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Abstract: Rab GTPases are key regulators of membrane and intracellular vesicle transports. However,
the biological functions of FgRabl are still unclear in the devastating wheat pathogen Fusarium
graminearum. In this study, we generated constitutively active (CA) and dominant-negative (DN)
forms of FgRAB1 from the wild-type PH-1 background for functional analyses. Phenotypic analyses
of these mutants showed that FgRab1 is important for vegetative growth, cell wall integrity and
hyphal branching. Compared to the PH-1 strain, the number of spores produced by the Fgrab1DN
strain was significantly reduced, with obviously abnormal conidial morphology. The number of septa
in the conidia of the FgrablDN mutant was fewer than that observed in the PH-1 conidia. Fgrab1DN
was dramatically reduced in its ability to cause Fusarium head blight symptoms on wheat heads.
GFP-FgRab1l was observed to partly localize to the Golgi apparatus, endoplasmic reticulum and
Spitzenkorper. Furthermore, we found that FgRabl1 inactivation blocks not only the transport of the
v-SNARE protein FgSncl from the Golgi to the plasma membrane but also the fusion of endocytic
vesicles with their target membranes and general autophagy. In summary, our results indicate that
FgRabl plays vital roles in vegetative growth, conidiogenesis, pathogenicity, autophagy, vesicle
fusion and trafficking in F. graminearum.

Keywords: Fusarium graminearum; FgRab1; constitutively active; dominant negative; vesicle transport;
autophagy; pathogenicity

1. Introduction

Ras related in brain (Rab) GTPases make up the largest group of the small GTPase
family (called Ypt proteins in yeast) and function as molecular switches in the regulation of
intracellular membrane trafficking in all eukaryotic cells [1-4]. Rab GTPases alternate be-
tween active GTP-bound and inactive GDP-bound states, which are facilitated by guanine
nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), respectively [4].
Rab GTPases have a conserved GTP/GDP core and hydrolysis domain with highly con-
served motifs, such as G1 (Walker A /P-loop; GxxxxG K[S/T]), which is implicated in the
binding of the 3- and y-phosphate groups of nucleotides [5,6]. In fungi, the number of
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Ypt/Rab protein families is stable from 7 to 12 [4,7,8], of which Rab5/Ypt5, Rab7/Ypt7 and
Rab8/Sec4 are well studied.

Rab GTPases have been systematically investigated in the filamentous fungus As-
pergillus nidulans. The members of this protein family have been shown to be involved in
multi-fungal intracellular trafficking processes, including exocytosis and endocytosis, and
the Spitzenkorper of A. nidulans has been shown to harbor four Rab proteins, namely, Rab11,
Sec4/Rab8, Rab6 and Rabl [1]. In addition to those in A. nidulans, the Rab GTPases in other
fungi, notably, Ustilago maydis, Magnaporthe oryzae, Neurospora crassa and F. graminearum,
have also been well investigated [1,9].

Rab GTPases (including Rab8/Sec4, Rab7/Ypt7 and Rab5) have been well studied in
the last ten years, especially in plant pathogenic fungi. In the hemibiotrophic pathogen
Colletotrichum orbiculare, Sec4 was shown to localize to the necks of biotrophic primary
hyphae, adjacent to the interface, and the deletion of SEC4 reduced the virulence and dis-
rupted effector delivery to the ring interface [10]. In U. maydis, the deletion of Rab5a reduced
effector transcription and secretion, preventing the fungus from effectively colonizing plant
tissues [11]. BcSAS1, the Rab8/SEC4-like gene, plays an important role in the development,
protein secretion and virulence of Botrytis cinerea [12]. In Fusarium verticillioides, FvSec4
is necessary for fumonisin Bl biosynthesis and virulence [13]. In the rice blast fungus
M. oryzae, RabSA and Rab5B are essential for the development and pathogenicity of the
fungus, but they have distinct biochemical and functional properties [14,15]; MoRab7 /Ypt7
is required for membrane fusion during autophagy and pathogenicity [16], and it recruits
the retromer cargo-sorting complex to the endosome [17]. Rab8/Sec4 is involved in vege-
tative growth and pathogenicity by regulating extracellular protein secretion [18]. In the
plant fungal pathogen Colletotrichum lindemuthianum, CLPT1 (Sec4) is required for protein
secretion and pathogenesis [19].

The above studies mainly focus on Rab5, Rab7/Ypt7 and Rab8/Sec4. However, the
roles of Rabl (Yptl) in plant pathogenic fungi are still unclear. In yeast, YPT1 is an
essential gene [20,21], in which Asn121-Ile substitution within the gene product had a
dominant lethal phenotype [22]. Yptl is involved in microtubule organization, where it
functions in the secretion pathway, and it is required for transport to and through the
Golgi apparatus [23]. In Schizosaccharomyces pombe, Yptl is essential for cell growth [24].
The overexpression of a dominant-negative allele of YPT1 inhibits growth and aspartyl
protease secretion in the pathogenic yeast Candida albicans [25]. In mammalian cells, Rab1
is required for the fusion of carrier vesicles, thereby mediating endoplasmic reticulum-
to-Golgi transport [26]. However, the roles of Rab1/Yptl in plant pathogenic fungi are
still unknown.

F. graminearum is a filamentous ascomycete and the causal agent of Fusarium head
blight (FHB) in wheat worldwide [27-30]. F. graminearum infects wheat spikelets and
colonizes the entire wheat head by growing through the rachis node at the bottom of
each spikelet [31]. In addition, during the infection of F. graminearum on wheat florets, it
forms specialized infection structures, such as lobate appressoria and infection cushions [32].
In addition to wheat, F. graminearum also infects maize, barley and other small grains [33-36].
F. graminearum infections not only result in severe yield losses but also contaminate the
grains with various mycotoxins, imposing serious potential impacts on human and ani-
mal health [37]. In F. graminearum, Rab GTPases are essential for membrane trafficking-
dependent growth, DON production and pathogenicity [9]; FgRab51 and FgRab52 regulate
early endocytosis; FgRab7 regulates late endocytosis and vacuolar fusion; and FgRab8 and
FgRab11 are required for polarized growth and secretion. Furthermore, FgVps9, FgSec2A
and FgMon1 were identified as the guanine nucleotide exchange factors (GEFs) of FgRab5,
FgRab8 and FgRab?7, respectively [38—40]. FgGypl and FgMsb3 were demonstrated to act
as the GTPase-activating proteins (GAPs) for FgRab1 and FgRab8, respectively [41,42], and
they are both required for the SNARE protein FgSncl-mediated fusion of vesicles with the
plasma membrane.
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Considering the fact that Rab1/Yptl is an essential gene, particularly in yeast, this
study focused on investigating the functions of FgRab1 in the development and patho-
genesis of F. graminearum. We found that the overexpression of a dominant-negative form
of FgRab1 inhibits vegetative growth, conidiation, cell wall integrity, pathogenicity, au-
tophagy and the transport of v-SNARE FgSncl from the Golgi to the plasma membrane
in F. graminearum. Furthermore, FgRab1 localizes to the Golgi apparatus, endoplasmic
reticulum and Spitzenkorper.

2. Results
2.1. Identification of FgRab1 in F. graminearum

We have previously identified F{RABI (FGSG_10873) in the F. graminearum genome
using the NCBI database (https:/ /www.ncbinlm.nih.gov/, accessed on 13 January 2022) [9].
In the present study, we obtained the amino acid sequence of FgRab1l and its homolog
proteins in 15 different species, and we used MEGAS software to construct the phylogenetic
tree of the Rab1 protein. We found that the Rab1 proteins are relatively conserved in most
species, and FgRab1 is closest to Fusarium oxysporum in terms of evolutionary relationship
(Figure 1A).
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Figure 1. Bioinformatics analysis of Rab1 orthologs. (A) Phylogenetic analysis of Rabl homologs in
different species. (B) Multiple sequence alignment of Rab1 homologs.

Previous studies have shown that many Rab proteins are characterized by the presence
of five specifically conserved domains, namely, IGVDEF (RabF1), KLQIW (RabF2), RFRSIT
(RabF3), YYRGA (RabF4) and LVYDIT (RabF5) [43]. The C-termini of these proteins may
have the membrane positioning signal motif XXXCC, XXCCX, XCCXX, CCXXX or XXCXC
(where X is any amino acid), which can be prenylated to guide the Rab protein to anchor the
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target membrane [43-45]. The amino acid sequences of Rab1 proteins from 15 species were
compared using DNAMAN software, and the sequence alignment results suggest that most
of the Rab1 proteins have the above conserved domains (Figure 1B). Furthermore, previous
studies revealed that Rab proteins generally possess GTP- and GDP-binding sites. Herein,
our amino acid sequence comparison of the Rab1 proteins from 15 species showed that the
GTP- and GDP-binding sites were very conservative in different species (Figure 1B).

2.2. FgRab1 Is Critical for Vegetative Growth and Is Involved in the Maintenance of Cell Wall
Integrity of F. graminearum

A previous study indicated that the deletion of Yptl (Rabl homolog) leads to death in
S. cerevisiae [22]. We therefore intended to delete FgRabl for its functional analyses. Similar
to the above observation in yeast, the Fgrabl mutant could not be obtained after several
screenings, suggesting that the deletion of the protein is lethal to the fungus. As such,
we used the point mutation strategy to modify the active site of the FgRab1 protein and
successfully constructed FgrablCA (constitutively active, Q67L) (Figure S1A) and Fgrab1DN
(dominant-negative, S22N) (Figure S1B) strains to analyze the gene function. We found that
the growth of the Fgrab1DN strain was reduced by approximately 77% compared to the
wild-type PH-1 strain, while the mycelial growth of the Fgrab1CA strain was only slightly
reduced (Figure 2A). Moreover, mycelial branching was observed to increase in Fgrab1 DN
(Figure 2B), suggesting perturbation of the fungal polarity. To gain further insight into the
effects of this mutation, the hyphae of the wild-type PH-1, Fgrab1CA and Fgrab1DN strains
were stained with the fluorescent dye FM4-64 and observed under a confocal microscope.
As shown in Figure 2C, the results showed an increase in the Fgrab1DN hyphal cell wall
thickness compared to that of the wild type. However, the cell wall thickness of the
Fgrab1CA strain was not affected. Taken together, these results indicate that FgRabl is
important for mycelial morphology and the polarized growth of F. graminearum.

F &
5 & &
< <« <9
\\ \\ I
\\ ,L{// W

C PH-1 Fgrab1CA Fgrab1DN

Figure 2. FgRabl is important for vegetative growth and growth polarity in F. graminearum.
(A) Colony morphology of the wild-type PH-1, Fgrab1CA and Fgrab1DN strains. (B) Mycelial
morphology of PH-1, Fgrab1CA and Fgrab1DN. Hyperbranching was observed in the FgrabIDN
strain. (C) Fgrab1DN displays a thicker cell wall compared to wild-type PH-1. CW: cell wall. Arrows
mark the different layers: a. internal electron-dense layer, b. middle electron-dense layer, c. external
electron-dense layer.

Consistent with the above results, we observed during protoplast preparation of the
various strains that the enzymatic cell wall degradation of the Fgrab1DN strain was very
difficult to achieve. Two hours after treatment with the cell wall-degrading enzymes, most
of the Fgrabl1DN samples were still in their hyphal forms, and the protoplasts produced
were significantly reduced compared to those obtained from the other strains (Figure 52).
This supports the notion that the perturbation of FgRab1 function affects cell wall integrity
in F. graminearum.
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2.3. FgRab1 Is Involved in Regulating Conidiogenesis but Not Sexual Reproduction in F. graminearum

To investigate the potential roles of FgRab1 in conidiogenesis, we cultivated wild-type
PH-1, Fgrab1CA and FgrabIDN in CMC media for 3 days to induce conidiation. We observed
that the number of conidia produced by the Fgrab1DN strain was significantly decreased
compared to PH-1 (Figure 3B). We further analyzed the distribution of the number of septa
in each conidium and found that the number of septa was also significantly reduced. The
number of septa in Fgrabl1 DN mainly ranged from zero to three, while that in the wild-type
PH-1 conidia mainly concentrated around three (Figure 3C). These results suggest that
FgRabl is involved in conidia formation in F. graminearum.

A PH-1 Fgrab1CA Fgrab1DN
DIC [AENEES & g
A [/ < ‘/ ‘X \

,'/ \ 4/
CFW. .
B C

100
250 € 1 rm 16
—_ 2 80 == =5
2 200+ o
< -ff e 4
2 150 5 807 3
5 3
= 100 E 40 | T | O 2
ke *% c 1
8 50+ o 204 L
= E = | T | — 0
0- 0 T i T
N N S
R '\0% X s N
TP ® &P
@« SR,
© < @ ©

D PH-1 Fgrab1CA Fgrab1DN

Figure 3. FgRab1 inactivation perturbs conidiation but not sexual reproduction in F. graminearum.
(A) Conidial morphology of the wild-type PH-1, Fgrab1CA and Fgrab1DN strains, bar = 20 um.
(B) Conidia formation by the wild-type PH-1, Fgrab1CA and Fgrab1DN strains. Error bars represent
SD from three replicates, and two-tailed Student’s {-test was used for paired comparison of the
conidiation between PH-1 vs. FgrablCA and FgrablDN strains (**, p < 0.01). (C) The number of
conidia septa of the indicated strains. Error bars represent SD from three replicates, which was used
for paired comparison of the number of conidial septum between PH-1 vs. Fgrab1CA and Fgrab1DN.
(D) Perithecia and ascospore formation by the indicated strains, bar = 50 um.
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To determine whether FgRabl is involved in sexual reproduction, we inoculated
the wild-type PH-1, Fgrab1CA and FgrablDN strains on carrot media to induce sexual
reproduction. We found that both Fgrab1CA and Fgrab1DN strains could produce perithecia
and ascospores as normally as the wild-type PH-1 strain (Figure 3D), suggesting that
FgRabl is dispensable for the sexual reproduction of F. graminearum.

2.4. FgRab1 Localizes to the Golgi, ER and Spitzenkdrper

To investigate the subcellular localization of FgRab1, we transformed GFP-FgRab1
with Lifeact-RFP, FgKar2-mCherry and FgKex2-mCherry into the protoplasts of PH-1.
As shown in Figure 4, GFP-FgRab1 partially co-localized with FgKar2-mCherry, FgKex2-
mCherry and Lifeact-RFP in the hypha of F. graminearum. This suggests that FgRab1 is
distributed around the Golgi, ER and Spitzenkorper in F. graminearum.
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Kex2-mCherry
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Figure 4. Subcellular localization of FgRab1. (A) GFP-FgRab1 co-localizes with the trans-Golgi marker
Kex2-mCherry (marked by white arrows). A line scan graph was generated at the indicated position
(arrow) to show the relative localization of GFP-FgRab1 (green) and Kex2-mCherry (red). (B) GFP-
FgRab1l and Kar2-mCherry co-localize to the endoplasmic reticulum (ER) (marked by white arrows).
A line scan graph was generated at the indicated position (arrow) to show the relative localization of
GFP-FgRabl1 (green) and Kar2-mCherry (red). (C) GFP-FgRab1 localizes to the Spitzenkorper (Spk)
(marked by white arrows). A line scan graph was generated at the indicated position (arrow) to show
the relative localization of GFP-FgRab1 (green) and Lifeact-RFP (red).
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2.5. FgRab1 Is Required for Vesicle Trafficking and Fusion Process in F. graminearum

In S. cerevisiae, Rab1/Yptl is mainly located in the Golgi and Spitzenkorper, and it
plays a role in several transport pathways. To study the role of the FgRab1 protein in
the endocytosis of F. graminearum, the mycelia of the wild type and mutants were stained
with FM4-64 dye [41]. Within 1 min, obvious fluorescence could be observed on the
plasma membranes of all the strains. After 15 min, a few red dots (FM4-64-labeled vesicles)
appeared inside the three strains, indicating normal endocytosis, but at this time, a large
amount of FM4-64 remained in the membrane on the surface of the mycelia. At 45 min
post-staining, it was found that a large part of the FM4-64 had been internalized into the cell,
and FM4-64 was particularly detected on the vacuolar membrane in PH-1 and Fgrab1CA
strains, but only some tiny, fragmented vesicles were observed in the FgrablDN strain
(Figure 5A, B).

A PH-1 Fgrab1CA Fgrab1DN

B 1min 15min 45min

PH-1

Fgrab1DN
10 um

PH-1/ Fgrab1CA/ Fgrab1DN/

GFP- FiSnc‘l GFP- FiSnc1 GFP- FiSnc1

Figure 5. FgRab1 inactivation disrupts the transport of FgSncl to the plasma membrane and the
fusion of vesicles with target membranes in F. graminearum. (A,B) FgRab1 is necessary for membrane
fusion. (C) FgRab1 is required for the transport of FgSncl to the plasma membrane and septum. Red
circles show the plasma membrane localization of GFP-FgSncl, and white arrows show the septum
localization of GFP-FgSncl, bar = 10 pm.

To understand the influence of FgRab1 on vesicle transport processes, GFP-FgSncl
was constructed and transformed into the protoplasts of PH-1, Fgrab1CA and Fgrab1DN
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strains. The localization of GFP-FgSncl was observed by confocal microscopy. As shown
in Figure 5C, GFP-Fg5ncl localizes to the plasma membrane and concentrates at the
Spitzenkorper in the growing hyphal cells of PH-1 and Fgrab1CA. However, in the Fgrab1DN
strain, the plasma membrane and septum localization of this protein cannot be observed;
instead, the GFP fluorescence is dispersed in the cytoplasm, though its localization to the
hyphal tip was still present. These results suggest that the inactivation of FgRab1 affects
the secretion of FgSncl from the Golgi to the plasma membrane and septum.

2.6. FgRab1 Is Required for Pathogenicity

To investigate the effects of Fgrab1CA and Fgrabl1DN on the pathogenicity of the
fungus, the mutants and the PH-1 control were inoculated on flowering wheat heads
under moist conditions for 14 days. As shown in Figure 6A, the FBH symptoms due to
Fgrab1DN infection on wheat heads were significantly lower than those observed due to
PH-1 and Fgrab1CA infections. These results indicate that FgRab1 is required for normal
pathogenicity of F. graminearum. Furthermore, infection assays on wheat coleoptiles yielded
similar results (Figure 6B). Taken together, our data demonstrate that FgRab1 is important
for F. graminearum virulence.

Figure 6. FgRabl critically contributes to the pathogenicity of F. graminearum. (A) Pathogenicity
of PH-1, Fgrab1CA and Fgrabl1DN strains on flowering wheat heads. (B) Pathogenicity of PH-1,
Fqrab1CA, Fgrab1DN strains on wheat coleoptiles.
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2.7. Inactivation of FgRab1 Prevents Autophagy in F. graminearum

Autophagy is a highly important and conserved intracellular process for the degra-
dation and recycling of proteins and damaged organelles in eukaryotic organisms. GFP-
FgAtg8 is widely used as a marker for reflecting the level of autophagy in numerous
studies [39,46-48]. To investigate whether FgRab1 is involved in autophagy in F. gramin-
earum, we transformed GFP-FgAtg8 into the protoplasts of the wild-type PH-1, Fgrab1CA
and Fgrab1DN strains. We stained the transformed strains with the vacuole marker CMAC
(7-amino-4-chloromethylcoumarin) and subjected the strains to confocal microscopy. We
found that GFP-FgAtg8 localized to the cytosol in all the strains, forming punctate struc-
tures within the cytosol under nutrient-rich conditions (CM medium) (Figure 7A). Upon
the induction of autophagy (growth of the strains on nutrient-deficient MM media for 8
h in the presence of 2 mM PMSF), more spots of GFP-FgAtg8 signals were observed in
the vacuoles of PH-1 and Fgrab1CA mycelia, while the signals remained diffused within
the cytosol in the Fgrab1DN strain (Figure 7B). This simply indicates that autophagy was
prevented in the Fgrab1DN strain. These results indicate that FgRab1 is critically involved
in autophagy in F. graminearum.

Fgrab1CA

Fgrab 1DN

o
<
=
z
CMAC
Merge . »

Figure 7. FgRabl is required for autophagosome formation and autophagy in F. graminearum. Local-
ization of GFP-FgAtg8 in PH-1, FgrablCA and Fgrabl1DN strains in CM (A) or MM-N media (B). PH-1,
FgrablCA and Fgrab1DN strains expressing GFP-FgAtg8 were grown in liquid CM medium at 28 °C
for 16 h and then shifted to liquid MM-N medium containing 2 mM PMSF for 8 h to induce autophagy.
Mycelia were stained with CMAC and examined under a confocal microscope. Bar = 10 um.

3. Discussion

Rabs, a subfamily of the Ras superfamily of small GTPases, are highly conserved in
eukaryotic cells, which function as “molecular switches” between GTP- and GDP-bound
states through interaction with two regulatory proteins, guanine nucleotide exchange
factor (GEF) and GTPase-activating protein (GAP) [2,49]. Rabl is a member of the Rab
GTPase family, which is known to regulate cargo transport from the ER to the Golgi
and intra-Golgi through different effectors, and it plays an essential role in the secretory
pathway [50-52]. The intact YPT1 gene has been shown to be essential for spore germination
and the vegetative growth of yeast cells [22]. However, the biological functions of Rab1
in the phytopathogen are still largely unknown. In mice, Rab1 has GTP-binding sites of
Ser22 (S) (preferential binding) and asparagine (N) (121) (low affinity) and glutamine (Q)
with GDP-binding site 67 [53]. In this study, we found that the corresponding GTP-binding



Int. |. Mol. Sci. 2022, 23, 895

10 of 15

site of FgRab1 contains serine 22 (S) and asparagine 121 (N), while the GDP-binding site
contains glutamine 67 (Q). Here, we used point mutation strategy to modify the active site
of the FgRab1 protein, and we showed that FgRab1 is required for vegetative growth and
pathogenicity in F. graminearum. Furthermore, we found that FgRab1 plays a crucial role in
the secretory process from the Golgi to the plasma membrane and that it determines the
effectiveness of vesicle fusion, as well as cell wall integrity. Furthermore, disrupting the
functions of FgRab1 causes severe phenotypic defects, including fungal pathogenicity.

Rabl is a key regulator of ER-to-Golgi transport, where the active Rab proteins are
localized to the membranes of the endoplasmic reticulum (ER) and the Golgi apparatus [50].
In our study, we found that GFP-FgRab1 was mainly localized to the Golgi (Figure 4A),
some to the ER (Figure 4B) and a small amount to the Spitzenkorper (Figure 4C). Sncl is a
v-SNARE protein that mediates the fusion of trans-Golgi network (TGN)-derived exocytic
vesicles with the plasma membrane in budding yeast; the protein is also endocytosed from
the cell surface and trafficked back to the TGN, where it can be repackaged into nascent
secretory vesicles to facilitate another round of transport [54]. In our previous study, we
demonstrated that FgGyp1, a GAP of FgRab1, is required for the FgSncl-mediated fusion of
secretory vesicles from the Golgi with the plasma membrane [42]. In wild-type PH-1, GFP-
FgSncl is localized to the cytoplasm, Spitzenkorper, plasma membrane and septum [41,55].
However, in the present study, the fluorescence signal of FgSncl could not be observed
at both the plasma membrane and septum of the Fgrab1DN strain, suggesting that the
inactivation of FgRabl1 affected the trafficking of FgSncl from the Golgi to the plasma
membrane and septum. Taken together, our results indicated that the FgGyp1-FgRabl
cascade regulates the FgSncl-mediated fusion of secretory vesicles from the Golgi with the
plasma membrane.

In Drosophila, omelette (omt) is the orthologue of human Rabl. Golgi stacks appear
“collapsed” in omt mutant cells, with abnormal Golgi complexes comprising fragmented
cisternae and a few small stacks [52]. Moreover, in HeLa cells, an increase in Rab1b levels
induces changes in Golgi size and gene expression, where the inhibition of Rab1 affects
the stability of the Golgi apparatus structure, leading to the dispersal of the Golgi in the
cytoplasm [56,57]. Therefore, we speculated that the inactivation of Rab1 in F. graminearum
may affect the stability of the Golgi, which, in turn, could have been the reason why we
observed diffused distribution of FgSncl in the cytoplasm, which affects the transport
of FgSncl to the plasma membrane. It was reported in another study that inhibiting the
function of Rab1 through the expression of the dominant-negative construct Rablb N121I
by siRNA transfection or overexpression of its GAP caused fragmentation of the Golgi [56].
Rab1 mediates the docking of ER-derived vesicles with the cis-Golgi compartment, where
the knockdown of Rabl1b alters vacuole growth, at least in part, by changing its fusogenic
capacity with endocytic compartments [58]. To verify whether FgRab1 affects vesicle fusion
in F. graminearum, we stained the mycelia of the wild-type PH-1, Fgrab1CA and Fgrab1DN
strains with FM4-64, and we found that almost 90% of the mycelia from the Fgrab1DN
strain could not form large vacuoles, and the vacuole pieces observed in the cytoplasm
showed fragmentation (Figure 5C). This result suggests that the inactivation of FgRab1l
affects the vesicle fusion process, leading to vacuolar fragmentation.

Polarized growth is fundamental for optimal survival, which requires a perfect coordi-
nation among the major cellular processes, such as cytoskeletal organization, secretion and
endocytosis, which have to be controlled by the cell integrity pathway and regulated by the
cell cycle [59]. As shown in our results, FgRab1 exhibited an obvious defect in endocytosis
from the cell surface as well as trafficking back to the TGN, which further results in defects
in vacuolar transport. In addition, we found that inactivating FgRab1 led to abnormal
cell wall thickness, which affected the corresponding growth process. We speculated that
FgRab1 may play an important role in the formation of the cell wall.

Autophagy is a highly important and conserved intracellular process for the degra-
dation and recycling of subcellular materials in eukaryotes, and it is critical for vesicle
formation, transport, tethering and fusion; hence, it is a strong determinant of fungal
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survival, reproduction and infection [47,60,61]. Autophagy plays a pivotal role in sup-
plying nutrients to non-assimilating structures necessary for growth, and it is important
for plant colonization in F. graminearum [47]. As vesicle-trafficking proteins, many Rab
GTPases regulate various steps of autophagy. Rabl, Rab5, Rab7, Rab8A, Rab8B, Rab9,
Rab11, Rab23, Rab24, Rab25, Rab32 and Rab33B are all essential for autophagy [60]. Yptl
and its GEF TRAPPIII have been implicated in autophagy [62]. It has been reported that
Gypl, Gyp5 and Gyp8 function as the GAP of Yptl [42,62,63]. In yeast, Gyp1 has not only
been proposed to negatively regulate Ypt1 at the Golgi but also acts as Atg8's interacting
partner for selective autophagy [62]. Rab1/Yptl is essential for autophagosome formation,
and Trs85, a subunit of TRAPP complex III (the GEF for Yptl), functions as a key player
in channeling Yptl GEF and Yptl to the phagophore assembly site (PAS), where the key
proteins are involved in autophagosome formation [64]. In this study, live-cell imaging
showed abnormal autophagosomes in the FgrabIDN strain during nitrogen starvation
conditions, suggesting that autophagy was disrupted in Fgrab1DN. These results showed
that FgRab1 plays an important role in autophagy.

In summary, FgRabl1 is found herein to be important for pathogenicity in F. gramin-
earum, and inactivation of the protein perturbs the fungal vegetative growth, autophagy
and vesicle fusion with target membranes.

4. Materials and Methods
4.1. Fungal Strains and Culture Conditions

F. graminearum PH-1 (Taxonomy ID: 5518) was used as the wild-type strain and as a
background for generating all the gene deletion mutants (Table S1). Fungal strains were
cultured at 28 °C on complete medium (CM), which contained 6 g/L yeast extract, 6 g/L
casamino acid, 10 g/L sucrose and 20 g/L agar (for solid medium) for mycelial growth.
Carboxymethyl cellulose liquid medium (CMC) (1 g/L NH4NO3, 1 g/L yeast extract, 1 g/L
KH;,POy, 0.5 g/L MgSO4-7H,0, 15 g/L carboxymethyl cellulose) was used for conidiation
assays. Liquid trichothecene biosynthesis induction (TBI) medium (0.01 g/L FeSO,4-7H,0,
0.05 g/L MgS0O,4-7H,0, 0.5 g/L KCl, 1 g/L KH;POy4, 0.0871 g/L arginine, 30 g/L sucrose,
200 puL/L trace elements, pH = 6.5) was used for trichothecene production analysis [9].
Carrot agar medium (400 g/L fresh carrot, 20 g/L agar) was used for inducing perithecia
and ascospore formation. A 1000x trace element solution (22 g/L ZnSO4-7H,0, 11 g/L
H3BO3, 5 g/L MHC12'4H20, 5 g/L FeSO4-7H20, 1.7 g/L COC12-6H20, 1.6 g/L CuSO4'5H20,
1.5 g/L NayMoOy-5H,0, 50 g/L EDTA-4Na) and 1000 vitamin solution (0.1 g/L biotin,
0.1 g/L pyridoxin, 0.1 g/L thiamine, 0.1 g/L riboflavin, 0.1 g/L p-aminobenzoic acid,
0.1 g/L nicotinic acid) were used for nitrogen-deficient minimal medium (MM-N, 0.52 g/L
K], 0.312g/L MgSO4-7H,0, 1.52 g/L KH3PO4, 1 mL/L 1000% trace element solution,
1 mL/L 1000x vitamin solution). RNA was extracted from fresh mycelia harvested from
100 mL liquid CM cultured at 28 °C with constant shaking at 110 rpm for 3 days. The fresh
mycelia were ground in liquid nitrogen into powder, and the total RNA was extracted using
Eastep™ Total RNA extraction Kit (Promega, Beijing). Each experiment was repeated
three times.

4.2. Construction of Constitutively Active and Dominant-Negative Mutants

To generate dominant-negative and constitutively active F{RABI mutants, we first
used the primer pairs FgRab1DN1F/FgRabl1DNIR and FgRab1DN2F/FgRab1DNZ2R,
FgRab1DN1F/FgRabCA1R and FgRab1CA2F/FgRab1DN2R (Table S2) to amplify FgRAB1
DN1, DN2, CA1l and CA2, respectively, by PCR from the cDNA of PH-1, and the products
were further subjected to splicing for overlap extension (SOE)-PCR to obtain the mutated
constructs as previously reported [9]. The latter products were then cloned into BamH I
and Not I plasmids, downstream of the RP27 promoter on the pTE11-vector and verified
by sequencing.
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4.3. Quantitative Real-Time PCR

For qRT-PCR, the Fgrabl1DN, Fgrab1CA and PH-1 strains were inoculated in liquid
CM medium and incubated at 28 °C for 16 h. Total RNA was isolated from mycelia
using Eastep™ Total RNA extraction Kit (Promega, Beijing, China), and first-strand cDNA
was synthesized using M-MLV (Moloney murine leukemia virus) reverse transcriptase
(HiScript III RT SuperMix for qPCR (+gDNA wiper), Vazyme, Nanjing, China). Relative
transcription levels were quantified using QuantiTect SYBRgreen PCR Master Mix (Takara,
Kusatsu City, Japan), using the primer pairs (Supplementary Table S2). The tubulin beta
chain gene (FGSG_09530) was used as the endogenous reference gene, and the data of
relative quantification were calculated using the 2-AACT method [65]. All experiments and
qRT-PCR assays were repeated three times.

4.4. Asexual and Sexual Reproduction Assays

Mycelial agar blocks (5 mm in diameter) were inoculated into CMC liquid medium
to assay asexual reproduction [9]. The number of conidia was determined 3 days after
incubation at 28 °C, using a hemacytometer (QIUJING, Shanghai, China) under an Olympus
BX53F microscope (Olympus, Tokyo, Japan). To induce sexual reproduction, mycelial agar
blocks were placed on carrot agar and incubated at 28 °C for 5-7 days, after which aerial
hyphae were removed, and the plates were pressed down gently with 1 mL of 2.5% sterile
Tween 60 (Macklin, Shanghai, China). All of the sexual reproduction-induced cultures were
incubated at 28 °C under black light (F20T8/BLB, wavelength: 365 nm, Dangi, Shanghai,
China). The perithecia formed were photographed and recorded. Each experiment was
independently repeated three times.

4.5. Pathogenicity Assays

Nearly the same quantities of fresh mycelia were inoculated into the center of flowering
wheat heads, after which, the wheat heads were sprayed with sterile distilled water and
covered with transparent polythene bags. After 7 days, the bags were removed, and after
another 7 days, the wheat heads were cut off and photographed [9]. For conidial samples,
2 uL of 100 x 10* cells/mL conidial suspension was inoculated in each coleoptile, and the
observed symptoms were recorded after 7 days of inoculation.

4.6. Autophagy Assay

Autophagy was assayed by determining the expression of FgAtg8. We transformed the
GFP-FgAtg8 construct into the PH-1, Fgrab1CA and Fgrab1DN strains. The transformants
were cultured in liquid CMC for 3 days to obtain their respective conidia. The conidia were
harvested and transferred into fresh liquid CM cultures and further incubated for 16 h at
28 °C, with shaking at 180 rpm. The conidia were then transferred into “starvation media”,
that is, nitrogen-deficient minimal media (MM-N) containing 2 mM phenylmethylsulfonyl
fluoride (PMSF), and cultured for 8 h at 28 °C, 150 rpm. Mycelia were stained with
7-amino-4-chloromethylcoumarin (CMAC) for 30 min and observed under fluorescence
confocal microscope.

4.7. Live-Cell Imaging of F. graminearum

Confocal microscopy was used for time-lapse or live-cell fluorescence imaging using a
Nikon A1R laser scanning confocal microscope system (Nikon, Tokyo, Japan). Alternatively,
an Olympus BX51 microscope (Olympus, Tokyo, Japan) was used for conventional epifluo-
rescence and differential interference contrast (DIC). Elapsed time is indicated in seconds.
We used 405 nm light (Em. 452/45 nm) for Calcofluor white and CMAC excitations. GFP
excitation was performed using 488 nm light (Em. 525/40 nm), and FM4-64 and mCherry
excitations were performed using 561 nm light (Em. 607/36 nm) [9].
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4.8. Statistical Analysis

GraphPad Prism 8 (Scientific Software, San Diego, CA, USA) was used to calculate
the standard error of the mean (sem) for all values shown. p values were calculated with a
two-tailed Student’s t-test using Microsoft Excel (Microsoft, Redmond, WA, USA).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23020895/s1.
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