Skip to main content
. 2022 Jan 21;52(10):11232–11243. doi: 10.1007/s10489-021-03085-9

Table 3.

Parameter settings of the data forecast

Model Parameter settings
Linear regression Default
KNN N_neighbors = 3
SVR Kernel = RBF, C = 1e3, epsilon = 0.1
Ridge Alpha = 1.0, normalize = False
Xgboost Eta = 0.1, max_depth = 9, gamma = 0.1
Random forest N_jobs = 1, random_state = 12, n_estimators = 100
AdaBoost Default
Gradient boosting Max_depth = 9, min_sample_split = 200
Bagging Base_estimator = ‘decision tree’
LSTM Step_size = 4, epochs = 300