Skip to main content
. 2022 Jan 9;23(2):702. doi: 10.3390/ijms23020702

Figure 3.

Figure 3

Construction of a regulatory network of ALA priming-mediated abiotic stress tolerance. Priming with ALA enhances the ability of plants to cope with various stresses such as drought stress, salt stress, UV-B stress, and extreme temperature stress by regulating photosynthesis, osmoregulation, antioxidant capacity, and nitrogen assimilation in plants through finely tuning the activities of enzymes (light violet), channel proteins (dark violet), hormones (yellow), signaling molecules (gray), small organic molecules (orange), gene expression (light blue), or physiological levels (dark blue). The upward and downward arrows represent an upregulation or downregulation, respectively. HEMA1, glutamyl-tRNA reductase; CHLH, Mg-chelatase; POR, protochlorophyllide oxidoreductase; NR, nitrate reductase; NiR, nitrite reductase; GS, glutamine synthetase; GOGAT, glutamate synthase; CAT, catalase; SOD, superoxide dismutase; APX, ascorbate peroxidase; GR, glutathione reductase; RWC, relative water content; GDH, glutamate dehydrogenase; P5CS, delta-1-pyrroline-5-carboxylate synthase; HKT1, K+ transporter protein 1; NHX1, Na+/H+ antiporter; VHA-A, proton pump; GB, glycine betaine; DHAR, dehydroascorbic acid reductase; MDHAR, monodehydroascorbic acid reductase; AsA-GSH, ascorbate-glutathione cycle.