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Abstract: The prediction of monoclonal antibody (mAb) disposition within solid tumors for indi-
vidual patients is difficult due to inter-patient variability in tumor physiology. Improved a priori
prediction of mAb pharmacokinetics in tumors may facilitate the development of patient-specific
dosing protocols and facilitate improved selection of patients for treatment with anti-cancer mAb.
Here, we report the use of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI),
with tumor penetration of the contrast agent gadobutrol used as a surrogate, to improve physiologi-
cally based pharmacokinetic model (PBPK) predictions of cetuximab pharmacokinetics in epidermal
growth factor receptor (EGFR) positive xenografts. In the initial investigations, mice bearing Panc-1,
NCI-N87, and LS174T xenografts underwent DCE-MRI imaging with the contrast agent gadobutrol,
followed by intravenous dosing of an 125Iodine-labeled, non-binding mAb (8C2). Tumor concen-
trations of 8C2 were determined following the euthanasia of mice (3 h–6 days after 8C2 dosing).
Potential predictor relationships between DCE-MRI kinetic parameters and 8C2 PBPK parameters
were evaluated through covariate modeling. The addition of the DCE-MRI parameter Ktrans alone or
Ktrans in combination with the DCE-MRI parameter Vp on the PBPK parameters for tumor blood
flow (QTU) and tumor vasculature permeability (σTU

V) led to the most significant improvement in
the characterization of 8C2 pharmacokinetics in individual tumors. To test the utility of the DCE-MRI
covariates on a priori prediction of the disposition of mAb with high-affinity tumor binding, a
second group of tumor-bearing mice underwent DCE-MRI imaging with gadobutrol, followed by
the administration of 125Iodine-labeled cetuximab (a high-affinity anti-EGFR mAb). The MRI-PBPK
covariate relationships, which were established with the untargeted antibody 8C2, were implemented
into the PBPK model with considerations for EGFR expression and cetuximab-EGFR interaction
to predict the disposition of cetuximab in individual tumors (a priori). The incorporation of the
Ktrans MRI parameter as a covariate on the PBPK parameters QTU and σTU

V decreased the PBPK
model prediction error for cetuximab tumor pharmacokinetics from 223.71 to 65.02%. DCE-MRI may
be a useful clinical tool in improving the prediction of antibody pharmacokinetics in solid tumors.
Further studies are warranted to evaluate the utility of the DCE-MRI approach to additional mAbs
and additional drug modalities.

Keywords: dynamic contrast enhanced-magnetic resonance imaging; physiologically based pharma-
cokinetic modeling; monoclonal antibody; tumor pharmacokinetics
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1. Introduction

Personalized medicine aims to improve patient outcomes through the selection of
therapies and doses that are rationally defined based on patient-specific characteristics.
For cancer therapy, monoclonal antibodies (mAbs) are used to specifically target tumor-
associated antigens, and patients eligible for mAb therapy are often identified through
tumor antigen profiling [1]. Although more than 20 mAbs have been approved for solid
tumor indications, and although there are 44 anti-cancer mAbs undergoing late-stage
clinical development [2], there has been little success in the development of methods ca-
pable of meaningful a priori prediction of mAb tumor pharmacokinetics in individual
patients. Mechanistic mathematical models, including physiologically based pharmacoki-
netic (PBPK) models, have shown some promise in predicting mean mAb pharmacokinetics
in preclinical animal models and in humans [3–6]; however, 90% confidence intervals for
predicted concentrations often span several orders of magnitude owing to the unexplained
inter-subject variability in the determinants of mAb tumor disposition. As such, present
models hold little value in predicting the anti-tumor efficacy of mAb in individual pa-
tients [4,7]. The variability in mAb tumor pharmacokinetics may relate to inter-patient
and/or inter-tumor variability in tumor antigen expression and turnover, tumor blood flow,
the porosity of tumor vessels, hydrostatic and oncotic pressure gradients, and variability in
the composition of tumor stroma [8–10].

During the course of the clinical development of drugs, including mAb, effort is often
put in to improve patient-specific predictions of pharmacokinetics and pharmacodynamics
(PK/PD) through the use of “population” PK/PD modeling, where variability in model pa-
rameters is explained, in part, through consideration of variability in patient characteristics
that are known or readily available (age, weight, creatinine clearance, etc.). Relationships
between model parameters and patient characteristics (termed “covariates”) are defined
and then subsequently employed to improve a priori predictions of drug PK/PD and to
assist in the selection of optimal dosing regimens for individual patients [11–13]. Covariates
that can improve the a priori prediction of mAb disposition in solid tumors are generally
unknown or are not readily available. Some patient-specific information can be gathered
through post-biopsy assays, such as tumor antigen expression; however, prior PK model
sensitivity analysis has demonstrated that mAb tumor disposition is highly dependent on
parameters relating to passive transport processes, such as vascular permeability [14,15],
which cannot be assessed with post-biopsy assays.

The objective of the presented work was to determine whether the kinetics of move-
ment of contrast agents into and within tumors, as assessed by dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI), may be used as a covariate to improve the predic-
tion of mAb uptake and disposition within solid tumors in individual subjects. DCE-MRI
has been widely employed in the clinic to detect tumor lesions and, in some cases, to
monitor response to anti-cancer therapy [16,17]. DCE-MRI assesses the time course of
a T1-shortening contrast agent through a series of T1-weighted scans. Kinetic models
are applied to the DCE-MRI scans to determine tumor-specific parameters describing the
disposition of the contrast agent. Standard DCE-MRI parameters include the volume
transfer constant (Ktrans), reflux rate constant (Kep), and the plasma volume ratio (Vp or
Fpv) [18]. The Ktrans parameter represents the transport of the contrast agent from the
vascular space and is dependent on the tumor vessel permeability, vascular surface area,
and blood flow [18,19]. Kep is the ratio of Ktrans and the extracellular volume ratio (Ve)
and is a measure of the tumor interstitial volume [18,19]. Many pre-clinical investigations
have developed direct relationships between tumor physiologies that are known to impact
mAb disposition and the quantitative parameters obtained from DCE-MRI analyses. For
example, Ve was correlated to the collagen content of xenograft models of pancreatic can-
cer [20]. Tumor collagen content has been inversely related to the uptake and penetration
of mAb in solid tumors [21]. Additionally, the kinetic parameter Ktrans has been related to
tumor interstitial fluid pressure [22] and employed as a predictor of anti-tumor response
to anti-angiogenic therapies [23–25]. Thus, prior work has demonstrated that DCE-MRI
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analyses may be used as a probe of tumor characteristics that are known determinants of
mAb uptake and disposition, suggesting that MRI parameters obtained from DCE-MRI
may have utility as covariates for improving mathematical model predictions of antibody
pharmacokinetics in solid tumors a priori. Figure 1 provides a graphical representation
of the relationship between DCE-MRI and mAb tumor uptake, and Figure 2 provides a
graphical schematic of the steps used in this work.
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Figure 1. DCE-MRI: The DCE-MR images on the left side provide examples of a tumor with high
contrast enhancement (A) and low contrast enhancement (B) following gadobutrol injection. High
contrast enhancement is the result of greater gadobutrol uptake into the tumor (C), which results
in larger values for Ktrans and Vp relative to the low contrast-enhancing tumor (D). The DCE-MRI
parameters are representative of tumor physiology (vascular permeability, plasma volume, and blood
flow) that is known to impact mAb disposition; therefore, the high contrast-enhancing tumor is
expected to have greater mAb uptake (E) relative to the low contrast-enhancing tumor (F). Created
with BioRender.com (accessed on 23 Novermber 2021).
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a blue Y with a radioactive symbol). Following tumor resection, 8C2 tumor concentrations were 
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3 h to 6 days). In step (C), relationships were drawn through PBPK modeling between the observed 
quantitative MRI parameter values for each tumor (obtained in step (A)) and the corresponding 
observed value for 8C2 tumor concentration (obtained in step (B)). The middle image for step C 
represents a potential relationship between the MRI parameter Ktrans and the PBPK parameter that 
represents tumor vascular permeability (σTUV). A PBPK model that implemented the MRI-PBPK re-
lationship shown in step (C) would predict less tumor uptake (due to a higher reflection coefficient) 
for a xenograft with an observed Ktrans value of 10–5 min−1 in comparison to a tumor with a higher 
observed Ktrans value of 10–2 min−1. A second round of MRI imaging is then performed for xenograft-
bearing mice that are administered cetuximab (repeating steps (A,B)). Cetuximab tumor uptake is 
predicted a priori for individual xenografts based on their observed DCE-MRI parameter values 
using the MRI-PBPK relationships that were established in step (C). Model prediction accuracy for 
the MRI-PBPK covariate model was compared to the predictions that were made using the base 
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Figure 2. Workflow Diagram: In step (A), xenograft-bearing mice underwent DCE-MRI. Images
were analyzed to obtain Patlak pharmacokinetic model fits for each xenograft bearing mouse, using
individual plasma input functions. In step (B), one day post-MRI, the same xenograft-bearing mice
were administered the non-tumor binding antibody 8C2 with a tracer dose of 125I-8C2 (depicted as
a blue Y with a radioactive symbol). Following tumor resection, 8C2 tumor concentrations were
determined via gamma counting at a single terminal timepoint per mouse (timepoints ranged from
3 h to 6 days). In step (C), relationships were drawn through PBPK modeling between the observed
quantitative MRI parameter values for each tumor (obtained in step (A)) and the corresponding
observed value for 8C2 tumor concentration (obtained in step (B)). The middle image for step C
represents a potential relationship between the MRI parameter Ktrans and the PBPK parameter that
represents tumor vascular permeability (σTUV). A PBPK model that implemented the MRI-PBPK
relationship shown in step (C) would predict less tumor uptake (due to a higher reflection coefficient)
for a xenograft with an observed Ktrans value of 10−5 min−1 in comparison to a tumor with a higher
observed Ktrans value of 10−2 min−1. A second round of MRI imaging is then performed for xenograft-
bearing mice that are administered cetuximab (repeating steps (A,B)). Cetuximab tumor uptake is
predicted a priori for individual xenografts based on their observed DCE-MRI parameter values
using the MRI-PBPK relationships that were established in step (C). Model prediction accuracy for
the MRI-PBPK covariate model was compared to the predictions that were made using the base PBPK
model without consideration of the MRI-PBPK relationship. Created with BioRender.com (accessed
on 23 Novermber 2021).

2. Results
2.1. Antibody Tumor Pharmacokinetics and a Priori PBPK Model Predictions

To emulate clinical heterogeneity, four tumor models were utilized to increase the
variability of 8C2 and cetuximab tumor pharmacokinetics. The first model is the colorectal
cancer cell line LS174T, which has been extensively used for the development of our
murine PBPK models [7,26]. Previous investigations by our group demonstrated that
administration of 50 mg/kg sorafenib every other day to mice bearing LS174T tumors
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decreased the mean tumor vascular density and decreased tumor uptake of an anti-CEA
antibody [27]. The third tumor model included in this study employed Panc-1, a pancreatic
adenocarcinoma cell line. Panc-1 xenografts develop a relatively dense intra-tumoral
matrix, and direct correlations between Panc-1 xenograft collagen content and the DCE-
MRI parameter characterizing extracellular volume (Ve) have been reported [20]. Due to
slower than expected tumor growth, only seven mice bearing Panc-1 tumors were included
in this study. The fourth xenograft model considered in this work employed the gastric
carcinoma cell line NCI-N87, which was co-administered with matrigel. Matrigel has been
previously reported to impact nanotherapeutic uptake and penetration in comparison to a
standard isotropic tumor model [28]. The tumor to plasma ratios between the four tumor
models ranged from 0.08–0.26 for 8C2 treated tumors and from 0.12–0.48 for cetuximab
treated tumors (Table 1). Antibody tumor concentrations for individual xenografts and
base PBPK model predictions are provided in Figure 3. Base PBPK simulations for 8C2,
as shown in the bottom right panel of Figure 3, captured the observed mean tumor data
with a trend of overpredicting the xenografts with a low tumor/plasma ratio at early
timepoints (3 and 8 h) and underpredicting tumor concentrations for xenografts with high
tumor/plasma ratios at terminal timepoints (3 and 6 days). Base PBPK model predictions
for cetuximab tumor pharmacokinetics are separated by tumor model as cell-line specific
values of EGFR expression were incorporated into the model predictions. LS174T cetuximab
tumor concentrations are well predicted by the base model with an MPE of 27.27%. The
low error for the LS174T group may be explained by the fact the PBPK model was qualified
using the same tumor animal model [7]. LS174T tumors treated with 50 mg/kg Sorafenib
Q2D had decreased tumor concentrations of cetuximab at the 3 and 8 h timepoints in
comparison to the non-treated LS174T tumors leading to model overprediction and an
MPE of 291.20%. Cetuximab tumor concentrations for the NCI-N87 xenografts were over
predicted at early timepoints (1, 3, and 24 h) with an MPE of 167.76%. Panc-1 cetuximab
tumor concentrations were overpredicted across the three data points collected with an
MPE of 769.68%.

Table 1. Antibody Tumor-to-Plasma Ratio by Tumor Model.

Antibody Tumor Model Tumor/Plasma Ratio Cetuximab/8C2

8C2 LS174T 0.26 1.58
Cetuximab LS174T 0.41 -

8C2 LS174T/Sorafenib 0.20 1.35
Cetuximab LS174T/Sorafenib 0.27 -

8C2 NCI-N87 0.19 2.53
Cetuximab NCI-N87 0.48 -

8C2 Panc-1 0.08 1.50
Cetuximab Panc-1 0.12 -

2.2. DCE-MRI Fitting

MR images were obtained in individual mice, with significant heterogeneity observed
in the tumor contrast enhancement between xenografts. Heterogeneity in the AIF was also
observed between mice, which is likely the result of difficulties at the injection site; however,
this variability was controlled with the use of an individual AIF for each mouse as described
in the methods. Figure 4 provides the observed tumor concentrations of gadobutrol in
a representative xenograft bearing mouse for each of the four tumor models and the
corresponding Patlak model fitting. The inset for each plot contains the individual best-fit
values for the DCE-MRI parameters Ktrans and Vp and the observed tumor concentration
of 8C2 in the same xenograft at a 3 h terminal timepoint. In the example data provided, the
LS174T + sorafenib tumor and the Panc-1 tumor have a fit Ktrans value that is ~10-fold lower
than the LS174T tumor and the NCI-N87 tumor and an observed 8C2 tumor concentration
that is ~3-fold lower.
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2.3. MRI-PBPK Covariate Modeling

The PBPK tumor compartment considers many of the passive transport processes
within solid tumors; however, only the PBPK parameters that relate to the same physiology
as the DCE-MRI parameters were evaluated for MRI-PBPK covariate relationships. Ktrans is
the volume transfer coefficient and is sensitive to tumor blood flow, vascular surface area,
and vasculature permeability. Ktrans was evaluated as a covariate on PBPK parameters
representing the tumor blood flow (QTU) and the tumor vasculature reflection coefficient
(σTU

V). The DCE-MRI parameter Vp is the fractional plasma volume. The Vp was very
small or 0 for many tumors in this study, which may be the result of poor tumor vasculature
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development or contrast agent injection difficulties. As a result, Vp was not able to be
evaluated as a covariate on the PBPK parameter VVtu without model fitting error. Therefore,
Vp was also considered as a covariate alone or paired with Ktrans on the PBPK parameters
QTU and σTU

V. The three best objective fit criteria for 8C2 tumor data were obtained
with the population fit for QTU and σTU

V (AIC = 171.22) or with consideration of Ktrans

(AIC = 170.21) or Ktrans and Vp (AIC = 160.22) as covariates on QTU and σTU
V. An MPE

for 8C2 tumor pharmacokinetics of 64.76% was obtained with the base PBPK model.
Fitting QTU and σTU

V to the 8C2 tumor data without consideration of the MRI covariates
decreased the MPE to 61.67%. The addition of Ktrans as a covariate on both QTU and σTU

V

decreased the MPE to 51.67%, and the addition of Ktrans and Vp on QTU/σTU
V decreased

the MPE to 36.26%. Observed vs. predicted 8C2 tumor concentrations for the base model,
the population fit values for QTU/σTU

V and the Ktrans or Ktrans/Vp covariate models are
shown in Figure 5.
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Figure 5. Observed vs. Predicted 8C2 Tumor Concentrations: Predicted vs. observed plots demon-
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integrated models. Tumor data in LS174T tumors following treatment with Sorafenib are represented
in open circles, naïve LS174T tumors are depicted in closed circles. Panc-1 tumors are represented by
an upright open triangle, and NCI-N87 data are represented by closed diamonds.

The MRI-PBPK covariate relationships, established with 8C2, were implemented into
the cetuximab PBPK model. Predictions were made on an individual xenograft basis using
the base model, the population fit model, or the two covariate-integrated models using
the individual observed values of Ktrans and Vp in each xenograft. Observed vs. predicted
tumor concentrations for each of the four PBPK predictions are provided in Figure 6. The
MPE for cetuximab tumor pharmacokinetics using the base PBPK model was 223.71%.
Updating the PBPK model with the 8C2 population fit values for QTU/σTU

V increased
the MPE to 283.30%. Ktrans and Vp as covariates on QTU/σTU

V decreased the MPE to
109.16%, whereas Ktrans as a covariate on QTU/σTU

V decreased the MPE to 65.02%. The
disconnect between the best covariate relationship between 8C2 and cetuximab (Ktrans

alone vs. Ktrans and Vp) is likely the result of the small group size of ~25 mice/antibody
and experimental variability. Regardless, these results strongly support the hypothesis that
DCE-MRI parameters can be utilized to improve patient-specific PBPK model predictions
of therapeutic antibody tumor disposition.
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Figure 6. Observed vs. Predicted Cetuximab Tumor Concentrations: Predicted vs. observed plots
demonstrating the unity of predictions with the base model, population fit model, and the two-best
covariate-integrated models. Tumor data in LS174T tumors following treatment with Sorafenib are
represented in open circles, naïve LS174T tumors are depicted in closed circles. Panc-1 tumors are
represented by an upright open triangle, and NCI-N87 data are represented by closed diamonds.

3. Discussion

In this work, we evaluated the utility of quantitative MRI parameters to improve PBPK
model predictions of cetuximab tumor pharmacokinetics in xenograft-bearing mice. To
establish the initial relationship between MRI parameters and antibody tumor pharmacoki-
netics, the non-tumor binding anti-topotecan antibody 8C2 was used to avoid the impact of
antigen-binding on tumor disposition. Target-mediated disposition is a major determinant
of antibody uptake in solid tumors [29] and would impact the utility of the MRI-PBPK
parameter relationship as MRI parameters are only sensitive to passive transport processes.
Precise, patient-specific values of tumor cell antigen expression are often not available prior
to mAb dosing. However, patient-specific, semi-quantitative immunohistochemical scores
may be available in some settings. Of note, prior applications of our PBPK models have
shown good predictions of mAb pharmacokinetics and pharmacodynamics with the estima-
tion of receptor concentrations in tissues based on immunohistochemical (IHC) scores [4].
Using a population-averaged EGFR expression that was calculated using IHC scores [4] led
to a similar MPE for the base PBPK model (252.07%) and the Ktrans -QTU/σTU

V covariate
model (72.11%). The conversion of IHC scores to specific antigen expression values may be
used in tandem with DCE-MRI for improved prediction of antibody pharmacokinetics for
individual tumors in individual patients.

The ability to measure antibody tumor penetration is considered necessary to achieve
personalized medicine for antibody-based therapies [30]. The use of DCE-MRI for a priori
prediction of mAb pharmacokinetics seeks to address, in part, the missing clinical informa-
tion needed to inform patient-specific antibody dosing protocols. Patient-specific PBPK
predictions would allow individualized dosing regimens for a therapeutic mAb to obtain
a desired tumor pharmacokinetic profile. Personalized predictions would be expected to
provide a clear benefit in improving the outcomes of approved antibodies by optimizing
current dosing protocols to a patient’s unique tumor physiology. A secondary benefit of
personalized predictions is the potential application to clinical trial design. Therapies di-
rected against solid tumors in Phase III trials have a likelihood of success of only 35.5% [31],
with a lack of efficacy being the primary reason for failure [32]. Personalized predictions
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of antibody pharmacokinetics would allow stratification of patients based on individual
tumor physiology prior to initiation of treatment. The benefit of considering patient-specific
factors in clinical trial enrollment is exemplified by the anti-human epidermal growth factor
receptor 2 (HER2) mAb trastuzumab. Retrospective subgroup analysis of the early clinical
trials results for trastuzumab indicated that only patients with HER2 overexpression, de-
fined as 3+ staining on IHC or >2x gene amplification on fluorescence in situ hybridization
(FISH), responded to trastuzumab [33]. As only 20–30% of breast carcinomas overexpress
the HER2 antigen [34], HER2 testing is currently required prior to patient enrollment for
trastuzumab therapy, and several companion diagnostic assays for HER2 testing have
been approved by the Food and Drug Administration (FDA) [33]. It is well appreciated
that antigen density is a common factor influencing antibody efficacy, with biopsy and
IHC staining a standard of care for many therapeutic antibodies. An additional example
of patient-specific consideration is Kirsten rat sarcoma viral oncogene homolog (KRAS)
profiling to select patients for cetuximab therapy. Multiple clinical trials with cetuximab in
metastatic colorectal cancer observed a significant association between KRAS mutant status
and cetuximab efficacy [35,36]. In these trials, ~40% of patients who had KRAS mutations
were found to respond poorly to cetuximab [36]. As of 2009, the FDA requires KRAS exon
2 wildtype screening as a pre-requisite for cetuximab and panitumumab therapy. DCE-
MRI scanning with a concurrent PBPK model may allow further improvements in patient
selection for therapeutic antibodies by accounting for factors such as vascular permeability
and interstitial fluid pressure that cannot be evaluated as part of a post-biopsy assay.

Many pre-clinical studies have demonstrated that enhanced tumor uptake of mAb
correlates with increased anti-tumor effect [37,38]. For most monoclonal antibodies, the
dose used in the clinic is well below the maximum tolerated dose; therefore, enhancing
antibody tumor uptake and penetration can be achieved through the administration of
higher antibody doses. A recent retrospective analysis reported dosing protocols chosen
for clinical testing are poorly defined and are not often justified with an efficacy-based
rationale [39]. Our approach could supplant current dosing protocols by recommending
antibody doses that would be predicted to obtain the desired tumor concentration v. time
profile. A potential dosing guideline based on the PBPK approach would be to determine
the antibody dose required to saturate all available antigen sites within an individual tumor,
leading to the best anti-tumor effect possible. A theoretical modeling approach by Thurber
et al. demonstrated that current dosing protocols for mAbs likely lead to antigen saturation
for well-vascularized tumors; however, for poorly vascularized tumors with high antigen
expression, current doses are <20% of that needed to saturate tumor antigen [40].

The MRI-PBPK approach may also be of value in predicting the impact of methods
to enhance mAb tumor uptake and penetration. Many strategies to improve mAb tumor
disposition have been developed pre-clinically [21,41–45]; however, evaluating the impact
of a given approach on mAb tumor PK requires complicated experimental methods (i.e., ra-
dioactive tracers, LC-MS/MS) with tumor samples collected across a range of timepoints.
The DCE-MRI-PBPK approach may help to predict the impact of a given enhancement
strategy on mAb tumor disposition.

Several barriers to entry exist for the proposed strategy before clinical implementation.
The first is gathering the necessary data for establishing a suitable covariate relationship
in patients. Recently, Lu et al. evaluated the tumor uptake of fluorescently labeled pani-
tumumab in human patients with head and neck carcinoma following DCE-MR imaging
and tumor resection [46]. A significant inverse correlation between the tumor size that was
delineated using the MR images and tumor uptake of panitumumab was observed [46].
Additionally, patients with high heterogeneity in tumor contrast agent uptake were also ob-
served to have heterogenous distribution of panitumumab following tumor resection [46].
The results observed by Lu et al. support the hypothesis that DCE-MR imaging can be used
to predict tumor uptake of therapeutic mAb and demonstrate that the data required to
develop the PBPK-MRI relationship can be feasibly obtained in human clinical trials. Per-
haps the ideal tumor target for the DCE-MRI PBPK approach is breast cancer. Breast cancer
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has many clinically approved mAb-based therapies, including trastuzumab, pertuzumab,
margetuximab-cmkb, ado-trastuzumab emtansine, fam-trastuzumab deruxtecan-nxki, and
sacituzumab govitecan. Serendipitously, DCE-MRI is often used in patients with breast can-
cer to evaluate tumor development and facilitate treatment planning [47–49]. Comparable
to the method used by Lu et al., patients eligible for tumor resection through surgery that
also undergo DCE-MRI can be administered mAb prior to surgery. Following resection
mAb tumor concentrations can be determined using a fluorescent tracer [46,50,51] or using
liquid chromatography tandem mass spectrometry [52]. For tumors that are unable to
be removed surgically, antibody uptake may be evaluated using immune-positron emis-
sion tomography, which has been applied in several clinical trials to evaluate mAb tumor
uptake [53–56]. An additional barrier to the clinical implementation of this approach is
the standardization of the DCE-MRI analysis protocol. Although DCE-MRI is commonly
used clinically, standardization of quantitative metrics in the clinic has proven difficult.
The choice of contrast agent, image analysis approach, MRI imaging sequence, and kinetic
model can all lead to site-to-site variability in DCE-MRI parameters. The quantitative imag-
ing biomarker alliance (QIBA) has provided recommendations on DCE-MRI analysis for
clinical studies with the aim of reducing the site-to-site variability and may be considered a
base protocol for any future clinical application of the DCE-MRI:PBPK approach.

Here, the utility of quantitative-MRI-based parameters to improve the prediction of
cetuximab pharmacokinetics in xenograft tumor models was evaluated. The incorporation
of the DCE-MRI parameter Ktrans as a covariate on the PBPK parameters QTU/σTU

V

decreased the PBPK MPE for cetuximab tumor pharmacokinetics from 223.71 to 65.02%.
As DCE-MRI is a common non-invasive technique, this approach holds promise for clinical
translation to personalize antibody dosing regimens and improve patient selection for
approved antibodies and antibodies being evaluated in clinical trials. Additional studies
are warranted to evaluate if the DCE-MRI approach is applicable across tumor types, mAb
therapies, and additional macromolecular drug delivery formats.

4. Materials and Methods
4.1. Antibody

Hybridoma cells expressing 8C2, a murine anti-topotecan IgG1, were cultured in a 1 L
spinner flask containing serum-free media (Life Technologies, Carlsbad, CA, USA). 8C2
mAb was purified from cell media using a HiTrap Protein G column (Life Technologies,
Carlsbad, CA, USA, on an NGC Quest 10 chromatography system (Bio-Rad, Hercules,
CA, USA). Cetuximab was purchased from Millard Fillmore Hospital Pharmacy (Amherst,
NY, USA).

4.2. Anti-Angiogenesis Agent

Sorafenib tosylate was purchased from Santa Cruz Biotechnology (Dallas, TX, USA).
The drug was dissolved in dimethyl sulfoxide (DMSO), and aliquots were stored at −20 ◦C.

4.3. Xenograft Cell Lines

The following EGFR positive human cancer cell lines were purchased from American
Type Culture Collection (ATCC, Manassas, VA, USA): LS174T (CL-188), a colorectal adeno-
carcinoma cell line, and Panc-1 (CRL-1469), a pancreatic epithelioid carcinoma. The gastric
carcinoma cell line NCI-N87 (CRL-5822) was generously provided by Dr. Dhaval Shah’s
laboratory. The cells were cultured following cell-line-specific ATCC recommendations.

4.4. Animals

Immune-deficient (NU/J) male mice, 4–6 weeks of age, were purchased from the
Jackson Laboratory (Indianapolis, IN, USA). Mice were placed on sterile potassium iodide
(KI) water (0.2 g/L) two days prior to injection of the radio-iodinated antibody to block
thyroid uptake of free iodine. All mice were handled according to University at Buffalo’s
Institutional Animal Care and Use Committee protocol.
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4.5. Establishment of Xenografts

NU/J mice were injected subcutaneously into the right flank with either: LS174T
cells suspended in sterile phosphate-buffered saline pH 7.4 (PBS) (2.0 × 106 cells/mouse),
Panc-1 cells suspended in base media (2.0 × 106 cells/mouse), or NCI-N87 cells suspended
in a 1:1 matrigel (Thermo Fisher Scientific, Waltham, MA, USA, CB-40234):base medium
solution (5 × 106 cells/mouse). Sorafenib-treated LS174T-bearing mice were administered
IP injections of sorafenib tosylate every two days, starting four days post-implantation, at a
dose of 50 mg/kg.

4.6. MR Imaging

A total of 49 xenograft-bearing mice underwent MRI at the University at Buffalo
Center for Biomedical Imaging using a 20 cm diameter horizontal-bore 9.4-Tesla magnet
(Biospec 94/20 USR, Bruker Biospin, Billerica, MA, USA) equipped with a gradient coil
supporting 440 mT/m gradient strength and 3440 T/m/s maximum linear slew rate (BGA-
12S HP; Bruker Biospin). The scanner was operated with ParaVision (version 5.1; Bruker
Biospin). Prior to the image acquisition, mice were anesthetized with 3–4% isoflurane in
1 L/min of 100% medical-grade oxygen and immobilized on the MRI bed using gauze
tape to reduce motion. Mouse respiration rate, heart rate, arterial oxygen saturation,
and body temperature were monitored continuously with an SPO2-sensor attached to
the animal’s tail, a respiration pillow, and a rectal temperature probe (model 1025, SA
Instruments, Stony Brook, NY, USA). The isoflurane concentration and the temperature
of an integrated warm water bath in the animal bed (Thermo Fisher Scientific, Waltham,
MA, USA) were regulated to maintain mouse respiration rate and core body temperature.
MRI sequences were obtained using the approach described by Gaustad et al. for assessing
the effect of bevacizumab on xenograft tumors in mice [23]. Anatomical imaging was
performed with a 2D T2-TurboRARE sequence using the following parameters: TE = 35 ms;
TR = 2500 ms; 2 averages; RARE factor 8; 8 slices of 0.7 mm thickness; 128× 128 matrix with
0.234 × 0.234 mm2 resolution; 100 kHz bandwidth; 1.4 kHz Gaussian fat suppression. Pre-
contrast T1 values were determined using a 2D saturation recovery sequence (RAREVTR)
with the following parameters: TE = 8.5 ms; TR = 200, 400, 800, 1500, 3000, and 5000 ms;
RARE Factor 2; 66 kHz bandwidth; 8 slices with 0.7 mm thickness; and 0.234 × 0.234 mm2

in-plane resolution (128 × 128 matrix). A set of 70 DCE 3D gradient echo images were
obtained with a time resolution of 17 s per image. The parameters used for the DCE-MRI
sequence are: TE = 2 ms; TR = 10 ms; 20 degrees flip; 128 × 128 × 14 matrix with voxel
size of 0.234 × 0.234 × 1 mm3; 64% partial Fourier in read direction; 104 kHz bandwidth;
1.4 kHz Gaussian fat suppression. A 0.06 M solution of Gadobutrol was administered
at a dose of 5 µL/gram bodyweight two minutes after the initialization of the DCE scan
sequence through the tail vein catheter.

4.7. Plasma and Tumor Pharmacokinetics

One day following MRI, 26 mice were administered 8C2 (10 LS174T, 7 LS174T+Sorafenib,
5 NCI-N87, and 4 Panc-1), and 23 mice were administered cetuximab (9 LS174T, 6 LS174T +
Sorafenib, 5 NCI-N87, and 3 Panc-1). Cetuximab and 8C2 were injected into the retro-orbital
plexus at a dose of 1 mg/kg with a 400 µCi/kg tracer dose of 125I-mAb. Cetuximab and
8C2 were radiolabeled with 125I through a modified chloramine-T method [57]. Mice were
sacrificed for blood and tumor collection at 3 h, 8 h, 1 day, 3 days, and 6 days. Blood
samples were centrifuged for 5 min at 500× g, plasma was collected, and TCA precipitated
as described in our prior work [58]. Antibody concentrations in plasma and tumor tissue
were determined through gamma counting with corrections for background radioactivity
and radioactive decay.

4.8. Pharmacokinetic Modeling of DCE-MRI Images

Quantitative DCE-MRI analyses are often performed with the Extended-Tofts
model [18,59,60]; however, accurate fitting of the reflux rate parameter Kep is dependent on
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the time of MRI acquisition and the tumor kinetics of the contrast agent. As no appreciable
loss of contrast agent was observed during the time course of image acquisition, the Patlak
model [61] was used for this analysis. The Patlak model is similar to the Extended-Tofts
model with the assumption that no reflux of contrast agent from the interstitial space to
the vascular space occurs [30]; therefore, Kep is not a fit parameter in the Patlak model.
Individual tumor modeling with the Patlak pharmacokinetic model was performed in three
steps. First, pre-contrast tumor relaxivity values (T10) were determined on a whole tumor
basis using the parametric modeling module of ROCKETSHIP [62] using a tumor region
of interest defined in MRIcron (Chris Rorden, University of South Carolina, Columbia,
SC, USA). Second, an arterial plasma input function was defined on an individual mouse
basis through manual selection and averaging of signal intensity versus time profiles of
4 voxels that showed rapid contrast enhancement at the time of gadobutrol injection using
FIJI [63]. Dynamic contrast-enhanced scans were opened in 3D-Slicer [64], and tumor
regions were defined using the segmentation editor. Signal intensity-over-time profiles of
the tumor region were obtained using the multivolume explorer package. Exported signal
intensity for the plasma and tumor space was converted to contrast agent concentration
using Supplementary Equations (S1)–(S5). The Patlak pharmacokinetic model (Supplemen-
tary Equation (S6)) was fit to the contrast agent time profiles observed for individual mice
with the corresponding AIF for each mouse using the Excel solver function through the
minimization of the squared error.

4.9. Base Model PBPK Predictions

A physiologically based pharmacokinetic model (Figure 7) previously described [7]
was adapted to predict tumor concentration-over-time profiles for 8C2 and cetuximab.
Parameters for the tumor space are provided in Table 2. Equations representing the
tumor compartment of the PBPK model are provided in the supplementary information
(Equations (S7)–(S12)). Tumor concentrations for 8C2 were simulated using previously
identified parameter values that are provided in Table 2. Predictions for cetuximab tumor
pharmacokinetics were made separately for the three xenograft cell line groups using
values reported in the literature for EGFR expression in the individual cell lines (Table 2).
Simulations completed with the base model were used to determine the mean prediction
error for 8C2 and cetuximab tumor pharmacokinetics.

Table 2. PBPK Model Tumor Parameter Values and Definitions.

Parameter Value Units Definition

QTU 1 × 10−4 L/min Tumor blood flow [7]
LTU 4 × 10−6 L/min Tumor lymph flow [7]

ClupTU 8.18 × 10−9 L/min Initial tumor uptake clearance [14]
σTU

V 0.734 - Tumor vascular reflection coefficient [7]
σTU

L 0.2 - Lymph reflection coefficient [7]
ClTU 8.96 × 10−9 L/min Initial clearance from endothelial space [14]

KDFcRn 7.5 × 10−7 M–1 FcRn-mAb KD [7]
CFcRn 1.64 × 10−5 M Tumor FcRn concentration [14]

FR 0.715 - Fraction of FcRn bound antibody recycled [7]
kgrowth 8.08 × 10−5 min–1 Tumor growth rate [7]

VITU 1.38 × 10−4 L Initial Interstitial Volume [14]
VETU 1.25 × 10−6 L Initial Endothelial Volume [14]
VVTU 1.75 × 10−5 L Initial Vasculature Volume [14]

KDEGFR 1.5 × 10−10 M–1 Cetuximab-EGFR KD [4]
Kint 1.38 × 10−3 min–1 EGFR Internalization Rate [65,66]

ClTMD Kint × VITU L/min Cetuximab Bound EGFR Clearance
CEGFR (NCI-N87) 1.14 × 10−7 M EGFR Tumor Concentration [67–69]

CEGFR (Panc-1) 9.24 × 10−8 M EGFR Tumor Concentration [70]
CEGFR (LS174T) 3.53 × 10−8 M EGFR Tumor Concentration [67,68]
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diagram with solid lines representing plasma flow to and from tissues and dashed gray lines repre-
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ing vascular, endothelial, and interstitial spaces. Q and L represent tissue plasma and lymph flow, 
and σV and σL represent the vasculature and lymph reflection coefficients. Endosomal uptake is rep-
resented as Clup, and endosomal recycling is the product of Clup and the fraction of FcRn bound 
mAb that is returned to the vasculature, abbreviated as FR. KDFcRn is the equilibrium dissociation 
constant for FcRn-mAb binding. Organ-specific elimination of unbound mAb in the endothelial 
space (FUE) is denoted as Cl. C. The tumor sub-compartment structure is shown. A 4th layer repre-
senting the cellular fraction is added, allowing the antibody to bind its target antigen (i.e., EGFR) 
with the observed equilibrium dissociation constant (KDEGFR) with bound antigen eliminated 
through receptor internalization and degradation (ClTMD). 
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rameters, to ensure model improvement from the MRI-PBPK relationship was not the re-
sult of parameter misspecification. Objective fit criteria, observed vs. predicted plots and 

Figure 7. Schematic representation of the PBPK Model: The PBPK model is shown as a schematic
diagram with solid lines representing plasma flow to and from tissues and dashed gray lines repre-
senting lymph flow. B. Each tissue compartment is composed of three sub-compartments representing
vascular, endothelial, and interstitial spaces. Q and L represent tissue plasma and lymph flow, and σV

and σL represent the vasculature and lymph reflection coefficients. Endosomal uptake is represented
as Clup, and endosomal recycling is the product of Clup and the fraction of FcRn bound mAb that
is returned to the vasculature, abbreviated as FR. KDFcRn is the equilibrium dissociation constant
for FcRn-mAb binding. Organ-specific elimination of unbound mAb in the endothelial space (FUE)
is denoted as Cl. C. The tumor sub-compartment structure is shown. A 4th layer representing the
cellular fraction is added, allowing the antibody to bind its target antigen (i.e., EGFR) with the ob-
served equilibrium dissociation constant (KDEGFR) with bound antigen eliminated through receptor
internalization and degradation (ClTMD).

4.10. MRI-PBPK Covariate Modeling

The DCE-MRI parameters Ktrans and Vp, which were obtained from fitting MR images
for individual mice to the Patlak model, were evaluated as potential descriptor relationships
on the PBPK parameters: σTU

V and QTU. Descriptor relationships for QTU were evaluated
using Equation (1), where θ represents the slope of the relationship between the MRI
parameter and the PBPK parameter:

QTU = θ×MRI Parameter (1)

To prevent the vasculature reflection coefficient exceeding a value of 1, the σTU
V

relationship was fit using Equation (2):

σv
TU =

1
1 + θ×MRI Parameter

(2)

MRI-PBPK relationships were established for the untargeted antibody, 8C2, using
the MLEM function in Adapt 5 [71] with 60 expectation-maximization steps and 3000 it-
erations/step. The PBPK parameters σTU

V and QTU were also fit to the observed 8C2
data (referred to hereafter as the population fit model), without consideration of the MRI
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parameters, to ensure model improvement from the MRI-PBPK relationship was not the
result of parameter misspecification. Objective fit criteria, observed vs. predicted plots and
mean prediction error was used to select the two best MRI-PBPK covariate relationships.
Subsequently, the two covariate-integrated models were used to predict cetuximab tumor
pharmacokinetics in individual xenograft bearing mice based on the observed MRI param-
eter values for each xenograft (i.e., 1 xenograft mouse = 1 set of MRI values = 1 unique
MRI-PBPK prediction per covariate model). PBPK predictions that implemented the MRI-
PBPK relationships were compared to predictions made with the base PBPK model and the
population fit model using observed vs. predicted plots and the mean prediction error.
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.3390/ijms23020679/s1.

Author Contributions: Conceptualization, B.M.B., H.P.G., W.F.R. and J.P.B.; Formal analysis, B.M.B.;
Investigation, B.M.B. and J.R.P.; Methodology, B.M.B., J.R.P., F.S., H.P.G., W.F.R. and J.P.B.; Project
administration, B.M.B. and J.P.B.; Resources, J.P.B.; Supervision, J.P.B.; Writing—original draft, B.M.B.;
Writing—review & editing, H.P.G., W.F.R. and J.P.B. All authors have read and agreed to the published
version of the manuscript.

Funding: Research reported in this publication was funded by the Center for Protein Therapeu-
tics, the National Cancer Institute (CA204192, CA246785), and the National Center for Advancing
Translational Sciences of the National Institutes of Health (UL1TR001412). The content is solely the
responsibility of the authors and does not necessarily represent the official views of the NIH.

Institutional Review Board Statement: All mice were handled according to University at Buffalo’s
Institutional Animal Care and Use Committee protocol PHC59019Y.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank Marilena Preda for her assistance with the
MRI scans.

Conflicts of Interest: J.P.B. serves as the Director of the University at Buffalo Center for Protein
Therapeutics, which is supported by an industry consortium that includes the manufacturer of
cetuximab (used as a model monoclonal antibody in this work).

References
1. Yan, L.; Ehrlich, P.J.; Gibson, R.; Pickett, C.; Beckman, R.A. How can we improve antibody-based cancer therapy? MAbs 2009, 1,

67–70. [CrossRef]
2. Kaplon, H.; Reichert, J.M. Antibodies to watch in 2021. MAbs 2021, 13, 1860476. [CrossRef]
3. Baxter, L.T.; Zhu, H.; Mackensen, D.G.; Jain, R.K. Physiologically based pharmacokinetic model for specific and nonspecific

monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res. 1994, 54,
1517–1528.

4. Glassman, P.M.; Balthasar, J.P. Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of
monoclonal antibodies. J. Pharm. Pharm. 2016, 43, 427–446. [CrossRef]

5. Schmidt, M.M.; Wittrup, K.D. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol.
Cancer Ther. 2009, 8, 2861–2871. [CrossRef] [PubMed]

6. Li, Z.; Li, Y.; Chang, H.P.; Yu, X.; Shah, D.K. Two-pore physiologically based pharmacokinetic model validation using whole-body
biodistribution of trastuzumab and different-size fragments in mice. J. Pharm. Pharm. 2021, 48, 743–762. [CrossRef]

7. Abuqayyas, L.; Balthasar, J.P. Application of PBPK modeling to predict monoclonal antibody disposition in plasma and tissues in
mouse models of human colorectal cancer. J. Pharm. Pharm. 2012, 39, 683–710. [CrossRef] [PubMed]

8. Jain, R.K. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 1990, 50,
814s–819s.

9. Christiansen, J.; Rajasekaran, A.K. Biological impediments to monoclonal antibody-based cancer immunotherapy. Mol. Cancer
Ther. 2004, 3, 1493–1501. [PubMed]

10. Thomas, V.A.; Balthasar, J.P. Understanding Inter-Individual Variability in Monoclonal Antibody Disposition. Antibodies 2019,
8, 56. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms23020679/s1
https://www.mdpi.com/article/10.3390/ijms23020679/s1
http://doi.org/10.4161/mabs.1.1.7359
http://doi.org/10.1080/19420862.2020.1860476
http://doi.org/10.1007/s10928-016-9482-0
http://doi.org/10.1158/1535-7163.MCT-09-0195
http://www.ncbi.nlm.nih.gov/pubmed/19825804
http://doi.org/10.1007/s10928-021-09772-x
http://doi.org/10.1007/s10928-012-9279-8
http://www.ncbi.nlm.nih.gov/pubmed/23184417
http://www.ncbi.nlm.nih.gov/pubmed/15542788
http://doi.org/10.3390/antib8040056


Int. J. Mol. Sci. 2022, 23, 679 15 of 17

11. Carlier, M.; Noe, M.; Roberts, J.A.; Stove, V.; Verstraete, A.G.; Lipman, J.; De Waele, J.J. Population pharmacokinetics and dosing
simulations of cefuroxime in critically ill patients: Non-standard dosing approaches are required to achieve therapeutic exposures.
J. Antimicrob. Chemother. 2014, 69, 2797–2803. [CrossRef]

12. Darwich, A.S.; Ogungbenro, K.; Hatley, O.J.; Rostami-Hodjegan, A. Role of pharmacokinetic modeling and simulation in precision
dosing of anticancer drugs. Transl. Cancer Res. 2017, 6, S1512–S1529. [CrossRef]

13. Evelina, C.; Guidi, M.; Khoudour, N.; Pascaline, B.-R.; Fabre, E.; Tlemsani, C.; Arrondeau, J.; Francois, G.; Vidal, M.; Schneider, M.P.;
et al. Population Pharmacokinetics of Erlotinib in Patients With Non-small Cell Lung Cancer: Its Application for Individualized
Dosing Regimens in Older Patients. Clin. Ther. 2020, 42, 1302–1316. [CrossRef]

14. Polli, J.R.; Engler, F.A.; Balthasar, J.P. Physiologically Based Modeling of the Pharmacokinetics of “Catch-and-Release” Anti-
Carcinoembryonic Antigen Monoclonal Antibodies in Colorectal Cancer Xenograft Mouse Models. J. Pharm. Sci. 2019, 108,
674–691. [CrossRef]

15. Li, Z.; Li, Y.; Chang, H.-P.; Chang, H.-Y.; Guo, L.; Shah, D.K. Effect of Size on Solid Tumor Disposition of Protein Therapeutics.
Drug Metab. Dispos. 2019, 47, 1136–1145. [CrossRef] [PubMed]

16. Barnes, S.L.; Whisenant, J.G.; Xia, L.; Yankeelov, T.E. Techniques and applications of dynamic contrast enhanced magnetic
resonance imaging in cancer. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC’14), Chicago, IL, USA, 26–30 August 2014; pp. 4264–4267. [CrossRef]

17. An, Y.Y.; Kim, S.H.; Kang, B.J.; Lee, A.W. Treatment Response Evaluation of Breast Cancer after Neoadjuvant Chemotherapy and
Usefulness of the Imaging Parameters of MRI and PET/CT. J. Korean Med. Sci. 2015, 30, 808–815. [CrossRef]

18. Tofts, P.S.; Brix, G.; Buckley, D.L.; Evelhoch, J.L.; Henderson, E.; Knopp, M.V.; Larsson, H.B.; Lee, T.Y.; Mayr, N.A.; Parker, G.J.;
et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: Standardized
quantities and symbols. J. Magn. Reson. Imaging 1999, 10, 223–232. [CrossRef]

19. Cuenod, C.A.; Balvay, D. Perfusion and vascular permeability: Basic concepts and measurement in DCE-CT and DCE-MRI. Diagn.
Interv. Imaging 2013, 94, 1187–1204. [CrossRef]

20. Wegner, C.S.; Gaustad, J.V.; Andersen, L.M.; Simonsen, T.G.; Rofstad, E.K. Diffusion-weighted and dynamic contrast-enhanced
MRI of pancreatic adenocarcinoma xenografts: Associations with tumor differentiation and collagen content. J. Transl. Med. 2016,
14, 161. [CrossRef] [PubMed]

21. Eikenes, L.; Bruland, O.S.; Brekken, C.; Davies Cde, L. Collagenase increases the transcapillary pressure gradient and improves
the uptake and distribution of monoclonal antibodies in human osteosarcoma xenografts. Cancer Res. 2004, 64, 4768–4773.
[CrossRef]

22. Hompland, T.; Gulliksrud, K.; Ellingsen, C.; Rofstad, E.K. Assessment of the interstitial fluid pressure of tumors by dynamic
contrast-enhanced magnetic resonance imaging with contrast agents of different molecular weights. Acta Oncol. 2013, 52, 627–635.
[CrossRef] [PubMed]

23. Gaustad, J.V.; Simonsen, T.G.; Smistad, R.; Wegner, C.S.; Andersen, L.M.; Rofstad, E.K. Early effects of low dose bevacizumab
treatment assessed by magnetic resonance imaging. BMC Cancer 2015, 15, 900. [CrossRef] [PubMed]

24. Kickingereder, P.; Wiestler, B.; Graf, M.; Heiland, S.; Schlemmer, H.P.; Wick, W.; Wick, A.; Bendszus, M.; Radbruch, A. Evaluation
of dynamic contrast-enhanced MRI derived microvascular permeability in recurrent glioblastoma treated with bevacizumab. J.
Neurooncol. 2015, 121, 373–380. [CrossRef] [PubMed]

25. Kim, Y.E.; Joo, B.; Park, M.S.; Shin, S.J.; Ahn, J.B.; Kim, M.J. Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a
Surrogate Biomarker for Bevacizumab in Colorectal Cancer Liver Metastasis: A Single-Arm, Exploratory Trial. Cancer Res. Treat.
2016, 48, 1210–1221. [CrossRef] [PubMed]

26. Urva, S.R.; Yang, V.C.; Balthasar, J.P. Physiologically based pharmacokinetic model for T84.66: A monoclonal anti-CEA antibody.
J. Pharm. Sci. 2010, 99, 1582–1600. [CrossRef] [PubMed]

27. Thomas, V.A.; Balthasar, J.P. Sorafenib Decreases Tumor Exposure to an Anti-carcinoembryonic Antigen Monoclonal Antibody in
a Mouse Model of Colorectal Cancer. AAPS J. 2016, 18, 923–932. [CrossRef]

28. Shuhendler, A.J.; Prasad, P.; Cai, P.; Hui, K.K.; Henderson, J.T.; Rauth, A.M.; Wu, X.Y. Matrigel alters the pathophysiology of
orthotopic human breast adenocarcinoma xenografts with implications for nanomedicine evaluation. Nanomedicine 2013, 9,
795–805. [CrossRef] [PubMed]

29. Wang, W.; Wang, E.Q.; Balthasar, J.P. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 2008,
84, 548–558. [CrossRef]

30. Bartelink, I.H.; Jones, E.F.; Shahidi-Latham, S.K.; Lee, P.R.E.; Zheng, Y.; Vicini, P.; van ′t Veer, L.; Wolf, D.; Iagaru, A.; Kroetz, D.L.;
et al. Tumor Drug Penetration Measurements Could Be the Neglected Piece of the Personalized Cancer Treatment Puzzle. Clin.
Pharmacol. Ther. 2018. [CrossRef]

31. Wong, C.H.; Siah, K.W.; Lo, A.W. Estimation of clinical trial success rates and related parameters. Biostatistics 2018, 20, 273–286.
[CrossRef]

32. Hwang, T.J.; Carpenter, D.; Lauffenburger, J.C.; Wang, B.; Franklin, J.M.; Kesselheim, A.S. Failure of Investigational Drugs in
Late-Stage Clinical Development and Publication of Trial Results. JAMA Intern. Med. 2016, 176, 1826–1833. [CrossRef]

33. Hudis, C.A. Trastuzumab—Mechanism of Action and Use in Clinical Practice. N. Engl. J. Med. 2007, 357, 39–51. [CrossRef]
34. Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and

survival with amplification of the HER-2/neu oncogene. Science 1987, 235, 177–182. [CrossRef]

http://doi.org/10.1093/jac/dku195
http://doi.org/10.21037/tcr.2017.09.14
http://doi.org/10.1016/j.clinthera.2020.05.008
http://doi.org/10.1016/j.xphs.2018.09.037
http://doi.org/10.1124/dmd.119.087809
http://www.ncbi.nlm.nih.gov/pubmed/31387870
http://doi.org/10.1109/EMBC.2014.6944566
http://doi.org/10.3346/jkms.2015.30.6.808
http://doi.org/10.1002/(SICI)1522-2586(199909)10:3&lt;223::AID-JMRI2&gt;3.0.CO;2-S
http://doi.org/10.1016/j.diii.2013.10.010
http://doi.org/10.1186/s12967-016-0920-y
http://www.ncbi.nlm.nih.gov/pubmed/27268062
http://doi.org/10.1158/0008-5472.CAN-03-1472
http://doi.org/10.3109/0284186X.2012.737931
http://www.ncbi.nlm.nih.gov/pubmed/23126523
http://doi.org/10.1186/s12885-015-1918-1
http://www.ncbi.nlm.nih.gov/pubmed/26573613
http://doi.org/10.1007/s11060-014-1644-6
http://www.ncbi.nlm.nih.gov/pubmed/25359396
http://doi.org/10.4143/crt.2015.374
http://www.ncbi.nlm.nih.gov/pubmed/26987390
http://doi.org/10.1002/jps.21918
http://www.ncbi.nlm.nih.gov/pubmed/19774657
http://doi.org/10.1208/s12248-016-9909-y
http://doi.org/10.1016/j.nano.2013.01.005
http://www.ncbi.nlm.nih.gov/pubmed/23434679
http://doi.org/10.1038/clpt.2008.170
http://doi.org/10.1002/cpt.1211
http://doi.org/10.1093/biostatistics/kxx069
http://doi.org/10.1001/jamainternmed.2016.6008
http://doi.org/10.1056/NEJMra043186
http://doi.org/10.1126/science.3798106


Int. J. Mol. Sci. 2022, 23, 679 16 of 17

35. Lievre, A.; Bachet, J.B.; Le Corre, D.; Boige, V.; Landi, B.; Emile, J.F.; Cote, J.F.; Tomasic, G.; Penna, C.; Ducreux, M.; et al. KRAS
mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006, 66, 3992–3995. [CrossRef]
[PubMed]

36. Karapetis, C.S.; Khambata-Ford, S.; Jonker, D.J.; O’Callaghan, C.J.; Tu, D.; Tebbutt, N.C.; Simes, R.J.; Chalchal, H.; Shapiro,
J.D.; Robitaille, S.; et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 2008, 359,
1757–1765. [CrossRef]

37. Shin, T.H.; Sung, E.S.; Kim, Y.J.; Kim, K.S.; Kim, S.H.; Kim, S.K.; Lee, Y.D.; Kim, Y.S. Enhancement of the tumor penetration of
monoclonal antibody by fusion of a neuropilin-targeting peptide improves the antitumor efficacy. Mol. Cancer Ther. 2014, 13,
651–661. [CrossRef] [PubMed]

38. Beyer, I.; van Rensburg, R.; Strauss, R.; Li, Z.; Wang, H.; Persson, J.; Yumul, R.; Feng, Q.; Song, H.; Bartek, J.; et al. Epithelial
junction opener JO-1 improves monoclonal antibody therapy of cancer. Cancer Res. 2011, 71, 7080–7090. [CrossRef] [PubMed]

39. Viala, M.; Vinches, M.; Alexandre, M.; Mollevi, C.; Durigova, A.; Hayaoui, N.; Homicsko, K.; Cuenant, A.; Gongora, C.; Gianni, L.;
et al. Strategies for clinical development of monoclonal antibodies beyond first-in-human trials: Tested doses and rationale for
dose selection. Br. J. Cancer 2018, 118, 679–697. [CrossRef]

40. Thurber, G.M.; Weissleder, R. Quantitating antibody uptake in vivo: Conditional dependence on antigen expression levels. Mol.
Imaging Biol. 2011, 13, 623–632. [CrossRef]

41. Bordeau, B.M.; Balthasar, J.P. Strategies to enhance monoclonal antibody uptake and distribution in solid tumors. Cancer Biol.
Med. 2021, 18, 649–664. [CrossRef]

42. Bordeau, B.M.; Yang, Y.; Balthasar, J.P. Transient Competitive Inhibition Bypasses the Binding Site Barrier to Improve Tumor
Penetration of Trastuzumab and Enhance T-DM1 Efficacy. Cancer Res. 2021, 81, 4145–4154. [CrossRef]

43. Cilliers, C.; Menezes, B.; Nessler, I.; Linderman, J.; Thurber, G.M. Improved Tumor Penetration and Single-Cell Targeting of
Antibody-Drug Conjugates Increases Anticancer Efficacy and Host Survival. Cancer Res. 2018, 78, 758–768. [CrossRef] [PubMed]

44. Singha, N.C.; Nekoroski, T.; Zhao, C.; Symons, R.; Jiang, P.; Frost, G.I.; Huang, Z.; Shepard, H.M. Tumor-Associated Hyaluronan
Limits Efficacy of Monoclonal Antibody Therapy. Mol. Cancer Ther. 2015, 14, 523–532. [CrossRef]

45. Khawli, L.A.; Miller, G.K.; Epstein, A.L. Effect of seven new vasoactive immunoconjugates on the enhancement of monoclonal
antibody uptake in tumors. Cancer 1994, 73, 824–831. [CrossRef]

46. Lu, G.; Fakurnejad, S.; Martin, B.A.; van den Berg, N.S.; van Keulen, S.; Nishio, N.; Zhu, A.J.; Chirita, S.U.; Zhou, Q.; Gao, R.W.;
et al. Predicting Therapeutic Antibody Delivery into Human Head and Neck Cancers. Clin. Cancer Res. 2020, 26, 2582–2594.
[CrossRef] [PubMed]

47. Cheng, Q.; Huang, J.; Liang, J.; Ma, M.; Ye, K.; Shi, C.; Luo, L. The Diagnostic Performance of DCE-MRI in Evaluating the
Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer: A Meta-Analysis. Front. Oncol. 2020, 10, 93. [CrossRef]
[PubMed]

48. Li, L.; Wang, K.; Sun, X.; Wang, K.; Sun, Y.; Zhang, G.; Shen, B. Parameters of dynamic contrast-enhanced MRI as imaging markers
for angiogenesis and proliferation in human breast cancer. Med. Sci. Monit. 2015, 21, 376–382. [CrossRef]

49. Xiao, J.; Rahbar, H.; Hippe, D.S.; Rendi, M.H.; Parker, E.U.; Shekar, N.; Hirano, M.; Cheung, K.J.; Partridge, S.C. Dynamic
contrast-enhanced breast MRI features correlate with invasive breast cancer angiogenesis. NPJ Breast. Cancer 2021, 7, 42.
[CrossRef]

50. Cilliers, C.; Nessler, I.; Christodolu, N.; Thurber, G.M. Tracking Antibody Distribution with Near-Infrared Fluorescent Dyes:
Impact of Dye Structure and Degree of Labeling on Plasma Clearance. Mol. Pharm. 2017, 14, 1623–1633. [CrossRef] [PubMed]

51. Lu, G.; Nishio, N.; van den Berg, N.S.; Martin, B.A.; Fakurnejad, S.; van Keulen, S.; Colevas, A.D.; Thurber, G.M.; Rosenthal,
E.L. Co-administered antibody improves penetration of antibody–dye conjugate into human cancers with implications for
antibody–drug conjugates. Nat. Commun. 2020, 11, 5667. [CrossRef]

52. Engler, F.A.; Polli, J.R.; Li, T.; An, B.; Otteneder, M.; Qu, J.; Balthasar, J.P. “Catch-and-Release” Anti-Carcinoembryonic Antigen
Monoclonal Antibody Leads to Greater Plasma and Tumor Exposure in a Mouse Model of Colorectal Cancer. J. Pharmacol. Exp.
Ther. 2018, 366, 205–219. [CrossRef] [PubMed]

53. Gebhart, G.; Lamberts, L.E.; Wimana, Z.; Garcia, C.; Emonts, P.; Ameye, L.; Stroobants, S.; Huizing, M.; Aftimos, P.; Tol, J.; et al.
Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome
under trastuzumab emtansine (T-DM1): The ZEPHIR trial. Ann. Oncol. 2016, 27, 619–624. [CrossRef] [PubMed]

54. Menke-van der Houven van Oordt, C.W.; Gootjes, E.C.; Huisman, M.C.; Vugts, D.J.; Roth, C.; Luik, A.M.; Mulder, E.R.; Schuit,
R.C.; Boellaard, R.; Hoekstra, O.S.; et al. 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer. Oncotarget
2015, 6, 30384–30393. [CrossRef] [PubMed]

55. Ribba, B.; Boetsch, C.; Nayak, T.; Grimm, H.P.; Charo, J.; Evers, S.; Klein, C.; Tessier, J.; Charoin, J.E.; Phipps, A.; et al. Prediction of
the Optimal Dosing Regimen Using a Mathematical Model of Tumor Uptake for Immunocytokine-Based Cancer Immunotherapy.
Clin. Cancer Res. 2018, 24, 3325–3333. [CrossRef]

56. Sampath, L.; Kwon, S.; Ke, S.; Wang, W.; Schiff, R.; Mawad, M.E.; Sevick-Muraca, E.M. Dual-labeled trastuzumab-based imaging
agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer. J. Nucl. Med. 2007, 48,
1501–1510. [CrossRef] [PubMed]

57. Garg, A.; Balthasar, J.P. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and
FcRn-knockout mice. J. Pharm. Pharm. 2007, 34, 687–709. [CrossRef] [PubMed]

http://doi.org/10.1158/0008-5472.CAN-06-0191
http://www.ncbi.nlm.nih.gov/pubmed/16618717
http://doi.org/10.1056/NEJMoa0804385
http://doi.org/10.1158/1535-7163.MCT-13-0748
http://www.ncbi.nlm.nih.gov/pubmed/24435448
http://doi.org/10.1158/0008-5472.CAN-11-2009
http://www.ncbi.nlm.nih.gov/pubmed/21990319
http://doi.org/10.1038/bjc.2017.473
http://doi.org/10.1007/s11307-010-0397-7
http://doi.org/10.20892/j.issn.2095-3941.2020.0704
http://doi.org/10.1158/0008-5472.CAN-20-3822
http://doi.org/10.1158/0008-5472.CAN-17-1638
http://www.ncbi.nlm.nih.gov/pubmed/29217763
http://doi.org/10.1158/1535-7163.MCT-14-0580
http://doi.org/10.1002/1097-0142(19940201)73:3+&lt;824::AID-CNCR2820731312&gt;3.0.CO;2-V
http://doi.org/10.1158/1078-0432.CCR-19-3717
http://www.ncbi.nlm.nih.gov/pubmed/31980465
http://doi.org/10.3389/fonc.2020.00093
http://www.ncbi.nlm.nih.gov/pubmed/32117747
http://doi.org/10.12659/MSM.892534
http://doi.org/10.1038/s41523-021-00247-3
http://doi.org/10.1021/acs.molpharmaceut.6b01091
http://www.ncbi.nlm.nih.gov/pubmed/28294622
http://doi.org/10.1038/s41467-020-19498-y
http://doi.org/10.1124/jpet.117.246900
http://www.ncbi.nlm.nih.gov/pubmed/29735609
http://doi.org/10.1093/annonc/mdv577
http://www.ncbi.nlm.nih.gov/pubmed/26598545
http://doi.org/10.18632/oncotarget.4672
http://www.ncbi.nlm.nih.gov/pubmed/26309164
http://doi.org/10.1158/1078-0432.CCR-17-2953
http://doi.org/10.2967/jnumed.107.042234
http://www.ncbi.nlm.nih.gov/pubmed/17785729
http://doi.org/10.1007/s10928-007-9065-1
http://www.ncbi.nlm.nih.gov/pubmed/17636457


Int. J. Mol. Sci. 2022, 23, 679 17 of 17

58. Abuqayyas, L.; Balthasar, J.P. Pharmacokinetic mAb-mAb interaction: Anti-VEGF mAb decreases the distribution of anti-CEA
mAb into colorectal tumor xenografts. AAPS J. 2012, 14, 445–455. [CrossRef]

59. Sourbron, S.P.; Buckley, D.L. On the scope and interpretation of the Tofts models for DCE-MRI. Magn. Reson. Med. 2011, 66,
735–745. [CrossRef]

60. Chen, H.; Li, F.; Zhao, X.; Yuan, C.; Rutt, B.; Kerwin, W.S. Extended graphical model for analysis of dynamic contrast-enhanced
MRI. Magn. Reson. Med. 2011, 66, 868–878. [CrossRef] [PubMed]

61. Patlak, C.S.; Blasberg, R.G.; Fenstermacher, J.D. Graphical evaluation of blood-to-brain transfer constants from multiple-time
uptake data. J. Cereb. Blood. Flow Metab. 1983, 3, 1–7. [CrossRef]

62. Barnes, S.R.; Ng, T.S.; Santa-Maria, N.; Montagne, A.; Zlokovic, B.V.; Jacobs, R.E. ROCKETSHIP: A flexible and modular software
tool for the planning, processing and analysis of dynamic MRI studies. BMC Med. Imaging 2015, 15, 19. [CrossRef]

63. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid,
B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [CrossRef]

64. Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.;
et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341.
[CrossRef] [PubMed]

65. Felder, S.; LaVin, J.; Ullrich, A.; Schlessinger, J. Kinetics of binding, endocytosis, and recycling of EGF receptor mutants. J. Cell
Biol. 1992, 117, 203–212. [CrossRef]

66. Burke, P.M.; Wiley, H.S. Human mammary epithelial cells rapidly exchange empty EGFR between surface and intracellular pools.
J. Cell Physiol. 1999, 180, 448–460. [CrossRef]

67. McDonagh, C.F.; Huhalov, A.; Harms, B.D.; Adams, S.; Paragas, V.; Oyama, S.; Zhang, B.; Luus, L.; Overland, R.; Nguyen, S.; et al.
Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced
activation of ErbB3. Mol. Cancer Ther. 2012, 11, 582–593. [CrossRef] [PubMed]

68. Rusnak, D.W.; Alligood, K.J.; Mullin, R.J.; Spehar, G.M.; Arenas-Elliott, C.; Martin, A.M.; Degenhardt, Y.; Rudolph, S.K.; Haws,
T.F., Jr.; Hudson-Curtis, B.L.; et al. Assessment of epidermal growth factor receptor (EGFR, ErbB1) and HER2 (ErbB2) protein
expression levels and response to lapatinib (Tykerb, GW572016) in an expanded panel of human normal and tumour cell lines.
Cell Prolif. 2007, 40, 580–594. [CrossRef] [PubMed]

69. Modjtahedi, H.; Khelwatty, S.A.; Kirk, R.S.; Seddon, A.M.; Essapen, S.; Del Vecchio, C.A.; Wong, A.J.; Eccles, S. Immunohisto-
chemical discrimination of wild-type EGFR from EGFRvIII in fixed tumour specimens using anti-EGFR mAbs ICR9 and ICR10.
Br. J. Cancer 2012, 106, 883–888. [CrossRef]

70. Korc, M.; Meltzer, P.; Trent, J. Enhanced expression of epidermal growth factor receptor correlates with alterations of chromosome
7 in human pancreatic cancer. Proc. Natl. Acad. Sci. USA 1986, 83, 5141–5144. [CrossRef]

71. D’Argenio, D.Z. ADAPT 5 User’s Guide. In Pharmacokinetic/Pharmacodynamic Systems Analysis Software; Biomedical Simulations
Resource: Los Angeles, CA, USA, 2009.

http://doi.org/10.1208/s12248-012-9357-2
http://doi.org/10.1002/mrm.22861
http://doi.org/10.1002/mrm.22819
http://www.ncbi.nlm.nih.gov/pubmed/21394770
http://doi.org/10.1038/jcbfm.1983.1
http://doi.org/10.1186/s12880-015-0062-3
http://doi.org/10.1038/nmeth.2019
http://doi.org/10.1016/j.mri.2012.05.001
http://www.ncbi.nlm.nih.gov/pubmed/22770690
http://doi.org/10.1083/jcb.117.1.203
http://doi.org/10.1002/(SICI)1097-4652(199909)180:3&lt;448::AID-JCP16&gt;3.0.CO;2-8
http://doi.org/10.1158/1535-7163.MCT-11-0820
http://www.ncbi.nlm.nih.gov/pubmed/22248472
http://doi.org/10.1111/j.1365-2184.2007.00455.x
http://www.ncbi.nlm.nih.gov/pubmed/17635524
http://doi.org/10.1038/bjc.2012.27
http://doi.org/10.1073/pnas.83.14.5141

	Introduction 
	Results 
	Antibody Tumor Pharmacokinetics and a Priori PBPK Model Predictions 
	DCE-MRI Fitting 
	MRI-PBPK Covariate Modeling 

	Discussion 
	Materials and Methods 
	Antibody 
	Anti-Angiogenesis Agent 
	Xenograft Cell Lines 
	Animals 
	Establishment of Xenografts 
	MR Imaging 
	Plasma and Tumor Pharmacokinetics 
	Pharmacokinetic Modeling of DCE-MRI Images 
	Base Model PBPK Predictions 
	MRI-PBPK Covariate Modeling 

	References

