Table 1.
The averaged performance results over 5-fold cross validation of the proposed multistage transfer learning and its comparison against conventional transfer learning. TL: transfer learning; CNN: convolutional neural network; AUC: area under ROC curve, Avg.: average; CTL: conventional transfer learning; MSTL: multistage transfer learning; SGD: stochastic gradient descent.
TL Type | CNN | Optimizer | AUC | F1 Measure | Specificity | Sensitivity | Loss | Test Accuracy (%) | Avg. Test Acc. (%) |
---|---|---|---|---|---|---|---|---|---|
CTL method | InceptionV3 | SGD | 0.903 | 0.833 | 0.87 | 0.80 | 0.412 | 83.50 ± 5.491 | 83 |
Adam | 0.778 | 0.605 | 0.66 | 0.75 | 9.570 | 70.50 ± 6.085 | |||
Adagrad | 0.976 | 0.967 | 1 | 0.93 | 0.195 | 96.49 ± 2.091 | |||
EfficientNetb2 | SGD | 0.717 | 0.664 | 0.71 | 0.61 | 0.644 | 66.00 ± 1.895 | 83 | |
Adam | 0.993 | 0.948 | 0.98 | 0.90 | 0.194 | 93.99 ± 4.726 | |||
Adagrad | 0.980 | 0.904 | 0.98 | 0.81 | 0.300 | 89.50 ± 2.709 | |||
ResNet50 | SGD | 0.960 | 0.902 | 0.90 | 0.91 | 0.296 | 90.50 ± 2.850 | 89 | |
Adam | 0.817 | 0.698 | 0.66 | 0.97 | 0.117 | 81.50 ± 10.216 | |||
Adagrad | 0.989 | 0.974 | 0.97 | 0.98 | 0.084 | 97.50 ± 2.165 | |||
The proposed MSTL method | InceptionV3 | SGD | 0.935 | 0.873 | 0.83 | 0.94 | 0.458 | 88.50 ± 3.758 | 92 |
Adam | 0.967 | 0.930 | 0.94 | 0.92 | 0.292 | 93.00 ± 2.291 | |||
Adagrad | 0.981 | 0.945 | 0.95 | 0.94 | 0.208 | 94.50 ± 0.935 | |||
EfficientNetB2 | SGD | 0.820 | 0.762 | 0.77 | 0.76 | 0.606 | 76.50 ± 3.409 | 90 | |
Adam | 0.998 | 0.980 | 0.98 | 0.98 | 0.067 | 97.99 ± 1.249 | |||
Adagrad | 0.992 | 0.965 | 0.97 | 0.96 | 0.207 | 96.50 ± 1.274 | |||
ResNet50 | SGD | 0.995 | 0.985 | 0.99 | 0.98 | 0.065 | 98.50 ± 1.118 | 98 | |
Adam | 0.986 | 0.964 | 0.96 | 0.97 | 0.216 | 96.49 ± 1.000 | |||
Adagrad | 0.999 | 0.989 | 0.98 | 1 | 0.030 | 99.00 ± 0.612 |