Skip to main content
. 2021 Dec 27;24(1):44. doi: 10.3390/e24010044

Table 1.

Classification results (accuracy %) on Office-31 dataset with ResNet-50 as the backbone. ↑ denotes an increase in performance. The bold number indicates the best performance.

Methods A→W D→W W→D A→D D→A W→A Avg
ResNet50 68.4 ± 0.2 96.7 ± 0.1 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 76.1
ADDA 86.2 ± 0.5 96.2 ± 0.3 98.4 ± 0.3 77.8 ± 0.3 69.5 ± 0.4 68.9 ± 0.5 82.9
MADA 90.1 ± 0.1 97.4 ± 0.1 99.6 ± 0.1 87.8 ± 0.2 70.3 ± 0.3 66.4 ± 0.3 85.2
MDD 94.5 ± 0.3 98.4 ± 0.1 100.0 ± 0.0 93.5 ± 0.2 74.6 ± 0.3 72.2 ± 0.1 88.9
BSP 93.3 ± 0.2 98.2 ± 0.2 100.0 ± 0.0 93.0 ± 0.2 73.6 ± 0.3 72.6 ± 0.3 88.5
BNM 92.8 ± 0.1 98.8 ± 0.1 100.0 ± 0.0 92.9 ± 0.2 73.5 ± 0.2 73.8 ± 0.3 88.6
ALDA 95.6 ± 0.5 97.7 ± 0.1 100 ± 0.0 94.0 ± 0.4 72.2 ± 0.4 72.5 ± 0.2 88.9
GVB-GD 94.8 ± 0.5 98.7 ± 0.3 100.0 ± 0.0 95.0 ± 0.4 73.4 ± 0.3 73.7 ± 0.4 89.3
f-DAL 95.4 ± 0.7 98.8 ± 0.1 100.0 ± 0.0 93.8 ± 0.4 74.9 ± 1.5 74.2 ± 0.5 89.5
GVB+MetaAlign 93.0 ± 0.5 98.6 ± 0.0 100.0 ± 0.0 94.5 ± 0.3 75.0 ± 0.3 73.6 ± 0.0 89.2
DWL 89.2 99.2 100.0 91.2 73.1 69.8 87.1
DANN 82.0 ± 0.4 96.9 ± 0.2 99.1 ± 0.1 79.7 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2
DANN+MRE 91.9 ± 0.6 ↑ 98.6 ± 0.0 ↑ 99.3 ± 0.1 ↑ 88.6 ± 0.2 ↑ 71.7 ± 0.3 ↑ 72.1 ± 0.3 ↑ 87.0 ↑
CDAN 93.1 ± 0.1 98.6 ± 0.1 100.0 ± 0.0 92.9 ± 0.2 71.0 ± 0.3 70.3 ± 0.3 87.7
CDAN+MRE 94.3 ± 0.4 ↑ 98.6 ± 0.2 100.0 ± 0.0 95.5 ± 0.2 75.8 ± 0.4 74.6 ± 0.4 89.8