with all conservative domains (the RCC1 domain,
the “GWRHT” motif and the “VP” core) were identified in
the genomes of ginkgo tree (Ginkgo biloba) and gnetophyte
(Gnetum montanum) from gymnosperms. In terms of copy
number of UVR8 orthologs, it was evolutionary conserved as
single-copy gene across most clades of green plants
(Figure 2 and Supplemental Figure S1). In addition, we no-
ticed exceptions that Spirogloea muscicola from charophytes,
Physcomitrium patens and Sphagnum fallax from mosses,
and several angiosperms (e.g. rice [Oryza sativa], cotton
(Gossypium raimondii), and Brassica rapa) possessed multi-
ple copies of UVR8 genes. Interestingly, these species all ex-
perienced whole-genome duplications (WGDs) (Cheng et al.,

2019; Gao et al., 2020; Wu et al., 2020). WGD events, fol-
lowed by gene loss and retention, have been recognized as a
vital force that drives the adaptations of plants to dramatic
environmental changes (Jiao et al., 2011; De Smet and Van
de Peer, 2012; Fox et al., 2020). For instance, P. patens pos-
sessed two copies of UVR8 genes, which enhances UV-B tol-
erance compared to A. thaliana (Wolf et al., 2010). In
contrast, the marine angiosperm, Zostera marina, has lost
UVR8 due to its shallow coastal soft bottom environments
(almost no UV-B radiation; Olsen et al., 2016). Therefore, we
presumed that multiple copies of UVR8 in land plants might
result from WGD events, and their gain or loss likely
reflected the adaptations of plants to complex
environments.

The domain analyses showed that several amino acids
were highly conserved in the C27 region (in A. thaliana resi-
dues 397-423) of UVR8 proteins among different plant
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species (Supplemental Figure S2). Previous studies reported
that UVR8 could interact with downstream components
(e.g. COP1, RUP1, and RUP2) via the “VP” core in the C27
domain (Cloix et al., 2012; Yin et al., 2015). Deletion of the
C27 region from full-length UVR8 would lead to defects in
UV-B signaling, and binding of RUP proteins to C27 was
critical for accelerating the redimerization of UVR8 to its
homodimeric ground state (Cloix et al., 2012; Heijde and
Ulm, 2013). We further found that the C-terminal ends (the
last 17 amino acids, C17) also had a few conserved amino
acids (Supplemental Figure S2). The C17 of UVR8 could at-
tenuate the binding between C27 and COP1, therefore
inhibiting UV-B signaling (Lin et al., 2020). Based on evolu-
tionary patterns of the C27 and C17 region of UVR8 in
green plants, our results revealed the structural conservation
of UVR8 in UV-B acclimation.

The origin and evolution of RUPs
The RUP proteins are members of the WD40-repeat pro-
teins, and they only contain the WD40-repeats domain and
a short N-terminal extension with unknown function (van
Nocker and Ludwig, 2003; Gruber et al., 2010). Although
RUPs have sequence similarity to the WD40 domain of
COP1 (Figure 3, A), they showed unexpected functional di-
vergence. COP1 is the key regulator of plant photomorpho-
genesis triggered by light, and RUPs function as a negative
feedback regulator of UV-B signaling cascade, balancing the
UV-B defense (Yin et al., 2015; Liao et al., 2020). To better
understand the evolutionary history of RUP, we recon-
structed the phylogenetic tree of the RUP orthologs
(Figure 3, B). The phylogenetic analyses supported that RUP
orthologs first arose in chlorophytan green algae and perva-
sively existed in most of green plants, such as chlorophytes,
bryophytes, lycophytes, ferns, gymnosperms, and angio-
sperms (Figure 3, B). The structural analyses demonstrated
that RUPs retained most of the conserved domains and
motifs during the plant evolution, and only a slight increase
of the conserved motifs between chlorophytes and strepto-
phytes were observed (Figure 3, B). It was reported that
UVR8-COP1/SPAs-HY5 complex originated in chlorophytes
and served as the most ancient UV-B signaling module in
green plants (Supplementa Figures S3–S5l ; Han et al., 2019).
Not only RUPs promote UVR8 re-dimerization in UV-B sig-
naling, but also they function as substrate receptors in
CUL4-DDB1-based E3 ubiquitin ligase complexes, serving as
a crucial molecular brake of UV-B signaling by modulating
HY5 protein levels (Ren et al., 2019; Podolec et al., 2021).
Thus, we assumed that RUP might originate in chlorophytes,
probably for some primitive functions. Compared with
chlorophytes, charophyte algae were the earliest diverging
lineages of streptophytes, and have adapted the subaerial/
terrestrial habitat (Cheng et al., 2019). Considering the nega-
tive feedback regulations of RUP in UV-B signaling cascade,
the increase of motifs might facilitate the sophisticated regu-
lation of UV-B response during transition from aquatic to
terrestrial environments of green plants.

Compared with the species tree of Viridiplantae, the phy-
logenetic tree of RUP showed slight differences in early-
diverging streptophytic lineages (Figure 3, B), reflecting the
complex evolutionary scenario. RUP orthologs from charo-
phytes, bryophytes, and pteridophytes together formed a
paraphyletic group, and the gymnosperms formed a mono-
phyletic group (Figure 3, B). Interestingly, compared with
the conservation of UVR8 orthologs within charophytes,
only two RUP orthologs in five charophyte genomes were
identified (Mesotaenium endlicherianum and Chara braunii),
implying the gene loss of RUPs in charophytes (Figure 3, B).
Moreover, we found increased copy number of RUP within
the bryophytes, gymnosperms, and angiosperms (Figure 3,
B). For instance, both chlorophytes and charophytes only
had single-copy RUP orthologs, whereas the RUPs in
Selaginella moellendorffii, P. patens, S. fallax, Picea Abies, and
A. thaliana were two or more copies (Figure 3, B).
Arabidopsis RUP1 and RUP2 duplicated after the splitting of
Brassicaceae, and had six and seven WD40 domains, respec-
tively (Figure 3, B). Although it has been found that RUP1
and RUP2 had functional redundancy in mediating UVR8
redimerization, the RUP2 likely played the dominant role, in
line with RUP1 and RUP2 protein levels (Liao et al., 2020;
Podolec et al., 2021). It is also well documented that
Arabidopsis rup1 rup2 double mutant appeared slow UVR8
redimerization and an exaggerated UV-B photomorphogenic
phenotype, such as dwarfism and short hypocotyl pheno-
type, resulting in better acclimation and protection against
UV-B stress (Gruber et al., 2010; Liao et al., 2020). We, there-
fore, assumed that the loss of RUP in some pioneers of land
plants (e.g. charophytes) might be a radical evolutionary in-
novation for their subaerial/terrestrial habitats, contributing
to their adaptations to the increased UV-B radiation.
Meanwhile, the pervasive existence and duplications of
RUPs in seed plants probably reflected its vital roles in bal-
ancing UV-B resistance and plant developments.

The adaptive evolution of UVR8 and RUPs
During the transition from deep sea to shallow water, and
from aquatic to terrestrial environments, UV radiation is a
crucial environmental stress for green plants. When plants
invaded the shallow water environments, it began to expose
to increased UV-B radiation, and colonization in land envis-
aged the increased level and persistent exposure of UV-B
(Kenrick and Crane, 1997; Maberly, 2014). Environmental se-
lective pressures, such as temperature and UV-B radiation,
have driven the evolution of sensing and signaling transduc-
tion pathways associated stress response in plants (Hauser
et al., 2011).

In order to test the presence of positive selection on
UVR8 and RUP, we conducted the branch-site random
effects likelihood test (BSREL in Hyphy) to detect evidence
of positive selection on each branch of the phylogeny (Pond
and Muse, 2005; Smith et al., 2015). We found significant
signatures that some nonsynonymous substitutions in UVR8
were subject to positive selection on the branches leading
to the ancestor of chlorophytes, Monoraphidium neglectum,
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Dunaliella salina, and Mesostigma viride (Figure 2). We fur-
ther performed the branch-site test using PAML to identify
positively selected sites (PSSs) in several crucial nodes during
the plant evolution (Yang, 2007), including the ancestral
branch of land plants, and the ancestral branch of chloro-
phyte. We identified several PSSs of UVR8 along the ances-
tral branch of chlorophyte (e.g. Cys132, Trp144, Met176, and
Thr236; Figure 4, A–D and Supplemental Table S1).
Evidently, it was documented that the mutation of Trp144
to Phe (UVR8W144F) did not influence the interaction be-
tween UVR8 and COP1 in yeast, due to the formation of hy-
drophobic interactions through these aromatic residues
(O’Hara and Jenkins, 2012). Importantly, the mutation of
Trp285 to Phe (UVR8W285F) could alter the spectral sensitiv-
ity of UVR8, and the UVR8W285F mutant could weakly ab-
sorb UV-C instead of UV-B, due to the shorter absorption
wavelength of phenylalanine than tryptophan (Christie
et al., 2012). Thus, we assumed that the substitution at this

residue (UVR8W144F) in the ancestral branch of chlorophyte
might result from high levels of UV-C radiation, due to low
concentration of ozone in atmosphere at the Archean Earth
(Cnossen et al., 2007). In addition, the PSS Thr236 was adja-
cent to Trp233 that served as the UV-B chromophore
(Christie et al., 2012), likely involved in UV-B perception and
exciton coupling.

We also detected evidence of positive selection on RUP
on the ancestral branch of chlorophyte (Supplemental Table
S1). These PSSs were located in the WD40 domains of RUP
proteins, likely related to the stability and status transitions
of UVR8. The switching of UVR8 between homodimeric and
monomeric was essential for UV-B signal transduction, and
further experiments were needed to characterize the func-
tions of these PSSs. Overall, we identified evidence of posi-
tive selection on UVR8 and RUPs leading to the ancestral
branch of chlorophytes, and these PSSs were in or near the
important domains of these proteins. These observations
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Figure 3 The phylogenetic relationship and structural comparisons of RUP in green plants. A, The comparison of COP1 and RUPs domains among
A. thaliana, G. biloba, M. polymorpha, C. braunii, and C. reinhardtii. B, The phylogenetic tree and corresponding conserved motifs in green plants.
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probably reflected the adaptive modifications of UVR8 and
RUPs during plant terrestrialization, driven by the changes
of environmental UV-B.

The evolution of the regulatory network mediated
by UVR8
Not only could UVR8 mediate the UVR8-COP1/SPA-HY5
signaling pathway in the UV-B acclimation of green plants,
but it also participated in other UV-B signaling pathways as-
sociated with plant growth and developments. To deepen
our understanding of the complex UV-B signaling and regu-
latory network mediated by UVR8, we performed compre-
hensive similarity searches and phylogenetic analyses of
other crucial components of the UVR8-mediated signaling
pathways.

BES1/BIM1

BRs are kinds of endogenous plant hormones, and play im-
portant roles in the regulation of growth, developments,
and environmental stress responses (Nolan et al., 2017). It
has been shown that UVR8 could physically interact with

BES1 and BIM1 to represses growth-associated genes that
are under the control of BRs, contributing to the inhibition
of hypocotyl elongation under UV-B (Liang et al., 2018). Our
phylogenetic analyses suggested that BES1 originated in
charophytes, and the motifs remained relatively conservative
during the plant evolution (Figure 5, A and Supplemental
Figure S6). In terms of BIM1, we found that BIM1 originated
in chlorophytes and presented slightly different evolutionary
relationships compared with the widely accepted phylogeny
of green plants (Figure 5, B and Supplemental Figure S7). It
was reported that the basic helix-loop-helix (bHLH) domain
of BIM1 had a weak interaction with UVR8, while the bHLH
domain combined with either the C terminus or N terminus
of BIM1 together had a strong interaction with UVR8 in
Arabidopsis (Liang et al., 2018). The domain and motif anal-
yses indicated that BIM1 orthologs in chlorophytes only
contain the bHLH domain, and the BIM1 orthologs in char-
ophytes gradually gained other auxiliary motifs (Figure 5, B
and Supplemental Figure S7). Importantly, recent genomic
studies identified BES1 and BIM1 orthologs involved in BRs
biosynthesis and signaling in charophytes (Cheng et al.,

Figure 4 Spatial distribution of PSSs on the predicted 3D structure of UVR8 proteins. A, Arabidopsis thaliana; B, M. polymorpha; C, M. viride; and
D, C. reinhardtii. PSSs (Cys132, Trp144, Met176, and Thr236) were labeled in A. thaliana and the corresponding positions in C. reinhardtii, M. viride,
and M. polymorpha UVR8 proteins. Trp285 and Trp233 were the main UV-B sensor, and Cys132, Trp144, Met176, and Thr236 were PSSs corre-
sponding to the positions in homologous proteins of A. thaliana.
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2019; Jiao et al., 2020). Our results supported that the
UVR8-BES1/BIM1 signaling pathway likely originated in char-
ophyte lineages, and might have experienced key structural
innovations during the plant evolution.

WRKY36

The WRKY superfamily has essential functions in various
physiological and biological processes, especially biotic/abi-
otic stress responses and developments (Ülker and
Somssich, 2004; Birkenbihl et al., 2017). WRKY36 could

repress the transcription of HY5, and UVR8 could physically
interact with WRKY36 in nuclei to promote the expression
of HY5 by repressing the DNA-binding activity of WRKY36
(Yang et al., 2018). The phylogenetic tree of WRKY36 dem-
onstrated that it originated in charophytes and existed in
most clades of land plants (e.g. bryophytes, lycophytes, ferns,
gymnosperms, and angiosperms; Figure 5, C). The C termi-
nal DNA-binding domain (BD) of WRKY36 (amino acid 191-
388) could directly interact with the C terminal of UVR8
(amino acid 397-440; Yang et al., 2018). Our domain and
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Figure 5 The phylogenetic relationship and structural comparisons of downstream TFs in representative green plants. A, BES1 orthologs; B, BIM1
orthologs; C, WRKY36 orthologs; and D, MYB73/77 orthologs. Conserved motifs were shown against the phylogenetic tree. Bootstrap values 450
were indicated. The 10 distinct MEME-motifs were displayed in different colored boxes.
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motif analyses showed that these WRKY36 orthologs of land
plants contained the motifs 1, 2, 3, 6, and 7 in the C termi-
nus, indicating the functional conservation of WRKY36 in
land plants (Figure 5, C). In addition, we observed the evi-
dence of duplication events in WRKY36 before the diver-
gence of angiosperms (Supplemental Figure S8), probably
resulting from widespread WGDs of angiosperms.

MYB73/MYB77 and MYB13

MYB is a large TF family in plants, and members of this fam-
ily are essential regulators in biotic and abiotic stress re-
sponse, metabolisms, and developments (Xing et al., 2019;
Sun et al., 2020). Previous experimental analyses proved that
UVR8 could interact with MYB73/MYB77 in a UV-B-
dependent manner, and therefore directly represses the
transcription of their target auxin-responsive genes, integrat-
ing light and auxin signaling and inhibiting lateral root de-
velopment (Yang et al., 2020). MYB13 could also interact
with the photoactivated UVR8 to regulate auxin response
and flavonoid biosynthesis, inducing cotyledon expansion
and UV-B acclimation (Qian et al., 2020). Our phylogenetic
analyses indicated that MYB73/77 originated in charophytes
(Klebsormidium nitens and S. muscicola), and MYB77/73 ex-
perienced duplication events during the divergence of
Brassicaceae, resulting in the new members MYB70 and
MYB40 (Figure 5, D and Supplemental Figure S9). We also
discovered that MYB13 only existed in seed plants
(Supplemental Figure S10).

The N terminus of MYB73/77 (amino acids 1-120, includ-
ing MYB domains) was proved to be crucial for interaction
with both the N and C terminus of UVR8 (Yang et al.,
2020). The auxiliary motifs out of this domain were also
functionally important. The mutation of these motifs could
significantly influence the function of MYB (Millard et al.,
2019; Jiang and Rao, 2020). Our domain and motif analyses
demonstrated that all MYB73/77 had conserved MYB
domains, but the auxiliary motifs of MYB73/77 from charo-
phytes were different from that of land plants (Figure 5, D).
Previous studies discovered different expression patterns and
functions of closely related MYB TFs between charophytes
and land plants (Higo et al., 2018; Jiang and Rao, 2020).
These phylogenetic and structural analyses implied that the
UVR8-MYB73/77 signaling pathway originated in charo-
phytes, and experienced functional innovations during the
plant terrestrialization.

PIFs

PIFs belong to the bHLH family TFs, and they can repress
light responses and promote hypocotyl elongation, particu-
larly the members PIF4 and PIF5 (Hornitschek et al., 2012;
Pfeiffer et al., 2014; Shi et al., 2018). It was reported that
PIF4 and PIF5 could be degraded in a UVR8-dependent
pathway via the ubiquitin–proteasome system, resulting in
the inhibition of hypocotyl growth (Sharma et al., 2019;
Tavridou et al., 2020). All PIFs contained a phytochrome B-
binding motif, and only PIF1 and PIF3 had an additional

phytochrome A-binding (APA) motif (Leivar and Quail,
2011). We identified PIFs orthologs in charophyte lineages,
and the APA motif (motif 4) was also found in C. braunii
and S. muscicola (Supplemental Figure S11). The PIF-
mediated light-dependent transcriptional regulation has
been identified in moss (Marchantia polymorpha and P. pat-
ens), and the APA motif was an indispensable functional do-
main (Inoue et al., 2016; Possart et al., 2017). Consistent
with previous studies, we also found APA motif in PIFs from
moss (M. polymorpha and P. patens) and tracheophytes
(Supplemental Figure S12). Thus, our results suggested that
the PIF-mediated regulations originated in charophytes, and
were conserved in land plants.

Co-expression analyses and protein interaction
assays
We further performed the orthologs searches in 48 charo-
phyte transcriptomes to determine whether genes from the
same pathway were all present in all species. We found 33
and 15 putatively expressed UVR8 and BES1/BIM1 in charo-
phyte transcriptomes, respectively (Figure 6, A). UVR8 and
BES1/BIM1 orthologs could be simultaneously identified in
12 charophyte transcriptomes (Figure 6, A). We also identi-
fied three putatively expressed WRKY36 and 44 putatively
expressed MYB73/77 in charophyte transcriptomes. UVR8-
WRKY36 and UVR8-MYB73/77 orthologs were identified at
the same time in three and 33 charophyte transcriptomes
(Figure 6, A). As gene expression usually presented spatial–
temporal expression model, transcriptome data may not re-
cover all the genomic information of an organism. Still, the
co-expression analyses based on the transcriptome data pro-
vide evidences supporting the existence of UVR8 and TFs
(BES1, BIM1, MYB73/77, and WRKY36) in charophytes. In
addition, the identification of putatively expressed UVR8,
WRKY36, MYB73/77, and BES1/BIM1 orthologs in several
bryophytes and ferns transcriptomes implied the conserva-
tion of these pathways in early land plants (Figure 6, A).

We conducted the yeast two-hybrid (Y2H) and bimolecu-
lar fluorescence complementation (BiFC) assays to verify the
interactions between UVR8 and the downstream TFs (BES1,
BIM1, MYB73/77, and WRKY36). The interactions between
the C-terminal domain of UVR8 and MYB73/77, the
WRKY36 were identified in the Y2H assays (Figure 6, B),
and BiFC assays further showed that the UVR8 had a direct
interaction with BIM1 (Figure 6, C). Although we did not
observe interactions in all TFs, both in vivo and in vitro
assays provided substantial evidences of protein interactions
between UVR8 and most TFs in early land plants. These ex-
perimental results largely confirmed that these recently dis-
covered UVR8-mediated signaling pathways have existed at
least in early land plants. Notably, consistent with our com-
parative analyses, previous studies have demonstrated that
considerable genes essential for land plants were present in
the common ancestor of charophytes and land plants
(Cheng et al., 2019). Therefore, we hypothesize that these
UVR8-mediated signaling pathways likely originated in
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Figure 6 Origin and evolution of the UVR8-mediated signaling pathway. A, Co-expression analyses based on the 1KP transcriptomes. Venn dia-
grams of the distribution of UVR8, WRKY36, BES1, BIM1, and MYB73/73 orthologs in 48 charophytes, 69 bryophytes, and 96 ferns transcriptomes.
B, Y2H assays showing the interactions between the C-terminal domain of UVR8 and WRKY36 and MYB73/MYB77. C, BiFC assays showing the
interactions between BIM1 and UVR8. D, Origin and evolution of UVR8 signaling pathway in Archaeplastida. During the transition from deep sea
to shallow water, and from aquatic to terrestrial environments, UV light was a crucial environmental signal for green plants. Red algae live in the
deep sea where UV-B was entirely filtered. The evolution of UVR8 signaling pathway (UVR8, COP1, SPA, HY5, and RUP) in chlorophytes facilitated
green algae to adapt shallow water environment. The origination of the transcriptional regulatory network (PIFs, WRKY36, BES1, BIM1, MYB73,
and MYB73) in charophytes conferred freshwater algae the abilities to colonize the water surface. After plants conquered the land, UVR8 signaling
pathway contributed to adapt to high and variable doses of UV-B irradiance.
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charophytes, and our results provide potential directions for
future experimental studies.

Hints for plant evolution and terrestrialization
During the evolution from deep sea to shallow water, and
from aquatic to terrestrial environments, pioneers of land
plants were exposed to complex environmental UV-B radia-
tion (high and variable). Green plants evolved multiple UV-
B signaling mechanisms, and conferred the capacity for rapid
response and adaptations to changing environmental UV-B
radiation. Our comparative genomic and phylogenetic analy-
ses indicated that the orthologs of the canonical UVR8-
COP1/SPA-RUP signaling pathway (UVR8, RUP, COP1, SPA,
and HY5) originated in chlorophytes (Figure 6, D). It is
worth mentioning that the origin of these orthologs does
not necessarily indicates the presence of UVR8-COP1/SPA-
RUP signaling pathway, and the proteins encoded by these
orthologous genes need direct or indirect interactions to
complete the signal transductions. There were documented
instances of interactions between UVR8 and COP1, SPA in
green algae (Tilbrook et al., 2016; Xu et al., 2021). Thus, we
suggested that the UVR8-COP1/SPA-RUP signaling pathway
was likely to originate in chlorophytes. Moreover, UVR8 ex-
perienced a conservative evolutionary route during the plant
evolution, and the evolutionary history of RUP was different
from the evolution of green plants. We also identified that
UVR8 and RUPs experienced significant positive selection in
the ancestral branch of chlorophytes. Adaptive modifications
might influence the physiological properties and status tran-
sitions of UVR8, switching from homodimeric to monomeric
ground state. Green plants have encountered the increased
UV-B radiation during the colonization of shallow water and
land, and the environmental stress likely has shaped the
amino acid substitutions on these related proteins, eventu-
ally achieving acclimation.

Our multispecies genome-wide analyses identified that
several emerging UVR8-regulated TFs originated in charo-
phytes and were conserved in land plants (Figure 5, A–D).
TFs could merge environmental and complicated endoge-
nous signal, which contribute to adaptations of plants to
drastic environmental changes (Jing and Lin, 2020). UVR8
not only mediates different hormone signals via COP1 and
HY5, but also directly interacts with other TFs to quickly
regulate the endogenous hormone signaling pathway (Liang
et al., 2018; Yang et al., 2018). In A. thaliana, UVR8 could
dissociate into the monomeric form and accumulate in the
nucleus under UV-B irradiation, and the interactions be-
tween UVR8 and downstream TFs in the nucleus repre-
sented important mechanisms of early UV-B signal
transduction. For instance, The UVR8-WRKY36-HY5 signal-
ing pathway was independent from UVR8-COP1/SPA-HY5,
and it provided an alternative mechanism to response to
the constant and increasing UV-B irradiation (Yang et al.,
2018). In contrast, plant hormones played a central role in
regulating growth, developments, and defense against abiotic
stresses, and the cross-talk between UV-B signal and endo-
geneous hormonal signal was another crucial mechanism to

transduce environmental signals. Our phylogenetic analyses
discovered that the components of UVR8-BES1/BIM1 and
UVR8-MYB73/MYB77 signaling pathway originated in charo-
phytes, and our experimental assays identified evidence of
protein interactions in early-branching land plants (M. poly-
morpha; Figure 6, B and C and Supplemental Figures S6, S7,
S9). By combining the motif analyses and experimental
assays, we therefore suggested that the UVR8-BES1/BIM1
and UVR8-MYB73/MYB77 signaling pathway originated in
charophytes (Figure 6, D). In terms of MYB13, our analyses
supported that UVR8-MYB13 signaling pathway emerged in
the common ancestor of angiosperms and gymnosperms. It
was reported that MYB13 predominantly expressed in the
cotyledons, positively regulating UV-B-induced cotyledon ex-
pansion and stress acclimation, thus further experiments are
essential to verify its functions in gymnosperms. As the only
known TF with indirect interaction with UVR8 in UV-B sig-
naling pathway, the PIF-mediated signaling pathway was
proposed to originate in charophytes. Binding of UV-B-
activated UVR8 to COP1 could disrupt the stabilization of
PIF4/5, participating in multiple responses to environmental
changes, such as the shade avoidance response and thermo-
morphogenesis. Our results provide clues about the evolu-
tion of PIF-mediated signaling pathway, as well as the
complex adaptive strategies of plants on land.

The mechanisms underlying UVR8 signaling and its out-
comes (from UV-B signal transduction to gene expression
changes and physiological UV-B responses) remain obscure.
The cross-talk between environmental UV-B signal and hor-
monal signal (BR and auxin) have been mainly studied in A.
thaliana, whereas their functions in green algae and early
land plants are rarely documented. Integrative studies of the
evolution of the UVR8 signaling pathways and cross-talks in
green algae and early land plants are crucial for understand-
ing the molecular basis of UV-B response and plant terrestri-
alization. Overall, our study indicates that the integrated
UVR8-COP1/SPA-RUP signaling pathway that originated in
chlorophytes ensures UV-B signal transduction and physio-
logical response. The interactions between UVR8 and down-
stream TFs presumably originate from charophytes, which
largely expand the repertoires of UV-B signaling pathway
and likely facilitate the adaptations of plants to the variable
UV-B radiation in subaerial/terrestrial environments.

Materials and methods

Identification of UVR8 and RUP orthologs in plant
genomes
We selected 79 plant genomes from main Archaeplastida
clades, including one glaucophyte, four rhodophytes, 12 chlor-
ophytes, 5 charophytes, 3 bryophytes, 1 lycophyte, 1 fern, 3
gymnosperms, and 48 angiosperms (Supplemental Table S2).
In order to identify the orthologs of UVR8 and RUP from
these plant genomes, we employed both the similarity
searches and phylogenetic analyses. First, the Arabidopsis (A.
thaliana) UVR8 and RUP protein sequences (UVR8:
AT5G63860, RUP1: AT5G52250, and RUP2: AT5G23730) were
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used as queries to perform BLASTP searches, and filtered with
an E-value threshold of 10–5 (Altschul et al., 1997). The amino
acid sequences with BLAST hits were further searched against
the Conserved Domain Database (https://www.ncbi.nlm.nih.
gov/cdd) to check the “RCC1” domain repeats and “WD40”
domain, respectively. Second, the filtered protein sequences
of UVR8 and RUP were separately aligned using MAFFT ver-
sion 7, and then trimmed by trimAL version 1.3 with –
gt = 0.03 (Capella-Gutiérrez et al., 2009; Katoh and Standley,
2013). The multiple sequence alignments (MSAs) were manu-
ally inspected, and the maximum likelihood phylogenetic tree
was reconstructed using IQ-TREE version 1.6.1 (Nguyen et al.,
2015). The best-fitting model was determined by
ModelFinder, and branch supports were obtained using the
ultrafast bootstrap approach with 1,000 replicates (Minh
et al., 2013; Kalyaanamoorthy et al., 2017). The monophyletic
group containing AtUVR8 and AtRUP were separately se-
lected as candidates UVR8 and RUP orthologs. Third, we fur-
ther performed functional domain analyses to check the
“GWRHT” motifs and the WD40 repeat number using
InterProScan version 5.24 and MEME suit version 5.0.3
(http://meme-suite.org/doc/download.html). Only the candi-
date orthologs having the functional domain and conserved
motifs were characterized as true orthologs and used for fur-
ther phylogenetic analyses.

Phylogenetic reconstruction and selective pressure
analyses of UVR8 and RUP
The identified orthologs of UVR8 and RUP were separately
aligned with MAFFT (Katoh and Standley, 2013). The MSAs
were trimmed by trimAL with –gt = 0.03 and manually
inspected (Capella-Gutiérrez et al., 2009). We further recon-
structed the phylogenetic tree of the orthologs using the
above-mentioned pipeline. To identify the evidence of posi-
tive Darwinian selection, the branch-site random-effect likeli-
hood (BranchSiteREL) model in HyPhy version 2.1.2 was
applied to detect episodic diversifying selection (Pond and
Muse, 2005). The BranchSiteREL model could identify signs
of positive selection in each branch of the phylogeny, with-
out making priori assumptions (“foreground” and
“background” branches). We also employed the branch-site
models implemented in Codeml from PAML package ver-
sion 4.9c to identify PSS (Yang, 2007). Model A (allows sites
to be under positive selection; model = 2, Nsites = 2, fixed
omega = 0, omega = 2) is compared with the null model A1
(sites may evolve neutrally or under purifying selection;
model = 2, Nsites = 2, fixed omega = 1, omega = 1). As
branch-site model only allows single foreground branch in
each test, we separately set ancestral branch of chlorophytes
and ancestral branch of land plants as foreground branch.
The significance of models was determined by the likelihood
ratio test with a v2 distribution at a threshold of P val-
ues5 0.05. Ancestral sequences were reconstructed using
ML method (RateAncestor = 1). Bayes empirical Bayes analy-
sis was applied to statistically identify the PSSs on a specified
branch with posterior probabilities 50.95 (Yang et al.,

2005). The 3D structures of UVR8 proteins of
Chlamydomonas reinhardtii, M. viride, M. polymorpha, and
A. thaliana were retrieved from SWISS-MODEL (https://swiss
model.expasy.org), and protein structures were visualized us-
ing PyMOL (http://pymol.org).

TFs identification and phylogenetic analyses
The identification of each TF was based on the aforemen-
tioned approaches of similarity search combined with phylo-
genetic analyses, and the identified TFs were strictly filtered
using the functional domain and conserved motif informa-
tion. The queries used in BLASTP searches and functional
domain information were shown in Supplemental Table S3.
Sequences with blast hits (E-value5 1e–5) and functional
domains were retained for further phylogenetic analyses
(Altschul et al., 1997). These retained sequences were aligned
using MAFFT (Katoh and Standley, 2013), and trimmed by
trimAL with manually inspected (Capella-Gutiérrez et al.,
2009). We reconstructed phylogenetic trees of homologs,
and the monophyletic group containing Arabidopsis BES1,
BIM1, WRKY36, MYB73/MYB77, MYB13, PIFs, and HY5/
HYH proteins was treated as orthologs. Finally, phylogenetic
trees of orthologs were reconstructed using the above-
mentioned pipeline.

Co-expression analyses of the TFs
We separately selected 48, 69, and 96 transcriptomic data of
charophytes, bryophytes, and ferns from the 1KP project
(www.onekp.com) for the following co-expression analyses.
We separately used Arabidopsis UVR8, BES1, BIM1,
WRKY36, MYB73, and MYB77 proteins sequences as queries
to perform BLASTP searches with an E-value threshold of
10–5 (Altschul et al., 1997). All protein sequences with the
corresponding annotations in NCBI Conserved Domain
Database were used for the following phylogenetic analyses.
Then, we reconstructed phylogenetic trees to identify ortho-
logs of BES1, BIM1, WRKY36, and MYB73/MYB77 based on
transcriptomic data.

Y2H and BiFC assays
To further verify the protein interactions between UVR8
and related TFs (BES1, BIM1, MYB73/77, and WRKY36), we
separately performed the Y2H and BiFC assays. The full-
length coding sequences, C44 region and C27 region of
UVR8 from M. polymorpha were synthesized and fused in-
frame to the GAL4 DNA-BD of the bait vector pGBKT7. The
coding sequences of BES1, BIM1, WRKY36, and MYB73/
MYB77 were separately synthesized and cloned into
pGADT7 vectors. The clones were co-transformed into yeast
strain AH109 according to a standard yeast transformation
protocol (Clontech, Beijing, China). Protein–protein interac-
tions were characterized from the yeast transformants that
were streaked onto SD/-Trp-Leu-His-Ade dropout plates.
Each Y2H assay was independently repeated 3 times.

The BiFC assay followed the protocol with slight modifica-
tions (Bai et al., 2007; Ma et al., 2016), UVR8 (the full-length
coding sequences, C44 region and C27 region), BES1, BIM1,
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WRKY36, and MYB73/MYB77 from M. polymorpha were
fused to N-terminus of YFP or C-terminus of CFP, trans-
formed to Agrobacterium strain GV3101. Overnight cultures
of Agrobacteria were collected by centrifugation, resus-
pended in MES buffer to 0.6 OD600, mixed with GV3101
expressing pSoup-P19, and incubated at room temperature
for 2 h before infiltration. Agrobacteria suspension in a 1-mL
syringe (without the metal needle) was carefully press-
infiltrated manually onto healthy leaves of 3-week-old
Nicotiana benthamiana. Plants were left under white light
(long-day conditions) for 3 d after infiltration.

Data availability statement
MSAs and phylogenetic trees used in this study are avail-
able in the FigShare repository: https://figshare.com/s/
f5669bdaa79f7b3dae97.

Accession numbers
Arabidopsis protein sequence data can be found in the
Arabidopsis Information Resource (https://www.arabidopsis.
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AT1G19350, BIM1: AT5G08130, WRKY36: AT1G69810,
MYB73: AT4G37260, MYB77: AT3G50060, MYB13:
AT1G06180, PIF1: AT2G20180, PIF3: AT1G09530, PIF4:
AT2G43010, PIF5: AT3G59060, HY5: AT5G11260, and HYH:
AT3G17609.
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