Table 3.
Model | Parameter settings |
---|---|
Linear regression | Default |
KNN | N_neighbors = 3 |
SVR | Kernel = RBF, C = 1e3, epsilon = 0.1 |
Ridge | Alpha = 1.0, normalize = False |
Xgboost | Eta = 0.1, max_depth = 9, gamma = 0.1 |
Random forest | N_jobs = 1, random_state = 12, n_estimators = 100 |
AdaBoost | Default |
Gradient boosting | Max_depth = 9, min_sample_split = 200 |
Bagging | Base_estimator = ‘decision tree’ |
LSTM | Step_size = 4, epochs = 300 |