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SUMMARY
Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of
specific immune biomarkers.We present here a comprehensivemulti-omic blood atlas for patients with vary-
ing COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volun-
teers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved
cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and
lymphocyte subsets, features of the immune repertoire, acute phase response,metabolism, and coagulation.
Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma pro-
teome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based
integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings
linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will sup-
port future drug development, clinical trial design, and personalized medicine approaches for COVID-19.
INTRODUCTION

The pathophysiology associated with severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) reflects a complex inter-

play between virus-induced lung pathology and maladaptive

host immune responses (Kuri-Cervantes et al., 2020; Mathew

et al., 2020; Tay et al., 2020). Severe COVID-19 is characterized

by hypoxia, with risk of rapid deterioration, progression to acute

respiratory distress syndrome, multiorgan failure, and death.

Predisposing factors include age, gender, ethnicity, obesity,

and comorbidities. Currently, opportunities for biomarker-led

timed and targeted precision medicine approaches are limited

by an incomplete understanding of pathogenesis and heteroge-

neity among patients with severe disease (Wynants et al., 2020).

A dysregulated hyperinflammatory state occurs in some individ-

uals (Moore and June, 2020), consistent with reported benefits

from glucocorticoids (dexamethasone), inhibitors of the IL-6 re-

ceptor (tocilizumab/sarilumab), and Janus kinases (baricitinib)

(Gordon et al., 2021; Horby et al., 2021a, 2021b; Kalil et al.,

2021). Nevertheless, blood-derived signatures of severity are

diverse, including evidence of immune suppression, myeloid

dysfunction, lymphopenia, interferon driven immunopathology,

T cell activation/exhaustion, and immune senescence (Bost

et al., 2021; Chen and JohnWherry, 2020; Diao et al., 2020; Had-

jadj et al., 2020; Mann et al., 2020; Schulte-Schrepping et al.,

2020). Comparison with other severe respiratory viruses such

as influenza show differences in target cells and control of viral

replication but also shared mechanisms, notably a dysregulated

host response (Flerlage et al., 2021; Lee et al., 2020; Zhu et al.,
916 Cell 185, 916–938, March 3, 2022 ª 2022 The Author. Published
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2020). Features of cytokine hyperactivation and lymphocyte

exhaustion are proposed as shared mechanisms of severe

COVID-19 with sepsis (Arunachalam et al., 2020; Boomer

et al., 2012; Diao et al., 2020). Here, we demonstrate the informa-

tiveness of a multi-modal, integrative systems biology approach

through the COvid-19 Multi-omics Blood ATlas (COMBAT) con-

sortium.We identify cells, mediators, and pathways in peripheral

blood that are hallmarks of increasing COVID-19 severity;

resolve shared and specific features with influenza and sepsis;

and define potential biomarkers of the variable individual

response to SARS-CoV-2 infection to support a future personal-

ized medicine approach.

RESULTS

Clinical features, severity metrics, and disease
stratification in COVID-19
We aimed to characterize the peripheral blood response in

COVID-19. To do this, we analyzed a prospective cohort of adult

patients with confirmed SARS-CoV-2 presenting to clinical ser-

vices at the start of the United Kingdom pandemic (February–

March 2020). We recruited 116 hospitalized COVID-19 patients

following informed consent at a single site (Oxford University

Hospitals) through the Sepsis Immunomics study (ethics

approval South Central - Oxford C Research Ethics Committee

in England Ref 19/SC/0296) (STAR Methods, Table S1). The

overall mortality rate was 23.3%. Samples were collected during

the acute admission and in survivors from 28 days after

discharge (convalescent samples). We compared these patients
by Elsevier Inc.
commons.org/licenses/by/4.0/).
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with community COVID-19 cases in the recovery phase (never

admitted to hospital), age-matched healthy volunteers, influenza

cases requiring mechanical ventilation (critically ill receiving

intensive care), and all-cause sepsis patients (hospitalized en-

compassing severe and critical disease) recruited prior to the

pandemic (Figure 1A; STAR Methods; Table S1).

To optimize our chances of identifying specific cellular andmo-

lecular biomarkers that might in future have clinical utility, we

analyzedpatient classifiers of illness severity derived fromclinical

features in our hospitalized COVID-19 cohort (STAR Methods).

This showed severity scores and surrogate markers of illness

response were highly correlated (Data S2) and that patient clus-

ters showed broad concordance to the first-releasedWHO cate-

gorical criteria, namelymild (no requirement for supplemental ox-

ygen), severe (oxygen saturation SaO2 % 93% on air but not

requiring mechanical ventilation), and critical (requiring mechan-

ical ventilation) (Figure S1A). This clustering persisted when we

restricted the analysis to acute measures of physiology and clin-

ical biomarkers, where the main correlates of consensus clus-

tering related to ventilation status (Figures S1B and S1C).

Accordingly, hereinafter we refer to WHO categorical criteria as

our primary hospitalized COVID-19 severity comparator groups.

COVID-19 severity is associated with differences in
abundance of diverse immune cell populations
We first investigated changes in cellular composition associated

with COVID-19 severity using mass cytometry of whole blood

(Figure 1A; STAR Methods; Data S3), and Cellular Indexing of

Transcriptomes and Epitopes by Sequencing (CITE-seq) to

annotate peripheral blood mononuclear cell (PBMC) types, sub-

sets, and clusters (Figures 1A–1C, S1D, S1E, S2A, and S2B;

STARMethods; Table S2; Data S3–S5).We defined a ‘‘prioritized

sample set’’ comprising for each patient a single sample closest

to onset of maximal disease as defined by clinical features at the

time of sampling. Mass cytometry of whole blood showed

increased absolute and relative neutrophil abundance and

reduced overall T and B lymphocyte, myeloid, dendritic, baso-

phil, and natural killer (NK) cells in more severe/critical disease;

differential abundance of specific cell populations included

increased activated and cytotoxic CD8+ T cells and classical

monocytes (Figures 1D, S2C, and S2D; Data S3). In community

and convalescent COVID-19 patients, the cell composition was

broadly comparable to healthy volunteers, although some differ-
Figure 1. Single cell compositional analysis reveals variance in cell po

(A) Study design, assay modalities, and workflow. Table shows number of patien

assayed. *WHO severity categories show number of patients at time of sampling

sepsis patients; ***10 samples assayed (8 samples for paired acute-convalescen

(B) Summary of supervised multimodal annotation strategy for the CITE-seq data

(C) Summary of cell populations identified by CITE-seq (phenotypes shown in Da

(D) Differential abundance of major cell populations in granulocyte (CD66+) deplet

assayed using single cell mass cytometry).

(E–H) CITE-seq compositional analysis of minor cell subsets.

(E and F) Principal components analysis (PCA) showing PC1 versus PC2 with 9

groups and (F) hospitalized COVID-19 cases.

(G) Loadings of minor cell subsets on PC1 for hospitalized COVID-19 cases.

(H) Covariate analysis for clinical, demographic, and experimental variables for ho

ANOVA for significance).

See Figures S1 and S2.
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ences in abundance persisted. The frequency of neutrophils,

plasmablasts, plasmacytoid DCs (pDC), and basophils contrib-

uted significantly to the overall variance in cell composition be-

tween patient groups (Figure S2E).

We validated and further characterized these differences us-

ing CITE-seq. Cellular composition differed by patient group

and by severity in hospitalized COVID-19 patients (Figures 1E–

1H and S2F). By reducing the dimensionality of the data, we

found the highest proportion of the observed variance (principal

component [PC] 1) was associated with comparator group (Pc =

2.01310�15, ANOVA) (Figure 1E; Data S5). When hospitalized

COVID-19 cases were analyzed alone, the largest component

of variance (PC1) was associated with group membership,

oxygenation status (SaO2/FiO2 ratio, SOFA oxygenation, and

ventilation and oxygen status), and lymphocyte count (all Pc <

0.05) (Figure 1F; Data S5). The cell subsets with higher abun-

dance in more severe disease that contributed most to this

component (largest negative loadings in PC1) were platelets/

CD34� megakaryocyte progenitors, hematopoietic stem (and

progenitor) cells (HSCs), and cycling classical monocytes

(cMono) (Figure 1G). Differential abundance analysis with age-/

gender-matched healthy volunteers showed differences in the

same cell populations, together with reduced dendritic cells

(DCs), T, and NK cell subsets, particularly in COVID-19 critical

cases (Figure S2F). Among hospitalized COVID-19 cases, higher

abundance of platelets/CD34� megakaryocyte progenitors and

cycling cMono was associated with oxygenation status (SaO2/

FiO2, SOFA oxygenation score, ventilation status), severity

(WHO ordinal), and CRP (all Pc < 0.01). Higher platelet/CD34�

megakaryocyte progenitor abundance was also associated

with the occurrence of thromboembolism during hospitalization

(Pc = 0.036, ANOVA) (Figure 1H; Data S5), highlighting their po-

tential pathophysiological significance in severe COVID-19.

Whole blood hallmarks of COVID-19 and severity
involving neutrophils, progenitor cells, lymphocyte
exhaustion, clotting, immunoglobulins, and the
interferon response
We next defined global transcriptomic signatures of the host

response to COVID-19 by performing whole blood total

RNA-sequencing (Figure 1A; STAR Methods). We investigated

overall variance in gene expression for all individuals using the

prioritized sample set and found clear separation by clinical
pulations by clinical group and severity

ts assayed, with number of samples in brackets where more than one sample

**single paired convalescent sample assayed for n = 16 COVID-19 and n = 3

t COVID-19 and 2 healthy).

(described in STARMethods; clustering of GEXmodality shown in Figure S1E).

ta S4).

ed whole blood where significant between comparator groups (7,118,158 cells

5% data ellipses (assuming a multivariate t-distribution) of (E) all comparator

spitalized COVID-19 cases plotting significant minor cell subsets (BH adjusted
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Figure 2. Signatures of COVID-19 response from transcriptomics

(A–F) Whole blood total RNA-seq.

(A and B) Principal component (PC) analysis of (A) all comparator groups and (B) hospitalized COVID-19 cases.

(C) Differential gene expression critical versus mild COVID-19.

(D) Pathway enrichment for COVID-19 severity as a quantitative trait ± inclusion cell proportion.

(E) Differential gene expression COVID-19 versus sepsis.

(F) Intramodular hub genes for weighted gene correlation network analysis module grey60.

(legend continued on next page)
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group, namely between healthy volunteers, increasing severity

among COVID-19 cases and patients with sepsis (Figure 2A).

Among hospitalized COVID-19 patients, the largest component

of variance was associated with 28-day mortality (PC1, p =

2.34310�6, Kruskal-Wallis test) (Figure 2B), which also corre-

lated with other measures of severity and differential cell count

(FigureS3A).We found that genes contributing to this component

(highest loadings for PC1) were strongly enriched for immune

system function, notably neutrophil degranulation (fold change

[FC] = 4.23, false discovery rate [FDR] = 2.4310�15), PD-1

signaling (FC = 21.5, FDR = 9.2310�12) (consistent with lympho-

cyte exhaustion), antimicrobial peptides (FC = 10.8, FDR =

9.2310�7), and clotting cascade (FC = 10.6, FDR = 2.1310�5).

The second largest component of variance in the data (PC2)

showed strong enrichment for genes involved in interferon

signaling (FC=10.7, FDR=3310�33) including key viral response

network genes (IFI1-3, IFI6, IFI44, IFIT3, and OAS1-3) and spe-

cific immunoglobulin heavy and lambda genes (Figure S3B).

We further analyzed genes differentially expressed according

to COVID-19 severity among hospitalized patients and found

greatest enrichment for T cell receptor (TCR) and PD-1 signaling,

antimicrobial peptides, fibrin clot formation, integrin and immu-

noregulatory interactions, and platelet and neutrophil degranula-

tion. This was robust to inclusion of cell proportion as a covariate

(Figures 2C, 2D, and S3C). We found these aspects of the

response to COVID-19 were largely distinct from non-SARS-

CoV-2 sepsis of comparable severity (Figure 2A). Specific fea-

tures of COVID-19 compared to sepsis included upregulation

in COVID-19 of many immunoglobulin heavy/kappa/lambda

genes and unique pathway enrichments relating to cell prolifera-

tion and innate/adaptive immune function (Figures 2E and S3D).

Next, we identified clusters of highly interconnected genes

(modules) correlated with COVID-19 severity using weighted

gene correlation network analysis (WGCNA) (Star Methods; Fig-

ure S3E). The three modules most significantly correlated with

severity (p < 1310�10) were enriched for, respectively, cellular

and functional neutrophil gene signatures and neutrophil count

(MEblue module); CD8+ T cell signatures and relative lymphope-

nia (MEturquoisemodule); andgranulocyte andcommonmyeloid

progenitor cell gene signatures, neutrophil degranulation, antimi-

crobial peptides, and defensin pathways (MEGrey60 module)

(Figures S3F and S3G). The MEgrey60 module was more highly

expressed in critical COVID-19 than sepsis (Figure S3H), and

the ETS transcription factor related gene ERG, which regulates

lineage plasticity, showed the highest intramodule connectivity

(Figure 2F). These features indicate the MEgrey60module repre-

sents a variety of progenitor cells that associate with severity,

further supporting the importance of these cells.

To better characterize neutrophil populations in COVID-19, we

applied a myeloid-marker enriched mass cytometry panel to the

same samples (STARMethods). We found evidence for the pres-

enceof immatureneutrophils andneutrophil progenitors (pro-neu-
(G) Neutrophil cell surface proteins assayed bymass cytometry shown bymarker o

show 1.5x interquartile range.

(H and I) CITE-seq gene expression. (H) Association of PCs of expression varia

monocytes and naive CD4+ T cells.

See Figures S3 and S4.

920 Cell 185, 916–938, March 3, 2022
trophils) basedonhighexpression ofCD64 (Fc gamma receptor 1)

and CD49d (integrin alpha 4), and decreased expression of CD10

(neutral endopeptidase) (Figure 2G) (Evrard et al., 2018; Kwok

et al., 2020;Marini et al., 2017). CD64 expressionwas raised in se-

vere/critical COVID-19 and further elevated in sepsis, together

with increased PD-L1 (CD274) expression (Figure S4A). Using

CD64:CD10 ratio as an index score for immature neutrophil pres-

ence, we found association with the MEblue module eigengene

that correlated with neutrophil count and function (Figure S4B).

We further determined that neutrophil CD49d expression was

elevated, while CD43 (leukosialin) was reduced, in COVID-19 pa-

tients but was largely unchanged in sepsis (Figure 2G). The

CD49d:CD43 ratio remained high in convalescence (Figure 2G).

Shared and cell-type-specific single-cell gene
expression signatures of COVID-19 involving ZFN,
ribosomal and cell-cycle genes, and AP-1 and interferon
signaling
To further deconvolute biological pathways and cellular func-

tions associated with COVID-19 we analyzed gene expression

at single-cell resolution (STAR Methods; Data S6; Table S3).

Among hospitalized and community COVID-19 cases (prioritized

sample set), we found the principal components of variance in

gene expression involved cMono, naive B cells, plasmablasts,

CD4+ T cells (naive, effector, and effector memory), and cycling

NK cells (Figures 2H, 2I, and S4C). We performed pathway anal-

ysis for differentially expressed genes in major cell types (Fig-

ure S4D; STAR Methods) (Liberzon et al., 2015). This showed

enrichment for type I and II interferon pathways in the less severe

hospitalized COVID-19 patients across cell types. Redox state

(reflected by MTORC1 signaling and oxidative phosphorylation)

was enriched across mononuclear phagocytes (MNP), T cells,

NK cells, and plasmablasts in more severe COVID-19, as were

cell cycle (MYC targets, E2F targets, G2M checkpoint) pathways

(except forMNP), while IL2-STAT5 pathway enrichment in T cells

was found in more severe disease. Interferon stimulated genes

showed enrichment in a range of cell subsets in COVID-19

cases, notably cDCs (Figure S4E–S4G).

We then determined network modules for major cell subsets

byWGCNA (Figures 3A and 3B; StarMethods; Data S6). Analysis

of module co-variation identified five distinct module sets. A set

of type I IFN response modules was found across cell popula-

tions in which representative gene expression profiles (module

eigengenes) correlated with milder disease, better oxygenation

status, and earlier sampling from symptom onset (Figures 3A

and 3B). The second module set, discovered in all cell types

except plasmablasts, showed strong enrichment for activator

protein 1 (AP-1) (FOS, JUN, ATF family genes) and the

p38MAPK cascade. The module eigengenes were highly ex-

pressed in all COVID-19 patient groups, including recovery

phase community cases; were distinct from influenza and

sepsis; and did not show a consistent relationship with severity
r ratio of markers. Boxplots showmedian and first and third quartiles; whiskers

nce within minor cell subsets in COVID-19 patients. (I) PC plots in classical
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or other clinical features (Figures 3A–3D). The third module set

was enriched for classical (C2H2) zinc finger (ZNF) genes and

contained IRF2 and IL16; expression of these eigengenes was

lower in COVID-19 and influenza compared with healthy volun-

teers and sepsis cases (Figures 3A and 3B). The fourth set of

modules involved ribosomal proteins and inflammasome func-

tion (top genes by membership included NLRP1, MAP3K14,

and FOXP1) and was negatively correlated with COVID-19

severity in monocytes (Figures 3A, 3B, and 3E). Finally, we found

a set of ‘‘cycling’’ modules, which in cMono correlated with

severity, and included S100A8/9 encoding calprotectin, a known

severity biomarker (Silvin et al., 2020) (Figures 3A, 3B, and 3F).

We also identified two cell-type-specific modules associated

with severe disease, a JAK-STAT/interleukin signaling module

in CD4+ T cells, and an EGFR pathway-enriched module in

cMono including the stress response gene FKBP5 and scav-

enger receptor CD163 (Figures 3A, 3B, 3G, and 3H).

Transcriptomic and epigenetic signatures of severity in
monocyte populations
We further investigated signatures of severity for specific mono-

nuclear phagocyte populations (Figures 4A and 4B; STAR

Methods; Data S3–S6). Hospitalized COVID-19 patients with

more severe disease had a relatively higher frequency of cMono

and fewer intermediate monocytes (CD16+CD14+), ncMono

(CD14�CD16+), and DCs (Figures 4A and S5A–S5C). With

increasing disease severity, we found a shift in the phenotype

of cMono to lower expression of HLA-DR, CD33, and CD11c,

and evidence of proliferating monocytes based on expression

of Ki-67 and DNA abundance, with comparable changes in

sepsis patients (Figures 4C, S5A, and S5B). Lower levels of

pDCs and CD33lowcDC2 were found in sepsis compared with

severe/critical COVID-19 (Figure 4A).

Further analysis of cMono using CITE-seq showed that a

cycling cluster, and a cluster with high expression of the anti-

oxidant metallothionein genes (MThi), were significantly elevated

in critical COVID-19 cases, influenza and sepsis compared

to healthy volunteers (Figures 4B and S5D). We found that

S100A8/9/12hi HMGB2-expressing cMono correlated with

COVID-19 severity andwere also increased in sepsis. cMono ex-

pressing VCAN, which is implicated in cytokine release, were

specifically increased in COVID-19 and reduced in influenza,

while complement component C1Q-expressing ncMono were

increased in influenza and sepsis, but not in COVID-19. pDCs

showed reduced abundance in more severe COVID-19, influ-

enza, and sepsis, as did CD1c+ cDCs. Consistent with the pro-

gressive changes in abundance according to COVID-19 severity,

the frequencies of cycling cMonoandS100A8/9/12hiHMGB2 ex-

pressing cMono, and CD1c+ cDCs, were associated with clinical
Figure 3. Single cell gene expression modules identify hallmarks of CO

(A–H) Weighted gene correlation network analysis (WGCNA) of CITE-seq gene e

(A) Association of module eigengenes with disease contrasts, clinical severity

tions shown).

(B) Module pathway enrichment.

(C and D) p38MAPK.AP-1 module eigengene (C) correlation with AP-1 family gen

(E–H) Eigengene expression and top eigengene-gene correlations for (E) riboso

module in CD4 and (H) FKB5.CD163 module in cMono. For all violin plots, media

922 Cell 185, 916–938, March 3, 2022
variables relating to oxygenation and respiratory function in hos-

pitalized cases (Figure 4D). Pathway enrichment analysis of

differentially expressed genes identified inflammatory

response/TNF signaling and interferon response in milder dis-

ease includingcommunity cases (cMono, ncMono, andDC); hyp-

oxia (cMono, DC), and IL2_STAT5 pathways (cMono) across

severity groups; and complement coagulation and cholesterol

metabolism inmore severe disease in cMono (FiguresS5E–S5G).

To investigate epigenetic correlates of the COVID-19

response, we analyzed chromatin accessibility by single-cell

ATAC-seq (Figures 1A, S5H, and S5I; STAR Methods). Overall,

750 and 303 accessible sites were up- and downregulated,

respectively, in COVID-19 patients compared to healthy volun-

teers in myeloid cells (Figure S5J). Genes linked to top differen-

tially open chromatin peaks included STK24 (MAPK promoting

apoptosis) and FGFRL1 (cell adhesion promoting fibroblast

growth factor receptor) (Figures S5J and S5K). We identified

the most significant DNA binding motif enrichments in the differ-

entially accessible sites involved AP-1, SW1/SNF, and BACH

transcription factor family members, which regulate chromatin

remodeling and immunity (Figure 4E). Moreover, motif footprint

analysis revealed increased accessibility of genomic regions

containing FOS and JUN motifs in COVID-19 patients relative

to healthy volunteers in myeloid cells, a signal which was also

seen in convalescence (Figure 4F).

COVID-19 severity correlates with specific T and NK cell
populations and features relating to cell cycle, redox
state, and exhaustion
We proceeded to further characterize T and NK cell populations

using mass and multicolor flow cytometry (STAR Methods; Data

S3). We found activated CD4+ and CD8+ T cells were increased

in frequency in all COVID-19 patient groups and remained

elevated in convalescence (Figures 4A and S6A). The proportion

of CD27+ activated CD4+ T cells was higher than in sepsis, while

the CD56+ cytotoxic CD8+ T cell frequency was reduced (Fig-

ure 4A). We investigated T cell subsets using markers of activa-

tion, proliferation, and exhaustion. While comparably expressed

in activated CD4+ T cells across acute COVID-19 cases, these

markers increased in CD8+ T cells with increasing disease

severity (Figure 4G). We found differential chemokine receptor

expression in the overall memory CD4+ T cell population (Figures

S6B and S6C) and increased expression of the inhibitory recep-

tor TIM3 in activated CD8+ T cells (Figure S6D). CLA+ HLADR+

NK cells were increased in all COVID-19 cases including conva-

lescence (Figure S6E). We also found evidence of changes in

innate-like lymphocytic cell populations with increasing

COVID-19 severity, including mucosal associated invariant T

(MAIT) cells, which showed a gradient of involvement across
VID-19 response

xpression for major cell types.

scores and variables, survival and gene set scores (*all significant associa-

es (D) expression across patient groups.

mal module in cMono (F) cycling module in cMono (G) JAK-STAT.interleukin

n indicated by horizontal bar.
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severity in terms of cell activation (higher % CD69+ MAIT cells in

more severe disease, Figure 4H).

Complementing these findings, CITE-seq analysis (STAR

Methods; Data S5) showed an increase in cycling and activated

CD4+ and CD8+ T and NK cell populations in hospitalized

COVID-19 cases, including CCR4hi Tregs (Figures 4B and

S6F). Conversely, we observed a decrease in CD4+ Th1,

CCL5+ CD8+ T central memory, CD45RA+ CD8+ T effector mem-

ory, and NK cells with highmitochondrial gene expression. There

was minimal compositional variation in these cell populations

associated with severity or clinical covariates (Data S5). Analysis

of gene expression in hospitalized COVID-19 patients showed

the most significant clinical correlate involved activated NK cells

(CD56highCD16low XCL1/2 expressing) where the largest compo-

nent of variance was associated with WHO ordinal and oxygen-

ation/ventilation status (Figure S6G). Across CD4+, CD8+, and

NK cells, we found cell cycle and redox state pathways were en-

riched for differentially expressed genes inmore severe hospital-

ized COVID-19 cases; interferon pathways in less severe dis-

ease; and TNF signaling in community cases versus healthy

volunteers (Figure S6H). MAIT cells showed enrichment for

TNF signaling and KRAS across COVID-19 groups and gd

T cells for cell cycle pathways (Figure S6H).

Severe COVID-19 is associated with clonal expansion of
unmutated B cells and activation of autoreactive B cells
We then investigated at high resolution how B cell populations

vary in COVID-19. Mass cytometry (STAR Methods; Data S3)

demonstrated significant lymphopenia in COVID-19 with

reduced overall frequency and number of B cells, predominantly

naive B cells, but an increase in terminally differentiated plasma-

blasts (significantly higher than in sepsis) and a relatively high

proportion of CLA+ plasmablasts (Figures 1B, 4A, and S6I). We

found the greatest increase in switched memory CD11c+ B cells

in community COVID-19 cases, while unswitched memory B

cells and naive CD11c+ B cells were higher in COVID-19 conva-

lescent samples (Figure 4A). Analysis of CITE-seq-defined clus-

ters (STAR Methods; Data S4) revealed increases in plasma-

blasts in severe disease; naive CD1c+ naive and cycling naive

B cells were reduced in COVID-19, but overall, naive B cells

were significantly more reduced in influenza than COVID-19 of

comparable severity; and in mild hospitalized COVID-19, only

the interferon-responsive naive B cell cluster showed an in-

crease (Figures 4B and S6J).

We then characterized the B cell immune repertoire using bulk

VDJ sequencing of whole blood and CITE-seq (Figures 1A and

5A; STAR Methods; Data S3 and S4). In healthy volunteers,
Figure 4. Changes in myeloid and lymphocyte cell populations associa

(A and B) Differential cell abundance in patients versus healthy volunteers, and be

set assayed by (A) single cell mass cytometry and (B) CITE-seq, plotting cell pop

(C) UMAP by patient group for myeloid cell clusters derived from mass cytometr

(D) Covariate analysis of cell abundance assayed by CITE-seq and clinical, dem

adjusted ANOVA test for significance).

(E and F) scATAC-seq (E) differential motif enrichment in myeloid cells, acute C

myeloid enriched factors JUN and FOS.

(G and H) Single cell mass cytometry (G) MMI of specific markers in activated C

Boxplots show median, first and third quartiles; whiskers 1.5x interquartile range

See Figures S5 and S6.
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clonal expansions appeared to predominate within the memory

B cell population, while in COVID-19 and sepsis patients, we

found expansions in plasmablasts, with severe and notably crit-

ical COVID-19 patients also harboring clones within memory

populations (Figure S7A). The clonal expansion in plasmablasts

was statistically significant and also showed an association

with COVID-19 severity, in contrast to sepsis where there was

no significant change (Figure 5B).

Limited somatic hypermutation (SHM) of SARS-CoV-2 anti-

bodies has been widely reported (Brouwer et al., 2020). We

observed fewer somatic hypermutations in intermediate B cells

in hospitalized mild COVID-19 but a severity-associated in-

crease within plasmablasts, also seen in sepsis (Figure S7B).

There were, however, COVID-19 specific differences in the pro-

portion of expanded clones with few mutations (> 95% IGHV

identity, Figure 5C). RNA velocity analysis suggested a differen-

tiation directionality between naive B cells and plasmablasts in

COVID-19 patients distinct from sepsis, and consistent with a

predominant extrafollicular B cell response in COVID-19 (accu-

mulating fewer SHMs) (Figure 5D). Moreover, we observed a

higher number of shared clones between plasmablasts and in-

termediate or memory B cells in severe/critical COVID-19 pa-

tients, whereas sepsis patients exhibited higher clonal overlap

between intermediate and memory B cells (Figure S7C).

These data together indicate substantial expansion of unmu-

tated B cells associated with plasmablast populations in se-

vere/critical COVID-19.Wenext explored differences in B cell se-

lection and tolerance. First, in COVID-19 patients, we observed

increased BCR complementarity-determining region 3 (CDR3)

lengths compared to sepsis (Figure S7D); such increases have

been associated with antibody polyreactivity and autoimmunity

(Meffre et al., 2001). Second, we found multiple differentially uti-

lized IGHV/J genes between COVID-19 groups indicating differ-

ential B cell selection and/or expansion of naive B cells, while

the antigen experienced IgD/M mutated and class-switched B

cell repertoire showed differentially utilized IGHV/J genes,

revealing differential peripheral selection of B cells with

increasingCOVID-19 severity (DataS3). Third,we testedwhether

B cells targeting autoantigen and red blood cell antigen are asso-

ciated with COVID-19. We found that autoreactive IGHV4-34

BCRs, which are elevated in autoimmunity (Pascual et al.,

1991), were significantly depleted in IGHD/M but elevated in

class-switched B cells, most notably for the IGHA2 and IGHG2

B cells (Figure 5E) consistent with class-switching of these autor-

eactive B cells during the response to SARS-CoV-2. In further

support of this, the degree of class-switching, inferred from the

BCR sequencing data (Bashford-Rogers et al., 2019), was
ted with COVID-19 severity

tween disease categories for myeloid, T, NK, and B cells for prioritized sample

ulations where significant between comparator groups.

y and Mean Metal Intensity (MMI) of HLA-DR, CD33 and CD11c.

ographic, and experimental variables for hospitalized COVID-19 cases (BH

OVID-19 versus healthy volunteers and (F) transcription factor footprinting for

D4+ and CD8+ T lymphocytes (H) frequency of activated MAIT cells.

.
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Figure 5. Differences in B and T cell repertoire associated with COVID-19 severity

(A–F) B cells: (A) UMAP embedding with cluster identities from CITE-seq. (B) Plasmablast repertoire clonality. (C) Mutation and expansion proportions in plas-

mablast clone repertoire. (D) Partition-based graph abstraction plots of scRNA-seq by cell population and patient group. (E) IGHV4-34 AVY/NHS motif usage in

unmutated VDJ sequences across IGH genes (bulk BCR-seq). (F) Class switch inference networks (RNA derived BRCs). Significance * < 0.05, ** 0.005 Kruskal

Wallis.

(G–M) T cells: (G) Shannon Diversity Index for specific cell populations by comparator group. (H) Mean cytotoxicity score by comparator group. (I) Proportion of

CD8+ T cells carrying TCR containing COVID-19 associated Kmers. (J) Frequency of COVID-19 Kmer positive cells in CD8+ naive and effector memory cells. (K)

Correlation of COVID-19 Kmer containing CD8+ T cells per individual with median cytotoxicity score. (L) UMAP of CD8+ T cells by patient group indicating density

(legend continued on next page)
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significantly elevated between IgD/M and IgG1 and IgA1 and

finally to IgG2 in COVID-19 patients (Figures 5F and S7E). No

detectable differences in either IGHV4-34 autoreactive BCR

levels or class-switching were observed in sepsis cases.

Previous reports indicate an unexpectedly high level of BCR

convergence between unrelated COVID-19 patients (Galson

et al., 2020). We also found clonal sharing within and between

COVID-19 severity groups (Figures S7F and S7G; Data S3).

Comparing to known receptor-binding domain antibodies, we

observed that most highly similar patient BCRs have a plasma-

blast phenotype (Figure S7G). Overall, our data indicate that the

plasmablast expansions in severe COVID-19 include high levels

of broadly auto-reactive B cells, consistent with an emerging

role for B cell driven immune pathology (Wang et al., 2021).

Reduced diversity in CD8+ T cell populations on
repertoire analysis
To further investigate the effect of disease on T cell subsets with

reference to antigen recognition and clonality, we integrated

TCR sequencing data performed across the same cell subsets.

Given we saw clonotypes present across populations, we

merged subsets to provide power for downstream clonal anal-

ysis (STAR Methods). For semi-invariant T cells, differences

observed with severity and disease group by cell cluster were

supported by consistent changes in TCR alpha variable (TRAV)

gene usage. Hospitalized COVID-19 and sepsis cases displayed

reductions in the percentage of repertoire occupied by TRAV10,

specific to invariant NK T cells, and TRAV1-2 and TRAJ33 usage,

in keeping with reductions in MAIT cells (Figure S7H).

To better understand the relationship between COVID-19 and

T cell clonality, we calculated Shannon diversity indices across

clones based on the TCRbeta chain, controlling for age. While

CD4+ subsets showed higher diversity thanCD8+ subsets, differ-

ences with disease severity were only seen in CD8+ T cells (Fig-

ures S7I and S7J; STAR Methods). Across disease states and

accounting for age, CD8+ T effector memory (CD8.TEM/

TEMRA), CD8+ T central memory (CD8.TCM/CD8.TCM.CCL5),

and MAIT cell diversity were reduced in COVID-19 severe and

critical disease with comparable changes in sepsis (Figure 5G).

Recent evidence suggests that effective CD8+ T cell re-

sponses involve increased numbers of expanded clones (Fairfax

et al., 2020). Consistent with this, we found hospitalized COVID-

19 patients with mild disease had higher numbers of expanded

clones in both CD4+ and CD8+ subsets, and the mean clone

size was higher within the CD8+ subset (Figures S7K and S7L).

In keeping with the observation that expanded CD8 T cell clones

show increased expression of cytotoxicity markers (Watson et

al, 2020), using a composite gene score for cytotoxicity, we

found that the number of expanded clones correlated with the

average cytotoxicity score across all cells for that individual in

both CD4+ T effector (CD4.TEFF/TEFF.prolif) and CD8+ T

effector (CD8.TEFF/TEFF.prolif) populations (Figure S7M), and
of COVID-19 Kmer positive cells (blue dashed line) and cells with previously de

matching cells in CD8+ naive and effector memory cells.

Wilcoxon Test age and sample size adjusted linear model *p < 0.05, **p < 0.01,

interquartile range.

See Figure S7.
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was higher inmild and community COVID-19 caseswith reduced

cytotoxicity observed in critical and severe disease (Figure 5H).

To further explore whether COVID-19 leads to generalized sig-

natures of antigen presentation with reciprocal effects on TCR

sequence and corresponding CDR3 usage, we devised an

approach to identifyCOVID-19associatedaminoacid sequences

(Kmersof 4 aminoacids)within thebeta chainCDR3 region (STAR

Methods). These were compared with chains from healthy volun-

teers and sepsis patients to exclude sequences non-specifically

associated with infection (Data S3). We identified 125, 4-amino

acid Kmers (referred to as COVSeqs) enriched in COVID-19

(Pc < 0.05 versus both groups), the vast majority in CD8+ T cells

(Figure S7N), with the proportion of cells with TCRs containing

at least one COVSeq in the beta chain specifically increased in

all COVID-19 patients (Figure 5I). In hospitalized patients, we

found a lower proportion of CD8+ T effector memory cells with

COVSeq containing TCRs with increasing disease severity (Fig-

ure 5J). Critical disease was associated with naive CD8+ T cells

containing COVSeqs, indicating failure of the SARS-CoV-2 reac-

tive cells in critical patients to expand into the effector phenotype,

or possibly a distinct redistribution of the expanded cells. Further

supporting functionality of the COVID-19 Kmer containing cells,

the proportion of COVSeq-containing cells was correlated with

the median cytotoxicity of cells per individual among the

COVID-19 patients (Figures 5K andS7N). Notably, COVSeq-pos-

itive CD8+ T effector cells from critical patients showed reduced

cytotoxicity compared to mild disease (Figure S7O).

Finally, we addressed whether using previously published

COVID-19associated beta chain clonotypes could further resolve

variation in the T cell response according to disease severity

(STAR Methods). We observed many cells carrying such TCRs

across the COVID-19 patients, often overlapping COVSeq-con-

tainingcells.Notably, thedistributionof thesecellsacrossclusters

variedmarkedly according toCOVID-19 disease state (Figure 5L).

Replicating the observations with COVSeq-positive cells, CD8+ T

effector memory cells were relatively depleted for COVID-19 clo-

notypes in critical disease (Figures 5M and S7P).

Correlates of severity and disease specificity in the
COVID-19 plasma proteome involve acute phase
proteins, metabolic processes, and markers of tissue
injury
We aimed to complement our multimodal cellular profiling with

analysis of the COVID-19 plasma proteome. To do this, we per-

formed high-throughput liquid chromatography with tandem

mass spectrometry (LC-MS-MS), presenting data for 105 proteins

on 257 individuals (340 samples) (Figure 1A; STARMethods; Data

S3). We found differences by severity and etiology by analyzing

principal components of variance (Figure 6A) and onunsupervised

hierarchical clustering and supervised correlation analysis (Data

S3). Severe disease, reflected in variance component loadings,

was associated with increased acute-phase proteins and
scribed COVID-19 clonotype. (M) Proportion of COVID-19 known clonotype

***p < 0.001. All boxplots show median, first and third quartiles; whiskers 1.5x
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complement systemproteins, including recognized biomarkers of

inflammation (SAA1, SAA2, and CRP), complement membrane

attack complex components (C5, C6, C9, andCFB), and function-

ally relatedprotein familiessuchasprotease inhibitors (SERPINA3,

SERPINA1, and ITIH3) and serum amyloid P-component (APCS)

(Figure 6B;Data S3).We also found differential protein abundance

involving markers of tissue injury and necrosis, notably reduced

extracellular actin scavenger plasma gelsolin (GSN); increased fi-

brinogens (FGA, FGB, andFGG); andan increase inproteins impli-

cated in IL-6mediated inflammation (LGALS3BP, LRG1, LBP,HP,

and ITIH4).We further identified protein clusters based on the pro-

tein-protein interaction network, including a large cluster enriched

for biological processes involving cholesterol transport and fibrin

blood clots within which individual proteins showed positive and

negative correlations with disease severity (PC1). Two smaller

clusters enriched for cytolysis and complement activation posi-

tively correlatedwith disease severity (both showing negative cor-

relations for all constituent proteins with PC1) (Figure 6C).

We found the main processes associated with differences be-

tween samples were acute-phase response and inflammation,

metabolic (retinoid and lipoprotein), and cholesterol transport

(Figure S8A). Reduced levels of proteins associated with lipopro-

tein and cholesterol metabolism included apolipoproteins A-I, A-

II, C-I, and C-II (APOA1/2 and APOC1/2) and transthyretin (TTR),

consistent with their downregulation in systemic inflammation

and differences in metabolic state specifically associated with

disease severity. This was further evident on pairwise compari-

sons, with mild hospitalized COVID-19 patients differing from

healthy volunteers in metabolic processes and vesicle transport

of retinoid, cholesterol, lipoproteins, and fat-soluble vitamins;

and from community cases by higher levels of complement acti-

vation and coagulation (Figure S8B). Severe COVID-19 patients

differed from mild and from critically ill patients in processes

relating to platelet degranulation and neutrophil degranulation

respectively (Figures S8C and S8D). When we compared severe

and critical COVID-19with sepsis, 19 out of 105 proteins showed

changes specific toCOVID-19 (FDR< 0.05, FC > 1.5), enriched in

acute-phase response, complement activation, and receptor-

mediated endocytosis (Figure S8D).

Plasma cytokine and chemokine profiling shows
evidence for involvement of inflammatory mediators
To characterize inflammatory mediators of the response to

SARS-CoV-2, we analyzed 51 circulating cytokine and chemo-
Figure 6. Plasma protein COVID-19 signatures and sub-phenotypes

(A–C) HT-LC-MS/MS mass spectrometry of plasma proteins.

(A) Principal components analysis (PCA) of all samples.

(B) Proteins contributing to PC loadings (more negative loading values indicating

(C) Clusters based on protein-protein interaction network with enriched GOBP te

(D–F) Proteins significantly differentially expressed between comparator groups

(D) Fold change in plasma proteins in hospitalized COVID-19 versus healthy volu

(E) Plasma and serum protein abundance by comparator group.

(F) Network of clinical feature�protein correlations in COVID�19 patients and he

(G) Similarity network fusion (SNF) using plasma proteins for hospitalized COVID-1

(left) or WHO severity group (middle) or SOFA O2 score (right).

(H) Kaplan-Meier survival plot by SNF cluster group (95% CIs shaded) (HR, haza

(I) Mass General Hospital (Olink) validation data and COMBAT (discovery) cohor

See Figure S8.
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kine proteins using the Luminex assay for 171 individuals (Fig-

ure 1A; STAR Methods; Data S3). There was clear clustering of

hospitalized COVID-19 cases by severity on analysis of principal

components of variance, while community cases overlapped

with heathy controls and sepsis cases clustered separately (Fig-

ure S8E). The major proteins contributing to these axes of vari-

ance between groups were CXCL10, CXCL5, EGF, CCL2,

S100A9, IL6, LCN2, CCL20, LF, andG-CSF (Figure S8E). Overall,

we found 49% (25 of 51) analytes were differentially abundant in

plasma fromCOVID-19 cases versus healthy volunteers (Figures

6D, S8F, and S8G; Data S3). Among these, CCL2, CCL19,

CCL20, CXCL10, GM-CSF, IL-6, IL-8, IL-15, S100A9, and

SCGF (all increased abundance) were strongly correlated with

severity in hospitalized COVID-19 patients (r2 > 0.5, p < 0.001).

We further compared with sepsis and influenza to investigate

disease specificity and found the plasma levels of G-CSF, IL-8,

LF, CD163, LCN2, CCL20, IL-6, IL-10, CCL4, CCL19, TNF, and

C5a were lower in critical and severe COVID-19 than sepsis (Fig-

ures 6E and S8G). Compared with influenza, serum EGF, LF, and

CD40L were higher in serum from patients with critical COVID-

19, while G-CSF was lower (Figure S8H). We then investigated

protein-protein correlation network relationships of assayed

plasma cytokines and chemokines. This identified S100A9, M-

CSF, and CCL2/19 as nodal proteins. When we performed pro-

tein-clinical trait correlation network analysis for COVID-19

severity, we found strong correlations (|r| > 0.5) between clinical

features (CRP, SaO2/FiO2, and ventilation days) and specific

nodal proteins (GM-CSF, CXCL10, TREM-1, CCL2/19, TF, IL-

6/15, MPO, and S100A9) at the center of the network (Figure 6F).

Plasma proteome variation identifies patient sub-
phenotypes of differing disease severity
We next investigated the utility of plasma proteins for patient

sub-phenotyping within hospitalized COVID-19 cases (n = 122

samples) by integrating the LC-MS-MS and Luminex datasets

using Similarity Network Fusion (SNF) (Wang et al., 2014) (Fig-

ure 6G; STARMethods). We first constructed a sample-by-sam-

ple similarity matrix from which we derived a network for each of

the two data types. Analyzing these individually in an unsuper-

vised manner with spectral clustering, we could only discrimi-

nate a minority of cases (the most mild from all others). However,

when we fused these networks into a single similarity network

that maximized shared and complementary information, we

discovered two clusters that separated by clinical measures of
higher positive correlation with disease severity).

rms.

assayed by Luminex.

nteers. Data represented as mean ± SEM.

althy volunteers based on highly correlated events (r2 > 0.7 or < -0.5).

9 patients fromCOMBAT cohort showing approach and PCA colored by cluster

rd ratio calculated using Cox proportional hazard model).

ts showing cluster groups (left) or colored by WHO max severity (right).
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disease severity including inspired oxygen concentration and

SOFA oxygen score (t test Pc < 0.05) (Figure 6G). Notably, this

molecular classification stratified severe cases assigned based

on WHO categorical criteria into those that group with more

mild cases and those clustering with critical cases. We identified

11 proteins as the main discriminatory features distinguishing

the clusters (mutual information score R 0.15) (Figure 6G). The

predictive protein set spanned key inflammatory mediators,

including the cytokines and chemokines IL-6, IL-8 (CXCL8),

CCL2, CCL19, CCL20, and CXCL10 together with S100A9 (cal-

protectin), the acute phase proteins serum amyloid protein

(SAA1) and protease inhibitor (SERPINA3), GM-CSF, and the

C-type lectin CLEC11A. When we compared the two clusters,

we found that membership of cluster two was associated with

higher 28-day mortality (Figure 6H).

We validated the clusters in an independent acute hospitalized

COVID-19 cohort assayed using a different technology, targeted

proteomics by Olink (Filbin et al., 2021) (STAR Methods). Clus-

tering analysis, using 7 of the 11 predictive proteins for which

data were available, identified two optimal clusters (Figures 6I).

These showed a clear relationship with measures of disease

severity, including WHO ordinal score (maximum) (Figure 6I),

and patients in cluster 1 had lower mortality at 28 days (5/

164 = 3.0%) compared with cluster 2 (33/105 = 31.4%) (Chi-

square test p < 0.0001), validating the findings from our discov-

ery cohort. We extended the approach to include a combination

of hospitalized COVID-19 and sepsis patients from COMBAT.

This revealed three clusters, two corresponding to the clusters

seen with COVID-19 cases analyzed alone, indicating a high

level of specificity (Figures S8I and S8J). Features that separated

COVID-19 and sepsis included lipocalin2 (LCN2) and CCL20,

which were elevated in sepsis, and CXCL10, APCS, and fibro-

nectin (FN1), which were higher in COVID-19.

Supervised machine learning identifies predictive
protein biomarkers for disease severity
We next used machine learning to combine the two proteomics

data types with whole blood total RNA-seq to determine which

features were predictive of disease severity and their relative

informativeness (Figure S9A; STAR Methods). We first identified

assay-type-specific informative components of variance to

reduce dimensionality for a training sample set and then deter-

mined which were most informative and the genes/proteins
Figure 7. Integrative approaches define hallmarks of COVID-19 respon

(A and B) Machine learning for COVID-19 severity showing average feature sco

feature set.

(C–I) Tensor and matrix decomposition across multi-omic datasets for 152 samp

(k-means clustering of row-scaled median sample loadings) and relationship with

loading scores differing by comparator group showing features (cells, gene ex

contributes to that component; for gene expression, cell type and highest scoring

enrichment (FDR < 0.05) with pathway genes listed within bars (features shown o

(E) Component showing strongest association with COVID-19 severity.

(F) Components associated with different severities of COVID-19.

(G) COVID-19 specific component.

(H) Influenza and COVID-19 associated component.

(I) Hospitalized COVID-19 and influenza associated component.

All boxplots show median, first, and third quartiles; whiskers 1.5x interquartile ra

See Figure S9.
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maximally contributing to each (Figure 7A). After feature elimina-

tion based on performance, we found the minimal set of cross-

modality features to predict severity were the acute phase pro-

teins SAA2 and CRP, an immunoglobulin (IGHG4), chemokines

(CCL20 and CCL2), IL-6, and complement component C5a;

the combined performance of these features in the hold-out vali-

dation set showed a balanced accuracy of 75%–80% to predict

WHO category group (Figures 7B, S9B, and S9C). We also used

machine learning to search for features that distinguish hospital-

ized COVID-19 patients from sepsis. A multi-omic set of 81 fea-

tures was discovered using SIMON (Tomic et al., 2021) (STAR

Methods) (AUC = 0.85, 95% CI = 0.59–1), identifying specific

differentially abundant genes, proteins (including FCN1 and

APCS as higher in COVID-19) and significant pathway enrich-

ment for hematopoietic cell lineage and the renin-angiotensin

system (Figures S9D and S9E).

Integrated hallmarks of COVID-19 severity and
specificity
We sought to dissect the immune response to COVID-19 across

all assay typesusing amulti-omics tensor approach (Changet al.,

2021; Fanaee-T and Thoresen, 2019; Taguchi, 2017), specifically

the sparse decomposition of arrays (SDA) algorithm (Hore et al.,

2016). We analyzed 152 samples assayed for cellular composi-

tion, gene expression, and plasma proteomics, and found 381

latent SDA components, each comprising vectors of scores

(loadings) that indicate the contribution of individual cell types,

genes, or proteins linkedby that component, and therebyoffering

insights into shared mechanism (Figures 7C and 7D; Table S4;

STARMethods).We identified components associatedwith spe-

cific clinical covariates, severity, or patient group, noting that

while in some instances e.g., gender, there was a single associ-

ated component, typically several components were associated

(Figure S9F). The strongest association with COVID-19 severity

was for component 171 (Pc = 5.9x10�14, rho = 0.74 Spearman)

(Figure 7E) which was unusual in having a high feature contribu-

tion from plasma proteins, whereas gene expression contributed

most to the majority of the other components (Figure S9G).

Contributing features to component 171 included raised plasma

chemokines involved in chemotaxis and activation (CXCL8,

CXCL10, and CCL20) and GM-CSF together with acute phase

activating proteins (SAA1/2 and SERPINA3), LRG1, and LBP;

reduced abundance of intermediatemonocytes; high expression
se

re of (A) highest-scoring features (principal components, PCs), and (B) final

les showing (C) approach; (D) clustering of COVID-19 associated components

disease comparator groups; and (E–I) examples of components with sample

pression, proteins) with high posterior inclusion probability whose variance

genes listed (red upregulated, blue downregulated) together with top pathway

r included in pathway analysis where posterior inclusion probability > 0.5).

nge.



ll
OPEN ACCESSResource
of cell stress chaperone CLU and methyltransferase METTL7B,

and downregulation of IgE receptor and multiple HLA class II

genes; and pathway enrichment for antigen presentation, TCR

signaling, and asthma (Figure 7E).

To further delineate COVID-19 associated SDA components,

we performed pairwise contrasts and analysis of variance

involving COVID-19 patient groups. Overall, 130 of 381 compo-

nents were associated with COVID-19 versus healthy volunteers

(Figures 7D and S9H). Components associated with mild and se-

vere but not critical disease included component 256 (upregula-

tion of interferon response genes and downregulation of genes

such as catalase and cytochrome c oxidase) which was specific

to COVID-19 cases (Figure 7F); and component 42 (features of

monocyte/granulocyte proliferation and function, elevated

plasma proteins G-CSF, IL-2, IL-8, and IL-15, and enrichment

of cell division related pathways) (Figure S9I). A further compo-

nent strongly associated with severe disease involved plasma-

blast proliferation, combined with increased MThi cMono and a

clear DNA replication signature (component 289) (Figure 7F).

We found an innate response component specific to critical

COVID-19 (component 247) with differential expression of

granulocyte activation marker (CEACAM8), neutrophil elastase

(ELANE) and defensins (DEFA1B/4), and increased soluble

CD163 scavenger protein levels, reflected in pathway enrich-

ment for neutrophil functions (Figure 7F). Neutrophil related fea-

tures were also found in component 123 associated with COVID-

19 severity, influenza, and sepsis (Figure S9I).

This approach also identified a further COVID-19 specific

component (187) with high loading scores in hospitalized and

community COVID-19 patients across NK, B, and T cells (Fig-

ure 7G). This was driven by upregulation of key stress and acti-

vation response genes including immediate early response pro-

tein (PMAIP1), AP-1 transcription factor genes FOS and JUN, the

early activation marker, tissue residency and metabolic reprog-

ramming geneCD69, and TNFAIP3, which limits NFkBmediated

inflammation. The cytokine-induced STAT inhibitor (CISH) and

immune checkpoint regulator of inflammation and metabolism

TNFAIP8L2 were downregulated. Pathway enrichment was

seen for type-2 inflammation (IL4 and IL13), TLR signaling, and

the ATF-2 network. We additionally identified COVID-19 and

influenza-associated components (Figures 7H and 7I) including

widespread upregulation of immunoglobulin heavy/kappa/

lambda genes, JCHAIN (regulating multimerization and mucosal

secretion of IgM/IgA), and MZB1 (involved in antibody secretion

and integrin-mediated cell adhesion) linking with possible anti-

body-dependent cellular toxicity (component 6); and significant

upregulation of interferon pathway genes (component 235).

Overall, the latent component analysis identifies hallmarks of

COVID-19 severity and specificity with respect to sepsis and

influenza. Our findings highlight key cellular populations such

as proliferating monocytes and plasmablasts, and features of

innate and adaptive mechanisms ranging from interferon

signaling to myelopoiesis, immunoglobulin production, and

stress activation response signaling. The results prioritize and

validate hallmarks seen on individual modality analysis such as

AP-1 and generate hypotheses for how hallmarksmay be related

in terms of pathophysiology based on co-occurrence in a given

component.
DISCUSSION

Our comprehensive multimodal integrated approach, applied to

multiple well-defined cohorts, has identified blood hallmarks of

COVID-19 severity and specificity involving particular immune

cell populations and their development, components of innate

and adaptive immunity, and connectivity with the inflammatory

response (graphical abstract).

Identified hallmarks of severity involving myeloid related fea-

tures include emergency myelopoiesis, immature neutrophils,

increased HSC, and platelet/CD34� megakaryocyte progenitors,

with the latter associated with thromboembolism. These findings

substantiate and add granularity to previous reports (Bernardes

et al., 2020; Stephenson et al., 2021). We find evidence ERG is

central to a gene network linked to these populations, encoding

a transcription factor important in determining lineage plasticity,

modulating inflammation, and maintaining an anti-thrombotic

environment (Yuan et al., 2009).We further identify hallmarks sup-

porting the importance of mononuclear phagocyte dysfunction in

severe disease (Bost et al., 2021; Mann et al., 2020; Schulte-

Schrepping et al., 2020), namely proliferating cMono, and specific

monocyte populations showing reduced HLA-DR, CD33, and

CD11c expression, high expression of antioxidantmetallothionein

and S100A8/9/12 (calprotectin), together with reduced pDCs.

Changes in the frequency of specific T cell subsets, and their

activation and exhaustion, has been previously reported in se-

vere COVID-19 (Chen and John Wherry, 2020; Jouan et al.,

2020; Parrot et al., 2020). We found increased numbers of acti-

vated CD8+ T cells and NK cell populations in COVID-19, and,

with increasing severity, failure of clonal expansion in CD8+ T

effector andcentralmemory cells anddepletion ofCOVID-19 clo-

notypes. We further found association with severity for exhaus-

tionmarkers and specific activatedNKandCD69+MAIT cell pop-

ulations. In terms of adaptive immunity (Brouwer et al., 2020;

Galson et al., 2020), we find increased numbers of terminally

differentiated plasmablasts, with expansion of unmutated B cells

differing in selection and tolerance, and a higher proportion of

clonally related B cells. Persisting changes in cell composition

were found in convalescent samples, including an increase in

activatedCD4+ andCD8+ T cells and unswitchedmemory B cells

as well as reduced CD16�CD56dim NK cells. These differences

were also seen in community cases when compared to healthy

volunteers; upregulation of TNF signaling was a consistent

feature across cell populations in community cases. Redox state

and cell cycle associate with more severe disease across cell

populations. Our data are also consistent with the importance

of the hyperinflammatory state (Moore and June, 2020) and inter-

feron response (Hadjadj et al., 2020; Lei et al., 2020) but as fea-

tures of less critical disease and earlier phase of illness.

Our proteomic analysis identified plasma levels of specific cy-

tokines and chemokines as biomarkers of severe disease with

evidence for acute phase response, complement activation/

attack, fibrin clots, proteases, serum amyloid, tissue necrosis,

receptor mediated endocytosis, and cholesterol transport as

hallmarks. Moreover, we discovered plasma protein signatures

that can be used to stratify acute hospitalized COVID-19 cases

into disease sub-phenotypes not identified from WHO categori-

cal criteria, with cluster membership informative for response
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state and associated with differential 28-day mortality. We vali-

dated this in an independent dataset using a predictive set of

seven plasma proteins (cytokines IL-6, IL-8; chemokines

CCL2, CCL19, CCL20, CXCL10; and C-type lectin CLEC11A, a

key growth factor for primitive hematopoietic progenitor cells).

Patient stratification is important given the observed clinical het-

erogeneity within severe COVID-19. Such variability has histori-

cally confounded clinical trials for targeted immune therapy in

other severe infections (Davies et al., 2018; Marshall, 2014).

This work has demonstrated the informativeness of a multi-

linear tensor approach to stratify and interpret the complexity

of multi-omic datasets. Application of the SDA algorithm identi-

fied latent components of variance that linked signals from

across cellular, gene expression and plasma protein measure-

ments. For example, the most significant tensor component

associated with COVID-19 severity involves myeloid chemotaxis

and activation, the acute phase response, HLA class II downre-

gulation, and TCR signaling. Our dataset provides an important

resource to develop other approaches for identifying multimodal

signals and associated mechanistic insights, such as leveraging

algebraic systems biology (Gross et al., 2016), multi-layer net-

works (Kivela et al., 2014), topological data analysis (Cámara,

2017), or tensor clustering (Seigal et al., 2019).

Considering features specific to COVID-19, we found the

CD49d:CD43 ratio is elevated across COVID-19 patients,

including into recovery and in convalescence, suggesting this

may be an informative index score for neutrophil activities spe-

cific to COVID-19 that could be prognostically useful acutely

and in convalescence. A subset of tissue-infiltrating CD49d ex-

pressing neutrophils have been reported, activated by vascular

endothelial growth factor A released fromhypoxic sites (Massena

et al., 2015), while reduction in CD43 expression leads to neutro-

phil retention in the blood and increased adherence to vessel

walls (Woodman et al., 1998). This raises the possibility of a link

to the enhanced thrombosis observed in COVID-19 patients,

the basis of which remains unresolved (Ortega-Paz et al., 2021).

Our epigenetic, gene expression, and integrative SDA ana-

lyses all identified upregulation of the AP-1 p38 MAPK pathway

as a specific feature of COVID-19 across different immune sub-

sets. While not associated with severity, this observation further

supports systemic immune activation and proliferation as a

hallmark of COVID-19. AP-1 is a pioneer transcription factor

that reversibly imprints the senescence enhancer landscape

following stress and can be modulated to reverse T cell exhaus-

tion (Lynn et al., 2019; Martı́nez-Zamudio et al., 2020). This raises

the possibility of AP-1 acting as a mediator of inappropriate

chromatin remodeling and cellular activation/senescence inmul-

tiple cell types, with evidence from our analysis of persisting dif-

ferential chromatin accessibility, gene expression signatures,

and cell protein markers of activation that may contribute to

both acute disease and post-COVID-19 syndrome. Our findings

are consistent with work involving convalescent COVID-19 pa-

tients showing evidence of trained immunity and persisting chro-

matin remodeling in myeloid and lymphoid cell populations

involving high levels of activity of AP-1 transcription factors

(You et al., 2021). Persistent reduced chromatin accessibility in

myeloid cells at AP-1 targeted loci has been reported following

influenza vaccination associated with innate immune refractori-
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ness (Wimmers et al., 2021). A role for AP-1 in COVID-19 is

also consistent with the reported efficacy of baricitinib improving

recovery of hospitalized patients (Kalil et al., 2021). Baricitinib

acts upstream of AP-1 (Zarrin et al., 2021) and controls macro-

phage inflammation and neutrophil recruitment in COVID-19

(Hoang et al., 2021).

Our findings involving immuneactivationandproliferationareof

further relevance given the key nodal plasma cytokines, including

GM-CSF and IL-6, we identify as hallmarks of disease severity in

proteomic and integrative analysis, targeting of which could also

benefit dysfunctional granulopoiesis and neutrophil subsets.

This supports the efficacy of tocilizumab (IL-6 receptor inhibitor)

in severe disease (Horby et al., 2021b).Moreover, we find upregu-

lation of IL6R in more severe disease. Our data support inhibitors

of GM-CSF in current clinical trials, use of anti-CCL2 (Gracia-Her-

nandez et al., 2020), the repurposing of immune checkpoint inhib-

itors (Pezeshki and Rezaei, 2021) to restore/enhance CD8+ T cell

cytotoxicity, and potential targets such as FGFRs, cofactors for

early-stage viral infection upregulated by MERS-CoV2 leading

to lung damage (Hondermarck et al., 2020).

Establishing optimal biomarkers of response and relevant

sample collection, as well as timely availability of results, are

important considerations in current immunomodulatory trial

design in COVID-19.We found thewidely used clinical biomarker

CRP has predictive utility but less than serum amyloid A and is

one component of a discriminating biomarker marker set for

severity. In terms of multi-omics, total RNA-seq of whole blood

stabilized at the bedside, a tractable sample type for collection

in a pandemic, was highly informative for understanding variance

in disease severity while use of small volumes of rapidly fixed

whole blood for later flow and mass cytometry gives comple-

mentary and highly granular resolution of the cellular immune

response state and identifies specific cell populations important

in severe disease.

An important question is how thehallmarks of severedisease in

COVID-19 relate to non-SARS-CoV-2 sepsis (Beltrán-Garcia

et al., 2020;Olwal et al., 2021).Wecomparedpatientswith severe

or critical illness, not only revealing shared features relating to

emergency myelopoiesis and progenitors but also identifying

discriminating neutrophil markers (CD49d:CD43 ratio) in

COVID-19 (summarized in graphical abstract). In terms of mono-

cytes, upregulation of cMono and specifically higher abundance

of CD14+CD33+HLADR� cells and S100A8/9/12 expressing

cMono in severe/critical COVID-19 and sepsis is consistent

with similar changes in monocytic myeloid-derived suppressor

cells in both diseases, while similar reductions in ncMono and

DCs were seen in both COVID-19 and sepsis. We found specific

differences for other populations, for example increased comple-

ment expressing (C1Q) ncMono in sepsis and extracellularmatrix

protein versican expressing cMono (mitohiVCANhi) in COVID-19.

Lymphocyte exhaustion is proposed as a commonmechanism in

COVID-19 and sepsis (Boomer et al., 2012; Diao et al., 2020). We

find overall higher levels of CD4+ and CD8+ T cell activation, and

moremarked changes in cellmarkers, inCOVID-19, suggesting a

greater degree of CD8+ T cell exhaustion. While we find no major

changes in naive and transitional B cells in either condition, in

sepsis we observed an absence of terminally differentiated plas-

mablasts and fewer clonally related B cells, class switching and



ll
OPEN ACCESSResource
autoreactive BCRs. We further identified plasma proteins

discriminating COVID-19 and sepsis, for example LBP, lactofer-

rin, and lipocalin 2; and differential pathways including neutrophil

degranulation, complement, AP-1/p38MAPK, TLR, renin-angio-

tensin, and the HSC lineage. We note that COVID-19-induced

downregulation of ACE2 may be involved in modulating both

the renin-angiotensin system and activation of AP-1/p38MAPK

signaling (Grimes and Grimes, 2020).

Similarly, while differences in target cells and control of viral

replication are recognized between COVID-19 and influenza,

shared immune responses and mechanisms are reported (Fler-

lage et al., 2021). Our data build on previous blood immune sig-

natures (Lee et al., 2020; Mudd et al., 2020; Zhu et al., 2020) to

gain cellular and proteomic insights into more severe forms of

these two infections.We find similar changes in frequency ofma-

jor immune cell populations between COVID-19 and influenza for

HSC, the majority of T and NK cell populations, classical/cycling

monocytes, and plasmablasts; but differences for many B cell

populations (differential naive, intermediate, and memory B cell

response) as well as specific cell subsets, notably ncMono sub-

populations (summarized in graphical abstract). While the bulk of

the circulating proteomic response is shared, specific differ-

ences involved EGF, G-CSF, and IL-15. We further found exten-

sive sharing of pathways and networks including modules

involving JAK-STAT and zinc finger proteins, as well as differ-

ences, notably enrichment of AP-1/MAPK in COVID-19.

In conclusion, our multi-omic integrated blood atlas compre-

hensively delineates the host immune response in COVID-19

from the start of the UK pandemic, prior to clinical trial-led imple-

mentation of approved treatments or vaccination. This provides

the community with a unique reference resource for replication

and meta-analysis, to interpret datasets generated from inter-

ventional trials and includes a browser for direct visualization

of data (https://mlv.combat.ox.ac.uk/). Integrative approaches

such as we have applied here are essential to better differentiate

patients according to disease severity, underlying pathophysi-

ology, and infectious etiology. This will be important as we

seek novel therapeutic targets and the opportunity for a preci-

sion medicine approach to treatment that is appropriately timed

and targeted to those patients most likely to benefit from a

particular intervention.

Limitations of the study
This study is limited to analysis of peripheral blood. Future multi-

tissue studies including lung samples using multi-omics ap-

proaches are needed to further delineate the host response in

COVID-19. It will also be important to more clearly establish

changes from baseline, such as will be afforded by challenge

studies with SARS-CoV-2, and more detailed temporal profiling

over the course of acute illness into convalescence. Further

work is needed to delineate the role of AP-1/p38 MAPK pathway

upregulation in COVID-19, such as investigating the relationship

with viral replication and specific disease mechanisms such as

T cell exhaustion. AP-1 inhibitorsmay enable insights into revers-

ibility, the extent andnatureof persisting epigenetic differences in

convalescence, and relationship with COVID-19 vaccination.

Functional studies are needed to understand the relationship be-

tween COVID-19 associated Kmers, CD8+ T cell expansion, and
cytotoxicity in critical disease but TCR sequences, including an

agnostic Kmer analysis, have been used to define T cell re-

sponses linked to SARS-CoV-2 (Shoukat et al., 2021).
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Nassiri, I., Middleton, M., and Fairfax, B. (2020). Immune Checkpoint Blockade

induces peripheral cytotoxicity and persistence of large effector CD8+ T cell

clones. Sci. Immunol. 6, eabj8825.

Weber, L.M., Nowicka, M., Soneson, C., and Robinson, M.D. (2019). diffcyt:

Differential discovery in high-dimensional cytometry via high-resolution clus-

tering. Commun. Biol. 2, 183.

Williamson, E.J.,Walker, A.J., Bhaskaran, K., Bacon, S., Bates, C., Morton, C.E.,

Curtis, H.J., Mehrkar, A., Evans, D., Inglesby, P., et al. (2020). Factors associated

with COVID-19-related death using OpenSAFELY. Nature 584, 430–436.

Wimmers, F., Donato, M., Kuo, A., Ashuach, T., Gupta, S., Li, C., Dvorak, M.,

Foecke, M.H., Chang, S.E., Hagan, T., et al. (2021). The single-cell epigenomic

and transcriptional landscape of immunity to influenza vaccination. Cell 184,

3915–3935.e21.

Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell

gene expression data analysis. Genome Biol. 19, 15.

Wolock, S.L., Lopez, R., and Klein, A.M. (2019). Scrublet: Computational Identi-

fication ofCell Doublets inSingle-Cell TranscriptomicData. Cell Syst8, 281–291.

Woodman, R.C., Johnston, B., Hickey, M.J., Teoh, D., Reinhardt, P., Poon,

B.Y., and Kubes, P. (1998). The functional paradox of CD43 in leukocyte

recruitment: a study using CD43-deficient mice. J. Exp. Med. 188, 2181–2186.

Wynants, L., Van Calster, B., Collins, G.S., Riley, R.D., Heinze, G., Schuit, E.,

Bonten, M.M.J., Dahly, D.L., Damen, J.A.A., Debray, T.P.A., et al. (2020). Pre-

dictionmodels for diagnosis and prognosis of covid-19: systematic review and

critical appraisal. BMJ 369, m1328.

You, M., Chen, L., Zhang, D., Zhao, P., Chen, Z., Qin, E.-Q., Gao, Y., Davis,

M.M., and Yang, P. (2021). Single-cell epigenomic landscape of peripheral im-

mune cells reveals establishment of trained immunity in individuals conva-

lescing from COVID-19. Nat. Cell Biol. 23, 620–630.

Youngs, J., Provine, N.M., Lim, N., Sharpe, H.R., Amini, A., Chen, Y.-L., Luo, J.,

Edmans, M.D., Zacharopoulou, P., Chen, W., et al.; Oxford Immunology

Network Covid-19 response T cell Consortium; Oxford Protective T cell Immu-

nology for COVID-19 (OPTIC) Clinical team (2021). Identification of immune

correlates of fatal outcomes in critically ill COVID-19 patients. PLoS Pathog.

17, e1009804.

Yu, F., Haynes, S.E., Teo, G.C., Avtonomov, D.M., Polasky, D.A., and Nesvizh-

skii, A.I. (2020). Fast Quantitative Analysis of timsTOF PASEF Data with

MSFragger and IonQuant. Mol. Cell. Proteomics 19, 1575–1585.

Yu, F., Haynes, S.E., and Nesvizhskii, A.I. (2021). IonQuant enables accurate

and sensitive label-free quantification with FDR-controlled match-between-

runs. Mol. Cell. Proteomics 20, 100077.

Yuan, L., Nikolova-Krstevski, V., Zhan, Y., Kondo, M., Bhasin, M., Varghese,

L., Yano, K., Carman, C.V., Aird, W.C., and Oettgen, P. (2009). Antiinflamma-

tory effects of the ETS factor ERG in endothelial cells are mediated through

transcriptional repression of the interleukin-8 gene. Circ. Res. 104, 1049–1057.

Zarrin, A.A., Bao, K., Lupardus, P., and Vucic, D. (2021). Kinase inhibition in

autoimmunity and inflammation. Nat. Rev. Drug Discov. 20, 39–63.

Zhu, L., Yang, P., Zhao, Y., Zhuang, Z., Wang, Z., Song, R., Zhang, J., Liu, C.,

Gao, Q., Xu, Q., et al. (2020). Single-Cell Sequencing of Peripheral Mononu-

clear Cells Reveals Distinct Immune Response Landscapes of COVID-19

and Influenza Patients. Immunity 53, 685–696.

Zougman, A., Selby, P.J., and Banks, R.E. (2014). Suspension trapping (STrap)

sample preparation method for bottom-up proteomics analysis. Proteomics

14, 1006–1000.

http://refhub.elsevier.com/S0092-8674(22)00070-8/sref118
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref118
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref119
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref119
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref119
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref120
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref120
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref120
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref120
https://doi.org/10.1101/2021.01.13.21249725
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref122
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref122
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref122
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref123
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref123
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref123
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref123
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref123
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref124
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref124
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref124
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref124
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref124
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref125
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref125
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref125
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref126
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref126
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref127
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref127
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref127
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref128
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref128
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref128
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref129
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref129
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref129
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref130
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref130
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref131
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref131
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref132
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref132
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref132
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref133
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref133
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref133
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref133
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref134
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref134
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref134
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref135
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref135
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref135
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref135
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref136
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref136
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref136
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref137
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref137
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref137
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref138
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref138
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref138
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref138
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref140
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref140
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref140
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref140
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref141
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref141
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref141
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref142
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref142
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref142
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref143
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref143
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref143
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref143
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref144
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref144
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref145
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref145
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref146
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref146
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref146
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref147
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref147
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref147
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref147
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref148
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref148
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref148
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref148
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref149
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref149
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref149
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref149
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref149
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref149
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref150
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref150
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref150
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref151
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref151
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref151
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref152
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref152
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref152
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref152
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref153
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref153
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref154
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref154
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref154
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref154
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref155
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref155
http://refhub.elsevier.com/S0092-8674(22)00070-8/sref155


ll
OPEN ACCESSResource
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mass cytometry panel antibodies (^:intracellular)

CD45 (HI30)-89Y Fluidigm Cat# 3089003, RRID:AB_2661851

CD19 (HIB19)-111Cd BioLegend Cat# 302247, RRID:AB_2562815

CD3 (UCHT1)-112Cd BioLegend Cat# 300438, RRID:AB_11146991

IgG (M1310G05)-113Cd BioLegend Cat# 410701, RRID:AB_2565624

CD4 (RPA-T4)-114Cd BioLegend Cat# 300570, RRID:AB_2810427

HLADR (G46-6)-116Cd BD Bioscience Cat# 556642, RRID:AB_396508

CD57 (HCD57)-115In BioLegend Cat# 322325, RRID:AB_2563757

CD11c (Bu15)-141Pr BioLegend Cat# 337202, RRID:AB_1236381

BCL2 (100)-142Nd^ BioLegend Cat# 658702, RRID:AB_2562959

CD45RA (HI100)-143Nd BioLegend Cat# 304102, RRID:AB_314406

GZB (CLB-GB11)-144Nd^ Abcam Cat# ab103159, RRID:AB_10715242

CD33 (P67.6)-145Nd BioLegend Cat# 366602, RRID:AB_2565538

Vd2 (123R3.5B8)-146Nd Miltenyi Custom made

CD20 (2H7)-147Sm BioLegend Cat# 302343, RRID:AB_2562816

CD66 (B1.1/CD66)-149Sm BD Bioscience Cat# 551354, RRID:AB_394166

CD69 (FN50)-150Nd BioLegend Cat# 310902, RRID:AB_314837

CD103 (Ber-ACT8)-151Eu Fludigm Cat# 3151011B, RRID:AB_2756418

TCRgd (11F2)-152Sm^ Fluidigm Cat# 3152008B, RRID:AB_2687643

IgD (IA6-2)-152Sm BioLegend Cat# 348235, RRID:AB_2563775

Va7.2 (3C10)-153Eu Fluidigm Cat# 3153024B; RRID: N/A

KLRG1 (14C2A07)-154Sm BioLegend Cat# 368602, RRID:AB_2566256

PD1 (EH12.2H7)-155Gd Fluidigm Cat# 3155009B, RRID:AB_2811087

CD161 (HP-3G10)-156Gd BioLegend Cat# 339902, RRID:AB_1501090

CD27 (L128)-158Gd Fluidigm Cat# 3158010B, RRID:AB_2858231

FoxP3 (PCH101)-159Tb^ eBioscence Cat# 14-4776-82, RRID:AB_467554

CD14 (M5E2)-160Gd BioLegend Cat# 301843, RRID:AB_2562813

CTLA-4 (14D3)-161Dy eBioscence Cat# 14-1529-82, RRID:AB_467512

Siglec-8 (837535)-162Dy R&D Cat# MAB7975

CD28 (L293)-163Dy BD Bioscience Cat# 340975, RRID:AB_400197

Ki67 (Ki-67)-164Dy^ BioLegend Cat# 350523, RRID:AB_2562838

CD45RO (UCHL1)-165Ho BioLegend Cat# 304202, RRID:AB_314418

CD56 (NCAM16.2)-166Er BD Bioscience Cat# 559043, RRID:AB_397180

CCR7 (150503)-167Er R&D Cat# MAB197, RRID:AB_2072803

CD127 (A019D5)-168Er BioLegend Cat# 351302, RRID:AB_10718513

CD38 (HIT2)-169Tm BioLegend Cat# 303502, RRID:AB_314354

CD99 (HCD99)-170Er BioLegend Cat# 318002, RRID:AB_604112

CD123 (6H6)-171Yb BioLegend Cat# 306002, RRID:AB_314576

CD25 (M-A251)-172Yb BioLegend Cat# 356102, RRID:AB_2561752

CD141 (M80)-173Yb BioLegend Cat# 344102, RRID:AB_2201808

CLA (HECA-452)-174Yb BioLegend Cat# 321302, RRID:AB_492894

CD39 (A1)-175Lu BioLegend Cat# 328202, RRID:AB_940438

CX3CR1 (2A9-1)-176Yb BioLegend Cat# 341602, RRID:AB_1595422
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CD8 (RPA-T8)-198Pt BioLegend Cat# 301018, RRID:AB_314136

CD16 (3G8)-209 Bi Fluidigm Cat# 3209002B, RRID:AB_2756431

Flow Cytometry Antibody Panels

Panel 1 N/A

CD11b-Alexa700 (M1/70) BioLegend Cat#101222,RRID:AB_493705

BDCA2-APC (201A) BioLegend Cat#354206,RRID:AB_11150412

HLADR-APCCy7 (L243) BioLegend Cat#307618,RRID:AB_493586

CD86-BB515 (FUN-1) BD Bioscience Cat#564544,RRID:AB_2744453

CD33-BB630 (WM-53) BD Bioscience Custom made

CD38-BB790 (HIT2) BD Bioscience Custom made

IgM-BUV395 (G20-127) BD Bioscience Cat#551062,RRID:AB_398487

CD20-BUV496 (2H7) BD Bioscience Cat#749954,RRID:AB_2874186

CD56-BUV563 (MY31) BD Bioscience Cat#748610,RRID:AB_2873017

PDL1-BUV615-P (MIH1) BD Bioscience Cat#751185,RRID:AB_2875207

CD3-BUV661 (UCHT1) BD Bioscience Cat#612964,RRID:AB_2870239

CD80-BV421 (2D10) BioLegend Cat#305222,RRID:AB_2564407

CD19-BV510 (HIB19) BioLegend Cat#302242,RRID:AB_2561668

CD14-BV605 (M5E2) BioLegend Cat#301834,RRID:AB_2563798

IgD-BV605 (IA6-2) BD Bioscience Cat#563313,RRID:AB_2738134

CD16-BV650 (3G8) BioLegend Cat#302042,RRID:AB_2563801

CD40-BV711 (5C3) BioLegend Cat#334334,RRID:AB_2564212

CD123-BV786 (6H6) BioLegend Cat#306032,RRID:AB_2566448

CD27-PE (LG.3A10) BioLegend Cat#124210,RRID:AB_1236459

CD137-PECF594 (4B4-1) BioLegend Cat#309826,RRID:AB_2566260

CD1c-PECy7 (L161) BioLegend Cat#331516,RRID:AB_2275574

CD141-PerCPCy5.5 (M80) BioLegend Cat#344112,RRID:AB_2561625

Panel 2 N/A

CD16-Alexa700 (3G8) BioLegend Cat#302026,RRID:AB_2278418

CD161-APC (HP3G10) BioLegend Cat#339912,RRID:AB_10900826

CCR7-APCCy7 (G043H7) BioLegend Cat#353212,RRID:AB_10916390

CD45RA-BB515 (HI100) BD Bioscience Cat#564552,RRID:AB_2738841

TCRgd-BB700 (11F2) BD Bioscience Cat#745944,RRID:AB_2743364

CD38-BB790 (HIT2) BD Bioscience Custom made

CD103-BUV (Ber-ACT8) BD Bioscience Cat#748501,RRID:AB_2872912

CD26-BUV395 (L272) BD Bioscience Cat#745724,RRID:AB_2743201

CD8-BUV496 (RPA-T8) BD Bioscience Cat#612942,RRID:AB_2870223

CD56-BUV563 (MY31) BD Bioscience Cat#748610,RRID:AB_2873017

CD4-BUV615-P (SK3) BD Bioscience Cat#612987,RRID:AB_2870258

6B11-BUV661 (6B11) BD Bioscience Cat#750268,RRID:AB_2874460

CD137-BUV737 (4B4-1) BD Bioscience Cat#741861,RRID:AB_2871191

CD69-BV421 (FN50) BioLegend Cat#310930,RRID:AB_2561909

CD14-BV510 (M5E2) BioLegend Cat#301841,RRID:AB_2561379

CD19-BV510 (HIB19) BioLegend Cat#302242,RRID:AB_2561668

Va7.2-BV605 (3C10) BioLegend Cat#351720,RRID:AB_2563991

IgD-BV605 (IA6-2) BioLegend Cat#348231,RRID:AB_2563336

CD3-BV650 (UCHT1) BioLegend Cat#300468,RRID:AB_2629574

CD39-BV711 (A1) BioLegend Cat#328228,RRID:AB_2632894

HLADR-BV786 (L243) BioLegend Cat#307642,RRID:AB_2563461
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TIM3-PE (7D3) BD Bioscience Cat#563422,RRID:AB_2716866

PD1-PECF594 (EH12 2H7) BioLegend Cat#329940,RRID:AB_2563659

CD25-PECy7 (BC96) BioLegend Cat#302612,RRID:AB_314282

Panel 3 N/A

CD27-Alexa700 (O323) BioLegend Cat#313509,RRID:AB_416333

ICOS-APC (C398.4A) BioLegend Cat#313509,RRID:AB_416333

CD25-BB515 (M-A251) BD Bioscience Cat#565096,RRID:AB_2739065

CD38-BB790 (HIT2) BD Bioscience Custom made

CD8-BUV496 (RPA-T8) BD Bioscience Cat#612942,RRID:AB_2870223

CD4-BUV615-P (SK3) BD Bioscience Cat#612987,RRID:AB_2870258

CXCR3-BV421 (G025H7) BioLegend Cat#353715,RRID:AB_11124720

CD14-BV510 (M5E2) BioLegend Cat#301841,RRID:AB_2561379

CD19-BV510 (HIB19) BioLegend Cat#302242,RRID:AB_2561668

CCR4-BV605 (L291H4) BioLegend Cat#359417,RRID:AB_2562482

CD45RA-BV711 (HI100) BioLegend Cat#304138,RRID:AB_2563815

HLADR-BV786 (L243) BioLegend Cat#307642,RRID:AB_2563461

CD127-PE (A019D5) BioLegend Cat#351303,RRID:AB_10719960

PD1-PECF594 (EH12 2H7) BioLegend Cat#329940,RRID:AB_2563659

CCR6-PECy7 (29-2L17) BioLegend Cat#302813,RRID:AB_493756

CXCR5-PerCPCy5.5 (J252D4) BioLegend Cat#356910,RRID:AB_2561819

Myeloid-marker enriched mass cytometry panel antibodies (^:intracellular)

CD45 (HI30)-89Y Fluidigm Cat# 3089003, RRID:AB_2661851

CD5 (UCHT2)-111Cd Biolegend Cat# 300627, RRID:AB_2563756

CD3 (UCHT1)-112Cd Biolegend Cat# 300443, RRID:AB_2562808

CD9 (HI91)-113Cd Biolegend Cat# 312102, RRID:AB_314907

CD7 (CD7-6B7)-114Cd Biolegend Cat# 343111, RRID:AB_2563761

HLADR (L243)-116Cd Biolegend Cat# 307651, RRID:AB_2562826

CD49d (9F10)-141Pr Fluidigm Cat# 3141004B, RRID:AB_2892684

CD19 (HIB19)-142Nd Fluidigm Cat# 3142001B, RRID:AB_2651155

CD123 (6H6)-143Nd Fluidigm Cat# 3143014B, RRID:AB_2811081

CD15 (W6D3)-144Nd Fluidigm Cat# 3144019B, RRID:AB_2892685

CD38 (HIT2)-145Nd Biolegend Cat# 303535, RRID:AB_2562819

CD64 (10.1)-146Nd Fluidigm Cat# 3146006B, RRID:AB_2661790

CD11c (Bu15)-147Sm Fluidigm Cat# 3147008B, RRID:AB_2687850

CD16 (3G8)-148Nd Fluidigm Cat# 3148004B, RRID:AB_2661791

CD74 (LN2)-149Sm Biolegend Cat# 326802, RRID:AB_893401

CD43 (84-3C1)-150Nd Fluidigm Cat# 3150006B, RRID:AB_2892686

CD103 (Ber-ACT8)-151Eu Fluidigm Cat# 3151011B, RRID:AB_2756418

CD66b (80H3)-152Sm Fluidigm Cat# 3152011B, RRID:AB_2661795

BDCA2 (201A)-153Eu Fluidigm Cat# 3153007B, RRID:AB_2892687

CD163 (GHI/61)-154Sm Fluidigm Cat# 3154007B, RRID:AB_2661797

CD36 (5-271)-155Gd Fluidigm Cat# 3155012B, RRID:AB_2756286

CD10 (Hi10a)-156Gd Fluidigm Cat# 3156001B, RRID:AB_2802107

CD33 (WM53)-158Gd Fluidigm Cat# 3158001B, RRID:AB_2661799

CD22 (HIB22)-159Tb Fluidigm Cat# 3159005B, RRID:AB_2892688

CD14 (M5E2)-160Gd Fluidigm Cat# 3160001B, RRID:AB_2687634

CLEC9A (8F9)-161Dy Fluidigm Cat# 3161018B, RRID:AB_2810252

ki67 (B56)-162Dy^ Fluidigm Cat# 3162012B, RRID:AB_2888928
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CD172a/b (SE5A5)-163Dy Fluidigm Cat# 3163017B, RRID:AB_2864730

Siglec 8 (7C9)-164Dy Fluidigm Cat# 3164017B, RRID:AB_2892691

CD101 (BB27)-165Ho Fluidigm Cat# 3165029B, RRID:AB_2892692

CD141 (M80)-166Er Fluidigm Cat# 3166017B, RRID:AB_2892693

CD301 (H037G3)-167Er Fluidigm Cat# 3167015B, RRID:AB_2892694

CD71 (OKT9)-168Er Fluidigm Cat# 3168014B, RRID:AB_2892695

BDCA4 (12C2)-169Tm Fluidigm Cat# 3169018B, RRID:AB_2892697

CD114 (38660)-170Er R&D Cat# MAB381, RRID:AB_2245228

CD226 (DX11)-171Yb Fluidigm Cat# 3171013B, RRID:AB_2756427

CD354 (TREM-26)-172Yb Fluidigm Cat# 3172022B, RRID:AB_2756428

CD371 (50C1)-173Yb Fluidigm Cat# 3173007B, RRID:AB_2892698

CD142 (NY2)-174Yb Biolegend Cat# 365202, RRID:AB_2564564

CITE-seq antibody panel

192 TotalSeq-C antibody panel, as detailed below: BioLegend Cat# 99814

anti-human CD80 (clone 2D10) BioLegend Cat# 99814

anti-human CD86 (clone IT2.2) BioLegend Cat# 99814

anti-human CD274 (B7-H1, PD-L1) (clone 29E.2A3) BioLegend Cat# 99814

anti-human CD273 (B7-DC, PD-L2) (clone 24F.10C12) BioLegend Cat# 99814

anti-human CD275 (B7-H2, ICOSL) (clone 2D3) BioLegend Cat# 99814

anti-mouse/human CD11b (clone M1/70) BioLegend Cat# 99814

anti-human CD252 (OX40L) (clone 11C3.1) BioLegend Cat# 99814

anti-human CD137L (4-1BB Ligand) (clone 5F4) BioLegend Cat# 99814

anti-human CD155 (PVR) (clone SKII.4) BioLegend Cat# 99814

anti-human CD112 (Nectin-2) (clone TX31) BioLegend Cat# 99814

anti-human CD47 (clone CC2C6) BioLegend Cat# 99814

anti-human CD70 (clone 113-16) BioLegend Cat# 99814

anti-human CD30 (clone BY88) BioLegend Cat# 99814

anti-human CD40 (clone 5C3) BioLegend Cat# 99814

anti-human CD154 (clone 24-31) BioLegend Cat# 99814

anti-human CD52 (clone HI186) BioLegend Cat# 99814

anti-human CD3 (clone UCHT1) BioLegend Cat# 99814

anti-human CD8 (clone SK1) BioLegend Cat# 99814

anti-human CD56 (NCAM) (clone 5.1H11) BioLegend Cat# 99814

anti-human CD19 (clone HIB19) BioLegend Cat# 99814

anti-human CD33 (clone P67.6) BioLegend Cat# 99814

anti-human CD11c (clone S-HCL-3) BioLegend Cat# 99814

anti-human CD34 (clone 581) BioLegend Cat# 99814

anti-human CD269 (BCMA) (clone 19F2) BioLegend Cat# 99814

anti-human HLA-A,B,C (clone W6/32) BioLegend Cat# 99814

anti-human CD90 (Thy1) (clone 5E10) BioLegend Cat# 99814

anti-human CD117 (c-kit) (clone 104D2) BioLegend Cat# 99814

anti-human CD10 (clone HI10a) BioLegend Cat# 99814

anti-human CD45RA (clone HI100) BioLegend Cat# 99814

anti-human CD123 (clone 6H6) BioLegend Cat# 99814

anti-human CD7 (clone CD7-6B7) BioLegend Cat# 99814

anti-human/mouse CD49f (clone GoH3) BioLegend Cat# 99814

anti-human CD194 (CCR4) (clone L291H4) BioLegend Cat# 99814

anti-human CD4 (clone RPA-T4) BioLegend Cat# 99814
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anti-mouse/human CD44 (clone IM7) BioLegend Cat# 99814

anti-human CD14 (clone M5E2) BioLegend Cat# 99814

anti-human CD16 (clone 3G8) BioLegend Cat# 99814

anti-human CD25 (clone BC96) BioLegend Cat# 99814

anti-human CD45RO (clone UCHL1) BioLegend Cat# 99814

anti-human CD279 (PD-1) (clone EH12.2H7) BioLegend Cat# 99814

anti-human TIGIT (VSTM3) (clone A15153G) BioLegend Cat# 99814

Mouse IgG1, k isotype Ctrl (clone MOPC-21) BioLegend Cat# 99814

Mouse IgG2a, k isotype Ctrl (clone MOPC-173) BioLegend Cat# 99814

Mouse IgG2b, k isotype Ctrl (clone MPC-11) BioLegend Cat# 99814

Rat IgG2b, k Isotype Ctrl (clone RTK4530) BioLegend Cat# 99814

anti-human CD20 (clone 2H7) BioLegend Cat# 99814

anti-human CD335 (NKp46) (clone 9E2) BioLegend Cat# 99814

anti-human CD294 (CRTH2) (clone BM16) BioLegend Cat# 99814

anti-human CD326 (Ep-CAM) (clone 9C4) BioLegend Cat# 99814

anti-human CD31 (clone WM59) BioLegend Cat# 99814

anti-Human Podoplanin (clone NC-08) BioLegend Cat# 99814

anti-human CD146 (clone P1H12) BioLegend Cat# 99814

anti-human CD324 (E-Cadherin) (clone 67A4) BioLegend Cat# 99814

anti-human IgM (clone MHM-88) BioLegend Cat# 99814

anti-human CD5 (clone UCHT2) BioLegend Cat# 99814

anti-human TCR g/d (clone B1) BioLegend Cat# 99814

anti-human CD183 (CXCR3) (clone G025H7) BioLegend Cat# 99814

anti-human CD195 (CCR5) (clone J418F1) BioLegend Cat# 99814

anti-human CD32 (clone FUN-2) BioLegend Cat# 99814

anti-human CD196 (CCR6) (clone G034E3) BioLegend Cat# 99814

anti-human CD185 (CXCR5) (clone J252D4) BioLegend Cat# 99814

anti-human CD103 (Integrin aE) (clone Ber-ACT8) BioLegend Cat# 99814

anti-human CD69 (clone FN50) BioLegend Cat# 99814

anti-human CD62L (clone DREG-56) BioLegend Cat# 99814

anti-human CD197 (CCR7) (clone G043H7) BioLegend Cat# 99814

anti-human CD161 (clone HP-3G10) BioLegend Cat# 99814

anti-human CD152 (CTLA-4) (clone BNI3) BioLegend Cat# 99814

anti-human CD223 (LAG-3) (clone 11C3C65) BioLegend Cat# 99814

anti-human KLRG1 (MAFA) (clone SA231A2) BioLegend Cat# 99814

anti-human CD27 (clone O323) BioLegend Cat# 99814

anti-human CD107a (LAMP-1) (clone H4A3) BioLegend Cat# 99814

anti-human CD95 (Fas) (clone DX2) BioLegend Cat# 99814

anti-human HLA-DR (clone L243) BioLegend Cat# 99814

anti-human CD1c (clone L161) BioLegend Cat# 99814

anti-human CD64 (clone 10.1) BioLegend Cat# 99814

anti-human CD141 (Thrombomodulin) (clone M80) BioLegend Cat# 99814

anti-human CD1d (clone 51.1) BioLegend Cat# 99814

anti-human CD314 (NKG2D) (clone 1D11) BioLegend Cat# 99814

anti-human CD66b (clone 6/40c) BioLegend Cat# 99814

anti-human CD35 (clone E11) BioLegend Cat# 99814

anti-human CD57 Recombinant (clone QA17A04) BioLegend Cat# 99814

anti-human CD366 (Tim-3) (clone F38-2E2) BioLegend Cat# 99814
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anti-human CD272 (BTLA) (clone MIH26) BioLegend Cat# 99814

anti-human/mouse/rat CD278 (ICOS) (clone C398.4A) BioLegend Cat# 99814

anti-human CD58 (LFA-3) (clone TS2/9) BioLegend Cat# 99814

anti-human CD96 (TACTILE) (clone NK92.39) BioLegend Cat# 99814

anti-human CD39 (clone A1) BioLegend Cat# 99814

anti-human CD178 (Fas-L) (clone NOK-1) BioLegend Cat# 99814

anti-human CX3CR1 (clone K0124E1) BioLegend Cat# 99814

anti-human CD24 (clone ML5) BioLegend Cat# 99814

anti-human CD21 (clone Bu32) BioLegend Cat# 99814

anti-human CD11a (clone TS2/4) BioLegend Cat# 99814

anti-human IgA (clone HP6123) BioLegend Cat# 99814

anti-human CD79b (Igb) (clone CB3-1) BioLegend Cat# 99814

anti-human CD66a/c/e (clone ASL-32) BioLegend Cat# 99814

anti-human CD244 (2B4) (clone C1.7) BioLegend Cat# 99814

anti-human CD235ab (clone HIR2) BioLegend Cat# 99814

anti-human CD206 (MMR) (clone 15-2) BioLegend Cat# 99814

anti-human CD169 (Sialoadhesin, Siglec-1)

(clone 7-239)

BioLegend Cat# 99814

anti-human CD370 (CLEC9A/DNGR1) (clone 8F9) BioLegend Cat# 99814

anti-human XCR1 (clone S15046E) BioLegend Cat# 99814

anti-human/mouse integrin b7 (clone FIB504) BioLegend Cat# 99814

anti-human CD268 (BAFF-R) (clone 11C1) BioLegend Cat# 99814

anti-human CD54 (clone HA58) BioLegend Cat# 99814

anti-human CD62P (P-Selectin) (clone AK4) BioLegend Cat# 99814

anti-human TCR a/b (clone IP26) BioLegend Cat# 99814

anti-human CD106 (clone STA) BioLegend Cat# 99814

anti-human CD122 (IL-2Rb) (clone TU27) BioLegend Cat# 99814

anti-human CD267 (TACI) (clone 1A1) BioLegend Cat# 99814

anti-human FcεRIa (clone AER-37 (CRA-1)) BioLegend Cat# 99814

anti-human CD41 (clone HIP8) BioLegend Cat# 99814

anti-human CD137 (4-1BB) (clone 4B4-1) BioLegend Cat# 99814

anti-human CD254 (TRANCE, RANKL) (clone MIH24) BioLegend Cat# 99814

anti-human CD163 (clone GHI/61) BioLegend Cat# 99814

anti-human CD83 (clone HB15e) BioLegend Cat# 99814

anti-human CD357 (GITR) (clone 108-17) BioLegend Cat# 99814

anti-human CD309 (VEGFR2) (clone 7D4-6) BioLegend Cat# 99814

anti-human CD124 (IL-4Ra) (clone G077F6) BioLegend Cat# 99814

anti-human CD184 (CXCR4) (clone 12G5) BioLegend Cat# 99814

anti-human CD2 (clone TS1/8) BioLegend Cat# 99814

anti-human CD226 (DNAM-1) (clone 11A8) BioLegend Cat# 99814

anti-human CD29 (clone TS2/16) BioLegend Cat# 99814

anti-human CD303 (BDCA-2) (clone 201A) BioLegend Cat# 99814

anti-human CD49b (clone P1E6-C5) BioLegend Cat# 99814

anti-human CD81 (TAPA-1) (clone 5A6) BioLegend Cat# 99814

anti-human CD98 (clone MEM-108) BioLegend Cat# 99814

anti-human IgG Fc (clone M1310G05) BioLegend Cat# 99814

anti-human IgD (clone IA6-2) BioLegend Cat# 99814

anti-human CD18 (clone TS1/18) BioLegend Cat# 99814
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anti-human CD28 (clone CD28.2) BioLegend Cat# 99814

anti-human TSLPR (TSLP-R) (clone 1D3) BioLegend Cat# 99814

anti-human CD38 (clone HIT2) BioLegend Cat# 99814

anti-human CD127 (IL-7Ra) (clone A019D5) BioLegend Cat# 99814

anti-human CD45 (clone HI30) BioLegend Cat# 99814

anti-human CD15 (SSEA-1) (clone W6D3) BioLegend Cat# 99814

anti-human CD22 (clone S-HCL-1) BioLegend Cat# 99814

anti-human CD71 (clone CY1G4) BioLegend Cat# 99814

anti-human B7-H4 (clone MIH43) BioLegend Cat# 99814

anti-human CD26 (clone BA5b) BioLegend Cat# 99814

anti-human CD193 (CCR3) (clone 5E8) BioLegend Cat# 99814

anti-human CD204 (clone 7C9C20) BioLegend Cat# 99814

anti-human CD144 (VE-Cadherin) (clone BV9) BioLegend Cat# 99814

anti-human CD1a (clone HI149) BioLegend Cat# 99814

anti-human CD304 (Neuropilin-1) (clone 12C2) BioLegend Cat# 99814

anti-human CD36 (clone 5-271) BioLegend Cat# 99814

anti-human CD158 (KIR2DL1/S1/S3/S5) (clone HP-MA4) BioLegend Cat# 99814

anti-mouse/human CD207 (clone 4C7) BioLegend Cat# 99814

anti-human CD49d (clone 9F10) BioLegend Cat# 99814

anti-human CD73 (Ecto-50-nucleotidase) (clone AD2) BioLegend Cat# 99814

anti-human TCR Va7.2 (clone 3C10) BioLegend Cat# 99814

anti-human TCR Vd2 (clone B6) BioLegend Cat# 99814

anti-human TCR Vg9 (clone B3) BioLegend Cat# 99814

anti-human TCR Va24-Ja18 (iNKT cell) (clone 6B11) BioLegend Cat# 99814

anti-human CD305 (LAIR1) (clone NKTA255) BioLegend Cat# 99814

anti-human LOX-1 (clone 15C4) BioLegend Cat# 99814

anti-human CD158b (KIR2DL2/L3, NKAT2) (clone DX27) BioLegend Cat# 99814

anti-human CD133 (clone S16016B) BioLegend Cat# 99814

anti-human CD209 (DC-SIGN) (clone 9E9A8) BioLegend Cat# 99814

anti-human CD158e1 (KIR3DL1, NKB1) (clone DX9) BioLegend Cat# 99814

anti-human CD158f (KIR2DL5) (clone UP-R1) BioLegend Cat# 99814

anti-human CD337 (NKp30) (clone P30-15) BioLegend Cat# 99814

anti-human CD336 (NKp44) (clone P44-8) BioLegend Cat# 99814

anti-human CD307d (FcRL4) (clone 413D12) BioLegend Cat# 99814

anti-human CD307e (FcRL5) (clone 509f6) BioLegend Cat# 99814

anti-human CD319 (CRACC) (clone 162.1) BioLegend Cat# 99814

anti-human CD138 (Syndecan-1) (clone DL-101) BioLegend Cat# 99814

anti-human CD99 (clone 3B2/TA8) BioLegend Cat# 99814

anti-human CLEC12A (clone 50C1) BioLegend Cat# 99814

anti-Tau Phospho (Thr181) (clone M7004D06) BioLegend Cat# 99814

anti-human CD257 (BAFF, BLYS) (clone 1D6) BioLegend Cat# 99814

anti-human CD94 (clone DX22) BioLegend Cat# 99814

anti-human CD150 (SLAM) (clone A12 (7D4)) BioLegend Cat# 99814

anti-human Ig light chain k (clone MHK-49) BioLegend Cat# 99814

anti-mouse/human Mac-2 (Galectin-3) (clone M3/38) BioLegend Cat# 99814

anti-human CD85j (ILT2) (clone GHI/75) BioLegend Cat# 99814

anti-human CD23 (clone EBVCS-5) BioLegend Cat# 99814

anti-human Ig light chain l (clone MHL-38) BioLegend Cat# 99814
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anti-human HLA-A2 (clone BB7.2) BioLegend Cat# 99814

anti-human GARP (LRRC32) (clone 7B11) BioLegend Cat# 99814

anti-human CD328 (Siglec-7) (clone 6-434) BioLegend Cat# 99814

anti-human TCR Vb13.1 (clone H131) BioLegend Cat# 99814

anti-human CD82 (clone ASL-24) BioLegend Cat# 99814

anti-human CD101 (BB27) (clone BB27) BioLegend Cat# 99814

anti-human CD360 (IL-21R) (clone 4B2.9) BioLegend Cat# 99814

anti-human CD88 (C5aR) (clone S5/1) BioLegend Cat# 99814

anti-human HLA-F (clone 3D11/HLA-F) BioLegend Cat# 99814

anti-human NLRP2 (clone 8F10B51) BioLegend Cat# 99814

anti-human Podocalyxin (clone mAb 84) BioLegend Cat# 99814

anti-human CD224 (clone KF29) BioLegend Cat# 99814

anti-c-Met (clone 12.1) BioLegend Cat# 99814

anti-human CD258 (LIGHT) (clone T5-39) BioLegend Cat# 99814

anti-human DR3 (TRAMP) (clone JD3) BioLegend Cat# 99814

Chemicals, peptides, and recombinant proteins

Water, LiChrosolv grade Merck 1-15333.2500

Acetonitrile, LiChrosolv grade Merck 1.00030.2500

Methanol, LiChrosolv grade Merck 1.06035.2500

Formic Acid Optima LC-MS grade Fisher Scientific 10596814

1-Propanolol Sigma-Aldrich 34871-1L

Trifluoroacetic acid (TFA) Sigma-Aldrich 74664-10ml

Triethylammonium bicarbonate buffer (TEAB, 1M) Sigma-Aldrich T7408-100ml

Ammonium formate Sigma-Aldrich 70221-100 g

TPCK treated Trypsin (100mg) Worthington LS003740

C18 Evotips Evosep One (Odense,

Denmark)

EV-2001

96-well S-trap Profiti (Huntington,

NY, USA)

C02-96wel

PQ500 reference peptide Biognosys K-3019

SOLA HRP SPE 10mg/1ml Fisher Scientific 11879163

Benzonase Thermo Scientific Cat# 88700; RRID: N/A

Maxpar� Cell Staining Buffer Fluidigm Cat# 201068; RRID: N/A

Maxpar� Nuclear Antigen Staining Buffer Set Fluidigm Cat# 201063; RRID: N/A

eBioscience� IC Fixation Buffer Thermo Scientific Cat# 00-8222-49; RRID: N/A

Cell-ID Cisplatin Pt198 Fluidigm Cat# 201198; RRID: N/A

Cell-ID Intercalator-Ir Fluidigm Cat# 201192B; RRID: N/A

EQ Four Element Calibration Beads Fluidigm Cat# 201078; RRID: N/A

Maxpar Cell Acquisition Solution (CAS) Fluidigm Cat# 201240; RRID; N/A

Maxpar Water Fluidigm Cat# 201069; RRID: N/A

Metal isotopes as chloride salts (In-115) Trace Sciences

International

Customized

Protein Stabilizer PBS Candor Bioscience Cat# 131125, RRID: N/A

Brilliant stain buffer BD Bioscience Cat# 563794; RRID: N/A

7-AAD dye BioLegend Cat# 420404

FcX BioLegend Cat# 422301

Diluted Nuclei Buffer 10x Genomics Cat# 2000153
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Critical commercial assays

Whole blood (human) processing kit Cytodelics C001-500; RRID: N/A

Cell-ID 20-Plex Pd Barcoding Kit Fluidigm Cat# 201060; RRID: N/A

EasySep� HLA Chimerism Whole Blood CD66b

Positive Selection Kit

Easysep Cat# 17882; RRID: N/A

Cell-ID 20-Plex Pd Barcoding Kit Fluidigm Cat# 201060; RRID: N/A

Maxpar MCP9 Antibody Labeling Kit �110Cd Fluidigm Cat# 201110A; RRID: N/A

Maxpar MCP9 Antibody Labeling Kit �111Cd Fluidigm Cat# 201111A; RRID: N/A

Maxpar MCP9 Antibody Labeling Kit �112Cd Fluidigm Cat# 201112A; RRID: N/A

Maxpar MCP9 Antibody Labeling Kit �113Cd Fluidigm Cat# 201113A; RRID: N/A

Maxpar MCP9 Antibody Labeling Kit �114Cd Fluidigm Cat# 201114A; RRID: N/A

Maxpar X8 Multimetal Labeling Kit (40 rxn) Fluidigm Cat# 201300; RRID: N/A

Zombie Violet� Fixable Viability Kit BioLegend Cat# 423102; RRID: N/A

NEBNext� Globin & rRNA Depletion Kit (Human/

Mouse/Rat)

New England Biolabs E7750X

NEBNext� Ultra� II Directional RNA Library Prep

Kit for Illumina�
New England Biolabs E7760L

NEBNext Poly(A) mRNA Magnetic Isolation Module New England Biolabs E7490L

MiSeq Reagent Nano Kit v2 (300-cycles): MS-103-1001 Illumina Cambridge Ltd MS-103-1001

MiSeq Reagent Kit v3 (600-cycle): MS-102-3003 Illumina Cambridge Ltd MS-102-3003

NextSeq 500/550 High Output Kit v2.5 (150 Cycles) Illumina Cambridge Ltd 20024907

NovaSeq 6000 S4 Reagent Kit (200 cycles): 20027466 Illumina Cambridge Ltd 20027466

NovaSeq 6000 S2 Reagent Kit (200 cycles): 20012861 Illumina Cambridge Ltd 20012861

NovaSeq 6000 SP Reagent Kit (200 cycles): 20040326 Illumina Cambridge Ltd 20040326

NovaSeq 6000 SP Reagent Kit (300 cycles): 20027465 Illumina Cambridge Ltd 20027465

NovaSeq XP 2-Lane Kit Illumina Cambridge Ltd 20021664

NovaSeq Xp 4-Lane Kit: 20021665 Illumina Cambridge Ltd 20021665

Nextera� XT DNA Sample Preparation Kit (96 Samples) Illumina UK Ltd FC-131-1096

Single Index Kit T Set A, 96 rxns 10XGenomics 1000213

Chromium� Single Cell 50 Library Construction

Kit, 16 rxns

10XGenomics 1000020

Chromium Next GEM Single Cell 50 Library and

Gel Bead Kit v1.1, 16 rxns

10XGenomics 1000165

Chromium Next GEM Chip G Single Cell Kit 10XGenomics 1000127

Chromium� Single Cell V(D)J Enrichment Kit,

Human T Cell, 96 rxns

10XGenomics 1000005

Chromium� Single Cell V(D)J Enrichment Kit,

Human B Cell, 96 rxns

10XGenomics 1000016

Single Index Kit N Set A, 96 rxns 10XGenomics 1000212

Chromium Single Cell 50 Feature Barcode Library

Kit, 16 rxns

10XGenomics 1000080

Chromium Next GEM Chip H Single Cell Kit 10XGenomics 1000162

Chromium Next GEM Single Cell ATAC Library &

Gel Bead Kit v1.1

10XGenomics 1000176

TotalSeqTM-C Custom Human panel - All Ab’s (pouch) BioLegend 99814

KAPA dual Indexed Adaptor Kit Roche KK8722

KAPA Hyper Prep Kit Roche KK8504

Human Magnetic Luminex Assay kit Biotechne LXSAHM-04

Human Magnetic Luminex Assay kit Biotechne LXSAHM-23

Human Magnetic Luminex Assay kit Biotechne LXSAHM-24
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Deposited data

Processed (KEY) datasets N/A

CBD-KEY-CLINVAR: Anonymized patient metadata

and associated data dictionary

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-ATAC: Peak locations, normalized

enrichments, differential expression results, and

motif enrichment results generated using single-cell

ATAC-seq

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-CITESEQ-ANNDATA: Contains two

anndata objects:

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

For the purpose of online visualization a limited

version of the gene expression data is also

provided via the CZI Science cellxgene Data

Portal: https://cellxgene.cziscience.com/

collections/8f126edf-5405-4731-8374-

b5ce11f53e82

(1) ‘‘COMBAT-CITESeq-DATA’’: the raw and

normalized gene expression and ADT data, cluster

annotations, summary repertoire information and

detailed metadata as reported and analyzed

in this study.

(2) ‘‘COMBAT-CITESeq-EXPRESSION-ATLAS’’:

raw and normalized gene expression data from an

alternative mapping of the data to a transcriptome

index that additionally included genes belonging to

the ‘‘lncRNA’’ biotype. With ADT data, cluster

annotations and a subset of clinical metadata.

Suitable for visualization with cellxgene.

CBD-KEY-CITESEQ-GEX-COMPOSITION: Per

sample cell counts and frequencies (at different

levels of cell subpopulation resolution)

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-CITESEQ-GEX-PSEUDOBULKS:

Raw and normalized pseudobulk counts generated

for each combination of gene and sample at minor

subset, major subset and cell type level by summing

together the within-group gene counts

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-CITESEQ-GEX-DIFFEXP: Differential

expression and pathway enrichment results.

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-CITESEQ-GEX-WGCNA: WGCNA

analysis of selected cell subpopulations. Module

overview, eigengenes and gene membership.

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-CITESEQ-VDJ-B: B cell receptor

sequences (amino acid) and a summary of

clones (by patient).

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-CITESEQ-VDJ-T: T cell receptor

sequences (amino acid), summary of clones

(by patient), diversity scores, Kmers, cytotoxicity

score.

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-CYTOF-MYELOID: CyTOF data

generated from whole blood and granulocyte

depleted whole blood, with a focus on myeloid

populations. Processed data files in FCS format;

CSV files of selected marker expression for

monocytes and neutrophils.

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-CYTOF-WB: CyTOF data generated

from whole blood. Expression matrices, per

sample cell counts and frequencies, and

composition analysis results

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249
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CBD-KEY-CYTOF-WB-D: CyTOF data generated

from granulocyte depleted whole blood. Dataset

contains expression matrices, per sample cell

counts and frequencies, and composition

analysis results.

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-FACS: Flow cytometry data from

PBMC cells. Dataset contains a summary of patient

by run, frequencies of populations calculated

according to the gating strategy depicted in the

analysis workspace file (.wps), and linkers between

original sample IDs and FACS file nomenclature.

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-LUMINEX: Raw and normalized

expression matrices from Luminex-based assays

of blood proteins

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-ML: Principal components and features

for supervised machine learning to classify samples

according to their WHO severity.

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-PROTEOMICS: Raw and processed

proteomics data generated using Tims-TOF mass

spectrometry

This paper ProteomeXchange Consortium via the PRIDE

partner repository with dataset identifier

PXD023175

CBD-KEY-REPERTOIRE-B: B cell bulk repertoire

datasets. Contains B cell repertoire feature tables

including repertoire metrics and V gene usages

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-REPERTOIRE-T: T cell bulk repertoire

datasets. Contains T cell repertoire feature tables

including repertoire metrics and V gene usages

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-RNASEQ-GENOTYPES: gVCF file per

patient obtained from the bulk/mini-bulk RNaseq data.

This paper EGAD00001007959

CBD-KEY-RNASEQ-WB: Raw and log normalized

gene counts derived from bulk RNA sequencing of

whole blood.

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-RNASEQ-WGCNA: WGCNA analysis of

whole blood RNaseq data. Module eigengenes and

gene membership.

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-SDA: Input data and results from tensor

and matrix decomposition (SDA) analyses.

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-SIMON: Processed datasets generated

from key data modalities for machine learning analyses

using SIMON to distinguish COVID-19 and sepsis

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-KEY-SNF: Preprocessed/normalized inputs

and results matrices from similarity network fusion

(SNF) analysis

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

RAW datasets N/A

CBD-RAW-CLINVAR: Anonymized patient metadata,

data dictionary.

This paper EGAD00001007931

CBD-RAW-CYTOF-MYELOID: Single cell resolution

mass cytometry (CyTOF) data generated from whole

blood and granulocyte depleted whole blood, with a

focus on myeloid populations. Dataset contains

ungated, raw data files in fcs format and the list of

antibodies used.

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-RAW-CYTOF-WB: Single cell resolution mass

cytometry (CyTOF) data generated from whole blood.

Dataset contains ungated, raw data files in fcs format

and the list of antibodies used.

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249
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CBD-RAW-CYTOF-WB-D: Single cell resolution

mass cytometry (CyTOF) data generated from

granulocyte depleted whole blood. Dataset contains

ungated, raw data files in fcs format and the list of

antibodies used.

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-RAW-FACS: Flow cytometry data from PBMC

cells. Dataset contains .fcs files and FlowJo workspaces

from FACS data.

This paper Zenodo: https://doi.org/10.5281/zenodo.

6120249

CBD-RAW-REPERTOIRE-B: FASTQ and filtered

FASTA files for B cell receptor sequencing.

This paper EGAD00001007960

CBD-RAW-REPERTOIRE-T: FASTQ and filtered

FASTA files for T cell receptor sequencing.

This paper EGAD00001007961

CBD-RAW-RNASEQ: Bulk RNA-seq data from

whole blood.

This paper EGAD00001007957

CBD-RAW-RNASEQ-MINI: SmartSeq2 RNA-seq data

from 16 samples.

This paper EGAD00001007932

CBD-RAW-SC-ADT: 10X Single-Cell Features

Barcode (CITE-seq). Raw Illumina sequencing data

and CellRanger BAM output files.

This paper EGAD00001007962

CBD-RAW-SC-ATAC: 10X Single-Cell ATAC-Seq.

Raw Illumina sequencing data from single-cell

ATAC-Seq experiments

This paper EGAD00001007963

CBD-RAW-SC-GEX: 10X Single-Cell Gene Expression.

Raw Illumina sequencing data and CellRanger BAM

output files.

This paper EGAD00001008007

CBD-RAW-SC-VDJ-B: 10X Single-Cell VDJ BCR.

Raw Illumina sequencing data.

This paper EGAD00001007964

CBD-RAW-SC-VDJ-T: 10X Single-Cell VDJ TCR.

Raw Illumina sequencing data.

This paper EGAD00001007965

Study accession (EGA) N/A

COMBAT Consortium All linked datasets EGAS00001005493

Study website N/A

COMBAT Consortium This paper https://www.combat.ox.ac.uk/

RT primers for TCR analysis

Primer: FT_TRBC_RT Oligo sequence (50 to 30):
CAGCACGCTTCAGGCTNNNNTNNNNTNNNN

AGATCTCTGCTTCTGATGGCTC

This paper N/A

PCR primers for TCR analysis

Primer: FT_TRBV3 oligo sequence (50 to 30):
GACACAGCCGTTTCCCAGA

This paper N/A

Primer: FT_TRBV4 oligo sequence (50 to 30):
ACKGRAGTTACSCAGACA

This paper N/A

Primer: FT_TRBV5 oligo sequence (50 to 30):
RCTGGAGTCACHCAAAST

This paper N/A

Primer: FT_TRBV7 oligo sequence (50 to 30):
TGCTGGKRTCACYCAG

This paper N/A

Primer: FT_TRBV7 oligo sequence (50 to 30):
WDCTGGAGTYTCCCA

This paper N/A

Primer: FT_TRBV9 oligo sequence (50 to 30):
GATTCTGGAGTCACACAAA

This paper N/A

Primer: FT_TRBV10 oligo sequence (50 to 30):
GATGCTGRAATCACCCAGA

This paper N/A
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Primer: FT_TRBV11 oligo sequence (50 to 30):
GAAGCTGRAGTGGYYCAGT

This paper N/A

Primer: FT_TRBV12 oligo sequence (50 to 30):
GATGCTRGAGTYAYCCAG

This paper N/A

Primer: FT_TRBV13B oligo sequence (50 to 30):
GCTGCTGGAGTCATCCAGT

This paper N/A

Primer: FT_TRBV14 oligo sequence (50 to 30):
GAAGCTGGAGTTACTCAGT

This paper N/A

Primer: FT_TRBV15 oligo sequence (50 to 30):
GATGCCATGGTCATCCAGA

This paper N/A

Primer: FT_TRBV16 oligo sequence (50 to 30):
GGTGAAGAAGTCGCCCAGA

This paper N/A

Primer: FT_TRBV19 oligo sequence (50 to 30):
GATGGTGGAATCACTCAGT

This paper N/A

Primer: FT_TRBV18B oligo sequence (50 to 30):
AATGCCGGCGTCATGCAGA

This paper N/A

Primer: FT_TRBV20 oligo sequence (50 to 30):
GGTGCTGTCGTCTCTCAAC

This paper N/A

Primer: FT_TRBV24 oligo sequence (50 to 30):
GATGCTGATGTTACCCAGA

This paper N/A

Primer: FT_TRBV25 oligo sequence (50 to 30):
GAAGCTGACATCTACCAGA

This paper N/A

Primer: FT_TRBV27 oligo sequence (50 to 30):
GAAGCCCAAGTGACCCAGA

This paper N/A

Primer: FT_TRBV28 oligo sequence (50 to 30):
GATGTGAAAGTAACCCAGA

This paper N/A

Primer: FT_TRBV29 oligo sequence (50 to 30):
AGTGCTGTCATCTCTC

This paper N/A

Primer: FT_TRBV30 oligo sequence (50 to 30):
TCTCAGACTATTCATCAAT

This paper N/A

Primer: CNUS2_BC1 oligo sequence (50 to 30):
CGCTCTTCCGATCTTaggtattCAGCACGCTTCAGGCT

This paper N/A

Primer: CNUS2_BC2 oligo sequence (50 to 30):
CGCTCTTCCGATCTTattaaggCAGCACGCTTCAGGCT

This paper N/A

Primer: CNUS2_BC3 oligo sequence (50 to 30):
CGCTCTTCCGATCTTtaattctCAGCACGCTTCAGGCT

This paper N/A

Primer: CNUS2_BC4 oligo sequence (50 to 30):
CGCTCTTCCGATCTTataagctCAGCACGCTTCAGGCT

This paper N/A

Primer: CNUS2_BC5 oligo sequence (50 to 30):
CGCTCTTCCGATCTTttatgatCAGCACGCTTCAGGCT

This paper N/A

Primer: CNUS2_BC6 oligo sequence (50 to 30):
CGCTCTTCCGATCTTgagttaaCAGCACGCTTCAGGCT

This paper N/A

Primer: CNUS2_BC7 oligo sequence (50 to 30):
CGCTCTTCCGATCTTattcttgCAGCACGCTTCAGGCT

This paper N/A

Primer: CNUS2_BC8 oligo sequence (50 to 30):
CGCTCTTCCGATCTTttagcttCAGCACGCTTCAGGCT

This paper N/A

Primer: CNUS2_BC9 oligo sequence (50 to 30):
CGCTCTTCCGATCTTatcttgcCAGCACGCTTCAGGCT

This paper N/A

Primer: CNUS2_BC10 oligo sequence (50 to 30):
CGCTCTTCCGATCTTtctccatCAGCACGCTTCAGGCT

This paper N/A

Primer: CNUS2_BC11 oligo sequence (50 to 30):
CGCTCTTCCGATCTTacctaggCAGCACGCTTCAGGCT

This paper N/A

Primer: CNUS2_BC12 oligo sequence (50 to 30):
CGCTCTTCCGATCTTttgatccCAGCACGCTTCAGGCT

This paper N/A
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RT primers for BCR analysis

Primer: IGHA_human_BC oligo sequence (50 to 30):
TGTCCAGCACGCTTCAGGCTNNNNTNNNNTNN

NNGAYGACCACGTTCCCATCT

This paper N/A

Primer: IGHM_human_BC oligo sequence (50 to 30):
TGTCCAGCACGCTTCAGGCTNNNNTNNNNTNN

NNTCGTATCCGACGGGGAATTC

This paper N/A

Primer: IGHD_human_BC oligo sequence (50 to 30):
TGTCCAGCACGCTTCAGGCTNNNNTNNNNTN

NNNGGGCTGTTATCCTTTGGGTG

This paper N/A

Primer: IGHE_human_BC oligo sequence (50 to 30):
TGTCCAGCACGCTTCAGGCTNNNNTNNNNTN

NNNAGAGTCACGGAGGTGGCATT

This paper N/A

Primer: IGHG_human_BC oligo sequence (50 to 30):
TGTCCAGCACGCTTCAGGCTNNNNTNNNNTN

NNNAGTAGTCCTTGACCAGGCAG

This paper N/A

PCR primers for BCR analysis

Primer: VH1-FR1_F1 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGTCGCAGGGGC

CTCAGTGAAGGTCTCCTGCAAG (barcode 1)

This paper N/A

Primer: VH2-FR1_F1 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGTCGCAGGGT

CTGGTCCTACGCTGGTGAAACCC (barcode 1)

This paper N/A

Primer: VH3-FR1_F1 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGTCGCAGGCTGG

GGGGTCCCTGAGACTCTCCTG (barcode 1)

This paper N/A

Primer: VH4-FR1_F1 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGTCGCAGGCT

TCGGAGACCCTGTCCCTCACCTG (barcode 1)

This paper N/A

Primer: VH5-FR1_F1 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGTCGCAGGC

GGGGAGTCTCTGAAGATCTCCTGT (barcode 1)

This paper N/A

Primer: VH6-FR1_F1 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGTCGCAGGT

CGCAGACCCTCTCACTCACCTGTG (barcode 1)

This paper N/A

Primer: VH1-FR1_F2 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCTCTGCAGG

CCTCAGTGAAGGTCTCCTGCAAG (barcode 2)

This paper N/A

Primer: VH2-FR1_F2 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCTCTGCAGT

CTGGTCCTACGCTGGTGAAACCC (barcode 2)

This paper N/A

Primer: VH3-FR1_F2 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCTCTGCACT

GGGGGGTCCCTGAGACTCTCCTG (barcode 2)

This paper N/A

Primer: VH4-FR1_F2 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCTCTGCACT

TCGGAGACCCTGTCCCTCACCTG (barcode 2)

This paper N/A

Primer: VH5-FR1_F2 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCTCTGCAC

GGGGAGTCTCTGAAGATCTCCTGT (barcode 2)

This paper N/A

Primer: VH6-FR1_F2 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCTCTGCAT

CGCAGACCCTCTCACTCACCTGTG (barcode 2)

This paper N/A
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Primer: VH1-FR1_F3 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCCTAGGTG

GCCTCAGTGAAGGTCTCCTGCAAG (barcode 3)

This paper N/A

Primer: VH2-FR1_F3 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCCTAGGTG

TCTGGTCCTACGCTGGTGAAACCC (barcode 3)

This paper N/A

Primer: VH3-FR1_F3 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCCTAGGTC

TGGGGGGTCCCTGAGACTCTCCTG (barcode 3)

This paper N/A

Primer: VH4-FR1_F3 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCCTAGGTC

TTCGGAGACCCTGTCCCTCACCTG (barcode 3)

This paper N/A

Primer: VH5-FR1_F3 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCCTAGGTC

GGGGAGTCTCTGAAGATCTCCTGT (barcode 3)

This paper N/A

Primer: VH6-FR1_F3 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCCTAGGTT

CGCAGACCCTCTCACTCACCTGTG (barcode 3)

This paper N/A

Primer: VH1-FR1_F4 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGGATCAAGG

CCTCAGTGAAGGTCTCCTGCAAG (barcode 4)

This paper N/A

Primer: VH2-FR1_F4 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGGATCAA

GTCTGGTCCTACGCTGGTGAAACCC (barcode 4)

This paper N/A

Primer: VH3-FR1_F4 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGGATCAAC

TGGGGGGTCCCTGAGACTCTCCTG (barcode 4)

This paper N/A

Primer: VH4-FR1_F4 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGGATCAAC

TTCGGAGACCCTGTCCCTCACCTG (barcode 4)

This paper N/A

Primer: VH5-FR1_F4 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGGATCAA

CGGGGAGTCTCTGAAGATCTCCTGT (barcode 4)

This paper N/A

Primer: VH6-FR1_F4 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGGATCAAT

CGCAGACCCTCTCACTCACCTGTG (barcode 4)

This paper N/A

Primer: VH1-FR1_F5 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGCAAGATG

GCCTCAGTGAAGGTCTCCTGCAAG (barcode 5)

This paper N/A

Primer: VH2-FR1_F5 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGCAAGATGT

CTGGTCCTACGCTGGTGAAACCC (barcode 5)

This paper N/A

Primer: VH3-FR1_F5 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGCAAGATCT

GGGGGGTCCCTGAGACTCTCCTG (barcode 5)

This paper N/A

Primer: VH4-FR1_F5 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGCAAGATC

TTCGGAGACCCTGTCCCTCACCTG (barcode 5)

This paper N/A

Primer: VH5-FR1_F5 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGCAAGATC

GGGGAGTCTCTGAAGATCTCCTGT (barcode 5)

This paper N/A

Primer: VH6-FR1_F5 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGCAAGATT

CGCAGACCCTCTCACTCACCTGTG (barcode 5)

This paper N/A
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Primer: VH1-FR1_F6 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGATGGAGAG

GCCTCAGTGAAGGTCTCCTGCAAG (barcode 6)

This paper N/A

Primer: VH2-FR1_F6 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGATGGAGAG

TCTGGTCCTACGCTGGTGAAACCC (barcode 6)

This paper N/A

Primer: VH3-FR1_F6 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGATGGAGAC

TGGGGGGTCCCTGAGACTCTCCTG (barcode 6)

This paper N/A

Primer: VH4-FR1_F6 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGATGGAGAC

TTCGGAGACCCTGTCCCTCACCTG (barcode 6)

This paper N/A

Primer: VH5-FR1_F6 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGATGGAGAC

GGGGAGTCTCTGAAGATCTCCTGT (barcode 6)

This paper N/A

Primer: VH6-FR1_F6 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGATGGAGAT

CGCAGACCCTCTCACTCACCTGTG (barcode 6)

This paper N/A

Primer: VH1-FR1_F7 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCTCGATGG

GCCTCAGTGAAGGTCTCCTGCAAG (barcode 7)

This paper N/A

Primer: VH2-FR1_F7 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCTCGATGG

TCTGGTCCTACGCTGGTGAAACCC (barcode 7)

This paper N/A

Primer: VH3-FR1_F7 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCTCGATGCT

GGGGGGTCCCTGAGACTCTCCTG (barcode 7)

This paper N/A

Primer: VH4-FR1_F7 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCTCGATGC

TTCGGAGACCCTGTCCCTCACCTG (barcode 7)

This paper N/A

Primer: VH5-FR1_F7 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCTCGATGC

GGGGAGTCTCTGAAGATCTCCTGT (barcode 7)

This paper N/A

Primer: VH6-FR1_F7 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCTCGATGTC

GCAGACCCTCTCACTCACCTGTG (barcode 7)

This paper N/A

Primer: VH1-FR1_F8 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGCTCGAAG

GCCTCAGTGAAGGTCTCCTGCAAG (barcode 8)

This paper N/A

Primer: VH2-FR1_F8 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGCTCGAAGT

CTGGTCCTACGCTGGTGAAACCC (barcode 8)

This paper N/A

Primer: VH3-FR1_F8 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGCTCGAAC

TGGGGGGTCCCTGAGACTCTCCTG (barcode 8)

This paper N/A

Primer: VH4-FR1_F8 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGCTCGAAC

TTCGGAGACCCTGTCCCTCACCTG (barcode 8)

This paper N/A

Primer: VH5-FR1_F8 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGCTCGAACG

GGGAGTCTCTGAAGATCTCCTGT (barcode 8)

This paper N/A

Primer: VH6-FR1_F8 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGGCTCGAATC

GCAGACCCTCTCACTCACCTGTG (barcode 8)

This paper N/A
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Primer: VH1-FR1_F9 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGACCAACTGG

CCTCAGTGAAGGTCTCCTGCAAG (barcode 9)

This paper N/A

Primer: VH2-FR1_F9 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGACCAACTGTC

TGGTCCTACGCTGGTGAAACCC (barcode 9)

This paper N/A

Primer: VH3-FR1_F9 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGACCAACTC

TGGGGGGTCCCTGAGACTCTCCTG (barcode 9)

This paper N/A

Primer: VH4-FR1_F9 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGACCAACT

CTTCGGAGACCCTGTCCCTCACCTG (barcode 9)

This paper N/A

Primer: VH5-FR1_F9 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGACCAAC

TCGGGGAGTCTCTGAAGATCTCCTGT (barcode 9)

This paper N/A

Primer: VH6-FR1_F9 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGACCAACT

TCGCAGACCCTCTCACTCACCTGTG (barcode 9)

This paper N/A

Primer: VH1-FR1_F10 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCCGGTA

CGGCCTCAGTGAAGGTCTCCTGCAAG (barcode 10)

This paper N/A

Primer: VH2-FR1_F10 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCCGGTA

CGTCTGGTCCTACGCTGGTGAAACCC (barcode 10)

This paper N/A

Primer: VH3-FR1_F10 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCCGGTA

CCTGGGGGGTCCCTGAGACTCTCCTG (barcode 10)

This paper N/A

Primer: VH4-FR1_F10 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCCGGTA

CCTTCGGAGACCCTGTCCCTCACCTG (barcode 10)

This paper N/A

Primer: VH5-FR1_F10 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCCGGTA

CCGGGGAGTCTCTGAAGATCTCCTGT (barcode 10)

This paper N/A

Primer: VH6-FR1_F10 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGCCGGTA

CTCGCAGACCCTCTCACTCACCTGTG (barcode 10)

This paper N/A

Primer: VH1-FR1_F11 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGAACTC

CGGGCCTCAGTGAAGGTCTCCTGCAAG (barcode 11)

This paper N/A

Primer: VH2-FR1_F11 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGAACTCC

GGTCTGGTCCTACGCTGGTGAAACCC (barcode 11)

This paper N/A

Primer: VH3-FR1_F11 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGAACTC

CGCTGGGGGGTCCCTGAGACTCTCCTG (barcode 11)

This paper N/A

Primer: VH4-FR1_F11 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGAACTC

CGCTTCGGAGACCCTGTCCCTCACCTG (barcode 11)

This paper N/A

Primer: VH5-FR1_F11 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGAACTC

CGCGGGGAGTCTCTGAAGATCTCCTGT (barcode 11)

This paper N/A

Primer: VH6-FR1_F11 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGAACTC

CGTCGCAGACCCTCTCACTCACCTGTG (barcode 11)

This paper N/A

(Continued on next page)

ll
OPEN ACCESS

Cell 185, 916–938.e1–e40, March 3, 2022 e17

Resource



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Primer: VH1-FR1_F12 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGTTGAA

GTGGCCTCAGTGAAGGTCTCCTGCAAG (barcode 12)

This paper N/A

Primer: VH2-FR1_F12 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGTTGAA

GTGTCTGGTCCTACGCTGGTGAAACCC (barcode 12)

This paper N/A

Primer: VH3-FR1_F12 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGTTGAAG

TCTGGGGGGTCCCTGAGACTCTCCTG (barcode 12)

This paper N/A

Primer: VH4-FR1_F12 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGTTGAA

GTCTTCGGAGACCCTGTCCCTCACCTG (barcode 12)

This paper N/A

Primer: VH5-FR1_F12 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGTTGAAG

TCGGGGAGTCTCTGAAGATCTCCTGT (barcode 12)

This paper N/A

Primer: VH6-FR1_F12 oligo sequence (50 to 30):
AAGCAGTGGTATCAACGCAGAGTTGAA

GTTCGCAGACCCTCTCACTCACCTGTG (barcode 12)

This paper N/A

Primer: CNU Barcode primer_S oligo sequence

(50 to 30): TGTCCAGCACGCTTCAGGCT

This paper N/A

Software and algorithms

ALDEx2 (Fernandes et al., 2013) v1.18.0

ArchR (Granja et al., 2021) v0.9.3 https://www.archrproject.com/

AUCell (Aibar et al., 2017) v1.12.0

BBKNN (Pola�nski et al., 2020) https://github.com/Teichlab/bbknn

BLAST (Altschul et al., 1990) https://blast.ncbi.nlm.nih.gov/Blast.cgi

CATALYST (Nowicka et al., 2017) v1.10.3

CD-HIT https://github.com/thomasp85/

FindMyFriends

Cell Ranger 10x genomics v3.1.0

Cell Ranger ATAC 10x genomics https://support.10xgenomics.com/single-

cell-atac/software/overview/welcome

Cellranger VDJ 10x genomics v3.1.0

Clinical Knowledge Graph (Santos et al., 2020) https://doi.org/10.1101/2020.05.09.084897

corrplot Wei v0.84 https://github.com/taiyun/corrplot

CoV-AbDab (Raybould et al., 2021) http://opig.stats.ox.ac.uk/webapps/

covabdab/

CyTOF Software v7.0 http://www.fluidigm.com/products-

services/software

CytoNorm (Van Gassen et al., 2020) v0.0.5

Cytoscape (Shannon et al., 2003) v3.8.0

Cytosplore (van Unen et al., 2017) https://www.cytosplore.org/

demuxlet (Kang et al., 2018) v2 https://github.com/statgen/demuxlet

diffcyt (Weber et al., 2019) v1.8.8

edgeR (Robinson et al., 2010) v3.28.1 https://bioconductor.org/

packages/release/bioc/html/edgeR.html

EmptyDroplets (Lun et al., 2019) v1.8.0

Entropy (Hausser, 2009) https://strimmerlab.github.io

eXploring Genomic Relations (XGR) (Fang et al., 2016b) http://galahad.well.ox.ac.uk/XGR

Fastcluster (Mulner, 2013) v1.1.25

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

FastQC (Andrews, 2010) v0.11.9 https://github.com/s-andrews/

FastQC

featureCounts (Liao et al., 2014) v1.6.4

fgsea (Korotkevich et al., 2021) https://bioconductor.org/packages/

release/bioc/html/fgsea.html

FlowJo BD Biosciences v10.6 https://www.flowjo.com

Fragpipe (Yu et al., 2021) v13.0

GATK variant calling (Van der Auwera and

O’Connor, 2020)

v4.1.7.0

ggraph Pedersen v2.05 https://github.com/thomasp85/

ggraph

gsfisher (Croft et al., 2019) https://github.com/sansomlab/gsfisher

Harmony (Korsunsky et al., 2019) https://github.com/immunogenomics/

harmony

HTSlib v1.10.2 Samtools http://www.htslib.org/

imagesc MATLAB https://uk.mathworks.com/help/

matlab/ref/imagesc.html

IMGT database (Lefranc, 2011) https://www.imgt.org/

IMGT V-QUEST (Giudicelli et al., 2004) https://www.imgt.org/IMGTindex/

V-QUEST.php

InstantClue (Nolte et al., 2018) v0.5.3 http://www.instantclue.uni-

koeln.de/

IonQuant (Yu et al., 2020) https://ionquant.nesvilab.org/

KeplerMapper (van Veen et al., 2019) https://openprojectrepo.com/project/

scikit-tda-kepler-mapper-python-

data-validation

Limma (Ritchie et al., 2015) https://bioconductor.org/packages/

release/bioc/html/limma.html

MATLAB https://uk.mathworks.com/help/matlab/

Matplotlib (Hunter, 2007) https://matplotlib.org/

MSFragger (Kong et al., 2017) v3.0

MSigDB (Subramanian et al., 2005) https://www.gsea-msigdb.org/gsea/

msigdb/index.jsp

Pandas v1.2.4 https://pandas.pydata.org/

Pegasus (Li et al., 2020) https://pegasus.readthedocs.io/en/

stable/index.html

PeptideProphet (Keller et al., 2002) Embedded in Fragpipe

Perseus 1.6.14.0 (Tyanova and Cox, 2018) https://maxquant.net/perseus/

Philosopher (da Veiga Leprevost et al., 2020)v3.2.9

Picard http://broadinstitute.

github.io/picard/

v2.23 https://github.com/broadinstitute/

picard

prcomp v3.6.2 https://www.rdocumentation.

org/packages/stats/versions/3.6.2/

topics/prcomp

Priority Index (Pi) (Fang et al., 2016a) http://galahad.well.ox.ac.uk/Pi

ProteinProphet (Nesvizhskii et al., 2003) Embedded in Fragpipe

Python v3.8.2 https://www.python.org/

QTLtools (Delaneau et al., 2017) https://qtltools.github.io/qtltools/

QUASR (Watson et al., 2013) https://sourceforge.net/projects/quasr/

R Studio and R environment The R project for Statistical

Computing

https://www.rstudio.com/ and

https://cran.r-project.org/

(Continued on next page)
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RNASeQC (DeLuca et al., 2012) v2.3.5 https://github.com/getzlab/rnaseqc

Scanorama (Hie et al., 2019) https://github.com/brianhie/scanorama

Scanpy (Wolf et al., 2018) https://github.com/theislab/scanpy

Scater (McCarthy et al., 2017) v3.12 http://bioconductor.org/packages/

release/bioc/html/scater.html

Scikit-learn (Pedregosa et al., 2011) https://github.com/scikit-learn/scikit-learn

Scipy (Virtanen et al., 2020) https://scipy.org/

ScVelo (Bergen et al., 2020) v0.1.24 https://github.com/theislab/scvelo

Sparse Decomposition of Arrays (Hore et al., 2016) https://jmarchini.org/software/#sda

Seaborn Waskom v0.11.1 https://seaborn.pydata.org/

Seurat (Stuart et al., 2019) v3.9.9.9010

SIMON (Tomic et al., 2019) https://genular.org/

singleR (Aran et al., 2019) https://github.com/dviraran/SingleR

STAR (Dobin et al., 2013) v2.7.3

stringdist (van der Loo, 2014) https://github.com/markvanderloo/

stringdist

Survival (Therneau andGrambsch, 2000)v3.2-11

Survminer Kassambara v0.4.8

sva R (Johnson et al., 2007;

Leek et al., 2012)

v3.36.0

Swissprot human Proteome database +

SARSCov2

https://www.uniprot.org/ retrieved

17/07/2020

TrimGalore Krueger v0.6.2 https://github.com/FelixKrueger/

TrimGalore

ttest2 MATLAB https://uk.mathworks.com/help/stats/

ttest2.heml

UMAP McInnes, Healy, Melville arXiv:1802.03426v2

Velocyto (La Manno et al., 2018) http://velocyto.org/

Vireo (Huang et al., 2019) v0.4.0 https://huangyh09.github.io/vireo-

manual/about.html

WGCNA (Langfelder and Horvath, 2008) https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/

WGCNA/

xCell (Aran et al., 2017) https://github.com/dviraran/xCell
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by Julian Knight (julian.knight@

well.ox.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Derived and processed data for all the datasets generated during this study and reported in this paper are available including through

this paper, the European Genome-phenome Archive (EGA), Zenodo and Chan Zuckerberg Initiative (CZI) Science cellxgene Data

Portal (as detailed in key resources table). For sequence level RAW datasets deposited at EGA, access is managed by the COMBAT

Consortium Data Access Committee. Web-based interfaces for visualizing COMBAT datasets and outputs reported here are avail-

able at https://mlv.combat.ox.ac.uk/ and https://shiny.combat.ox.ac.uk. All code used for every algorithm followed in data process-

ing and analysis is fully referenced within the specific methods text sections and Key Resources Table.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohorts
The study was designed to allow deep molecular, multi-omic and immunological profiling of COVID-19 in peripheral blood at the

outset of the pandemic in the United Kingdom during a public health emergency. Samples used were derived from multiple sources

to allow comparison between adult patients with varying severities of COVID-19 and comparator disease or health states. A summary

of the cohorts included in this study is provided below followed by a description of themethods used to define clinical parameters and

handling of the blood samples. Demographic information and clinical phenotyping for all study subjects is summarized in Table S1,

together with numbers of patients/samples assayed by cohort.

Hospitalized COVID-19 patients

Patients admitted to Oxford University Hospitals NHS Foundation Trust, UK were recruited into the Sepsis Immunomics study

(a prospective observational cohort study applying an integrated immune -omic approach to understand why some

patients have a severe response to infection) if they were found to have a syndrome consistent with COVID-19 and a positive

test for SARS-CoV-2 using reverse transcriptase polymerase chain reaction (RT-PCR) from an upper respiratory tract

(nose/throat) swab tested in accredited laboratories, with the majority of patients co-recruited using the ISARIC/WHO Clinical

Characterization Protocol for Severe Emerging Infections. Written informed consent was obtained from adults or personal/

nominated consultees for patients lacking capacity, with retrospective consent obtained from the patient once capacity was

regained. Ethical approval was given by the South Central–Oxford C Research Ethics Committee (REC) in England for Sepsis

Immunomics (REC reference 19/SC/0296). For ISARIC WHO Clinical Characterization Protocol for Severe Emerging Infections,

ethical approval was given by the South Central-Oxford C Research Ethics Committee in England (REC reference 13/SC/0149),

the Scotland A Research Ethics Committee (Ref 20/SS/0028), and the WHO Ethics Review Committee (RPC571 and RPC572,

25 April 2013). Patients had whole blood sampled on days 1, 3 and 5 of either hospital or intensive care admission and

were recruited during the SARS-COV-2 pandemic between 13 March and 28 April 2020. A selection of survivors were

approached and asked to provide samples with consent under both research protocols at day 28 or more following discharge

from hospital.

Healthcare workers with COVID-19

In order to provide a time of symptom matched set of samples from individuals with mild COVID-19 disease in the community,

healthcare workers based at Oxford University Hospitals NHS Foundation Trust, UK with symptoms consistent with mild

COVID-19 and a positive test for SARS-CoV-2 using RT-PCR from an upper respiratory tract (nose/throat) swab tested in an

accredited lab were recruited into the Gastro-intestinal illness in Oxford: COVID substudy [Sheffield REC, reference: 16/YH/

0247]. Individuals were consented and sampled at or after 7 days from the start of symptoms when the participants were returning

to work.

Hospitalized patients with all-cause sepsis

In order to include samples from patients with sources of severe sepsis other than COVID-19, patients older than 18 years of age

admitted to Oxford University Hospitals NHS Foundation Trust, UKwith symptoms and signs of established sepsis (suspected infec-

tion with an acute change in total Sequential Organ Failure Assessment (SOFA) score ofR2 points or a change in quick SOFA score

by R2 points) were consented into the Sepsis Immunomics project [Oxford REC C, reference:19/SC/0296]) between 12 October

2019 and 13 March 2020. Patients were sampled on days 1, 3 and 5 of either hospital or intensive care admission and a selection

of survivors were sampled, with additional consent at up to 6 months post-discharge.

Healthy volunteers

Following advertisement, interested individuals 55 years or over and self-reporting as healthy were consented and recruited into the

Genetic diversity and gene expression in white blood cells study [South Central Oxford REC B, reference 06/Q1605/55]. Blood sam-

ples were collected on one occasion only.

Critically unwell patients with COVID-19 and influenza in London

In order to provide comparator samples from patients critically unwell with influenza, samples were included from patientsR18 years

old managed in an intensive care unit (ICU) forR24 hours requiring ventilator support with either a diagnosis of COVID-19 or severe

influenza using the Aspergillosis in patients with severe influenza (AspiFlu ISRCTN51287266) study [Wales REC 5, reference 19/WA/

0310] (Youngs et al., 2021). Patients had blood sampled within 72 hours of enrolment that may occur within 7 days of admission onto

ICU. Patients were recruited at one of three UK units including St George’s University Hospitals NHS Foundation Trust, Guy’s and St

Thomas’ NHS Foundation Trust and King’s College Hospital NHS Foundation Trust. PCR diagnostics for influenza or SARS-CoV2

performed by accredited laboratories were used for diagnosis.

Clinical phenotyping
Clinical data capture

Healthy volunteers and healthcare workers with COVID-19 had age, sex and, where possible, self-reported ethnic background infor-

mation collected. Information on previousmedical history was not collected or stored for the healthy volunteer cohort but participants

were invited on the basis of their self-reporting being ‘healthy’ and were deemed capable of self-presenting for study assessment.

Healthcare workers with COVID-19 were asked for the date of onset of symptoms (‘when they started to feel unwell’) and the number
Cell 185, 916–938.e1–e40, March 3, 2022 e21
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of days between this date and sampling was calculated for every participant. Any healthcare worker who was admitted to hospital or

required oxygen had this information collected and retained and defined as maximal severity of illness using the World Health Orga-

nization Criteria (see below).

A range of clinical data was collected and stored for downstream analysis using structured methodology from the hospitalized pa-

tients included in the study (COVID-19, all-cause sepsis and influenza).

Patient demographics

Sex and ethnicity were captured using electronic healthcare records (EHR). Age was calculated at the time of sampling or maximal

severity of illness using dates of birth registered in EHR.

Patient medical history and risk factors

Smoking status was derived from clinical clerking or direct patient or next-of-kin questioning where possible. Estimated or calculated

weight was available for the vast majority of patients. In London COVID-19 and influenza patients, body-mass index (BMI) was calcu-

lated through availability of estimated or measured height. In Oxford patients, height was rarely available and so BMI was estimated

using sex and weight and correlation with measured BMI was acceptable in cases where BMI was available. BMI of 25 or over was

defined as overweight. Index of multiple deprivation (IMD) quintile and Charlson comorbidity indices (2012 definitions) were derived

from the EHR in Oxford and were not available for London patients. Previous medical problems in patients admitted to Oxford hos-

pitals were defined using NHS UK Read Codes Clinical Terms Version 3 and converted into ICD-10 codes using ‘TRUD’ (https://isd.

digital.nhs.uk/trud/user/guest/group/0/pack/9). Pre-existing medical conditions defined through ICD-10 were defined through the

consensus of at least one clinical opinion and in cases where there was uncertainty if a code was assigned to an acute presentation,

pre-existing conditions were only assigned if they were present in the first episode of an admission, and not if they were only present

in later admission episodes. For patients recruited in London, pre-existing diseases were defined by the study teams using clinical

records and patient or relative questioning.

After defining pre-existing ICD-10 codes or reported diagnoses, patients were classified as having the following conditions: hy-

pertension, chronic respiratory disease (not explicitly available for London patients), asthma (not explicitly available for London

patients but chronic obstructive pulmonary disease was), chronic cardiovascular disease, diabetes, hematological malignancy,

other malignancy, liver disease, neurological disease (not available for London patients), chronic kidney disease, solid organ trans-

plant, rheumatological condition (not available for London patients), significant immunosuppression (not available for London pa-

tients) and stroke / dementia (not available for London patients). An OpenSafely (OS) score was calculated for all patients using

these classifications combined with BMI and IMD (Williamson et al., 2020). An adjusted OS score was calculated for the London

cases that did not include some missing pre-morbid conditions and IMD quintile and the correlation was very high with the stan-

dard OS score (r = 0.98).

Admission and disease timescales

Length of hospital stay was defined using hospital records for all hospitalized patients. Length of intensive care admission and

duration of vasopressor, ventilation or, where appropriate extracorporeal membrane oxygenation (ECMO) and/or renal replace-

ment therapy were all defined for hospitalized patients using EHR. All intervention and maximal severity time points were

defined according to the date of onset of symptoms for each patient. This was defined by at least 2 independent clinicians

through review of the clinical notes or direct questioning of the patient according to any unusual symptoms related to the cur-

rent clinical condition. COVID-19 was defined by presence of at least one symptom consistent with COVID-19 and a positive

microbiological test. Patients without symptoms were not approached for recruitment. Time between symptom onset and sam-

pling was measured in days. All London patients were classified as critical requiring mechanical ventilation. No specific phys-

iological observations were available for the London patients at the time of sampling and were only available at the time of

admission onto ICU for calculation of the Acute Physiology and Chronic Health Evaluation (APACHE) and SOFA scores. Phys-

iological observations were available from EHR for all hospitalized Oxford patients and were defined on the day of sampling at

midday or the closest time before or after midday for each patient and time point including oxygen saturation, delivered fraction

of inspired oxygen (either exact or estimated depending on delivery method: 0.24 for nasal cannula, 0.28 for simple face mask,

0.8 for non-rebreathe mask), pulse rate and blood pressure. Oxygen saturation: fraction of inspired oxygen ratio (SaO2:FiO2)

was calculated as a proxy for partial pressure of oxygen:FiO2 ratio in the absence of complete arterial blood sampling for all

patients. Days of oxygen therapy were defined in relation to sampling and maximal illness and total hospital stay for hospitalized

COVID-19 patients where 2 or more time points of oxygen therapy were recorded. Fever was defined as 38.0�C and, if present

at midday, was defined at present at time of sampling. Highest measured temperature 24 hours prior to midday was also

captured using EHR for every time point and the presence of ‘persistent fever’ more measures of temperature R 38�C in 24

hours before midday than temperatures recorded < 38�C was also recorded for all sampling time points in hospitalized Oxford

patients. In those patients where persistent fever was observed the time in days between onset of symptoms and end of persis-

tent fever was calculated.

Maximal severity was defined for Oxford COVID-19 patients using SaO2:FiO2 ratio and the date of lowest value was defined

through manual inspection of longitudinal physiological parameters available through EHR. The individual levels of SaO2, method

and exact or estimated concentration of oxygen delivered and additional recruitment strategies such as paralysis or proning were

captured. In cases where death occurred, this was defined as maximum severity of illness and time between symptom onset and

maximum severity was defined thereafter.
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All together this information was used to understand the illness response and severity including (1) to generate a correlation matrix

of clinical features, severity scores and markers illness response in the hospitalized COVID-19 cohort (Data S2); (2) to perform un-

supervised machine learning (see section Statistical and unsupervised analysis of clinical phenotyping using clustering; also Data

S2); (3) to defineWHOcategorical (mild as no oxygen, severe as% 93%oxygen saturation, and critical as requiringmechanical venti-

lation) and ordinal scales (https://www.who.int/blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_

Protocol_synopsis_Final_18022020.pdf) for each time point of sampling and maximal severity of illness and these times were all

aligned in days from onset of symptoms (summarized in Data S2). Severity was also classified according to the WHO Ordinal scale

(https://www.who.int/blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_

18022020.pdf) and Sequential Organ Failure Assessment score (Ferreira et al., 2001) together with the extent of lung disease and

compromise (SOFA oxygenation score).

Other clinical and therapeutic tests and interventions

Full blood count differentials (hemoglobin concentration, platelet count, total white cell, neutrophil, lymphocyte, monocyte and eosin-

ophil counts), highest lactate, C-reactive protein (CRP), alkaline phosphatase (ALP), alanine transaminase (ALT) and lowest bicarbon-

ate were captured at the time of sampling for all hospitalized COVID, and sepsis patients using EHR (Data S2). Equivalent results at

the time of sampling were not available for London patients. D-dimer, lactate dehydrogenase (LDH) creatine kinase (CK) levels at the

time of admission, sampling and maximal severity of illness were available for hospitalized Oxford patients (Data S2) but not London

patients. Decisions onmaximal levels of care based on senior lead clinician decision (frequently with consensus from senior intensive

care clinicians) were captured and patients were defined as frail if the plan was not to offer multi-organ support.

Patients with computed tomography (CT) images of the lungs and thorax had images assessed independently by three radiology or

respiratory experts to define ground-glass or consolidation patterns of lung involvement, presence or absence of pulmonary embolus

and extent of involvement.

The clinical suspicion and/or radiological confirmation of occurrence of any major arterial (e.g., stroke) or venous thromboembolic

(deep venous thrombosis, pulmonary embolus) event was captured for each hospitalized Oxford patient and defined as a single bi-

nary outcome. Radiological diagnosis of pulmonary embolus was defined separately but compared to this definition to ensure

consistency.

Co-prescription of agents hypothesized or proven to be effective in the management or treatment of COVID-19 were logged for all

patients with COVID-19. These agents included dexamethasone, remdesivir, interferon 1beta, tocilizumab, anakinra, azithromycin,

convalescent plasma or other experimental immunomodulatory agents.

Inclusion / exclusion criteria and early stage matching

Patients < 18 years old or those with active malignancy or receiving significant immunosuppression (greater than an equivalent of

40mg once a day of prednisolone) prior to admission, or those with a clear alternative cause for symptoms and hospital presentation

were excluded from analyses. For most modalities, samples were prioritized following a stepwise algorithm tomatch for age, sex and

severity of illness. The steps for matching were as follows:

Select severe/critical hospitalized COVID-19 patients first

1. Asmany critical samples were identified at the earliest point of their maximal severity and samples from patients sampled during

severe disease (not defined as frail) were matched in terms of age, sex and time between onset of symptoms and sampling as closely

as possible.

2. Rejection sampling was used to select individuals from the comparator groups (mild COVID-19 including both hospitalized and

community healthcare workers), healthy volunteers, influenza and all-cause sepsis) to match confounder distributions.

Some downstream analyses required multiple samples from the same individuals transiting through different disease states. In

cases where data was available frommultiple samples for the same individual a cross-sectional analysis involved prioritizing a single

sample based on closeness to maximal severity of illness.

METHOD DETAILS

Blood sample processing
Whole blood from hospitalized Oxford patients, healthcare workers and healthy volunteers were sampled into Tempus tubes (Life

Technologies Corporation) for extraction of whole blood total RNA for sequencing or DNA for genotyping or sequencing, or EDTA

buffered vacutainers (Fisher Scientific) for processing within 4 hours of sampling. Processing consisted of mixing of whole blood

in a 1:1 ratio with Cytodelics (Cytodelics), and then fractionated using Leucosep (Griener Bio-One) into peripheral bloodmononuclear

cells (PBMC) and EDTA-buffered plasma. PBMCs and plasma were frozen and thawed in batches for specific experiments to mini-

mize the risk of batch effects. Tempus tubes were frozen at �80�C until extraction of RNA performed in batches.

Immune cell profiling using mass cytometry
Sample processing and antigen staining

On the day of staining, Cytodelics stabilized samples were thawed, processed to remove red blood cells and fixed usingWhole Blood

Processing Kit (Cytodelics) as per manufacturer instruction. Two control samples from 2 healthy volunteers (Control A and Control B)
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were included to each batch to assess batch to batch variations. Fixed cells were distributed in 96 deep well V-bottomed plate,

washed once with CSB containing Benzonase, and then barcoded using the Cell-ID 20-Plex Pd Barcoding Kit (Fluidigm).

Briefly, cells were washed once with Barcode Perm Buffer, resuspended in Barcode Perm Buffer supplemented with Heparin to

reduce nonspecific eosinophil staining artifacts (Rahman et al., 2016) and loaded with half the amount of metal barcodes recommen-

ded by the manufacturer. After 30 m incubation at room temperature, cells were washed twice in CSB, pooled and counted. 40%–

70% of cells in whole blood are CD66+ granulocytes, and their frequency can increase to up to > 95% in septic patients. To maintain

both the possibility to measure changes in the frequency of granulocytes and to analyze with a reasonable efficiency mononuclear

cells in samples from COVID-19 and sepsis patients, each batch was split in two aliquots. The first aliquot was stained with no

enrichment/depletion done (i.e., unaltered). The second aliquot was enriched for mononuclear cells using a granulocytes depletion

kit based on the magnetic separation of CD66+ cells using beads coated with anti-CD66 antibodies (EasySep; 17882). Both gran-

ulocyte depleted and non-depleted samples were first stained with the surface antibody cocktail for 30 m at room temperature),

washed with CSB, then fixed with Nuclear Antigen Staining Buffer and permeabilized with Nuclear Antigen Staining Perm before

staining with an intracellular antibody cocktail. After staining at room temperature for 45m cells were washed in CSB buffer, and fixed

in 1.6% FA solution before overnight incubation with Cell-ID Intercalator–Ir. On the day of acquisition, cells were washed once in CSB

buffer supplemented with Benzonase, resuspended in water and run at an acquisition rate of < 300 events/second and acquired on a

Helios CyTOFmachine. An additional aliquot of whole blood was thawed and stained for those samples where yield was too low after

staining and acquisition. In total 31 samples were acquired twice (in different batches).

Flow cytometry
For flow cytometry we analyzed one aliquot of the same PBMC samples at the same time they were being processed for 10x Geno-

mics CITE-seq. Each aliquot was split into three (to have 5-10x105 cells/staining) and distributed in 96 well V-bottom plates. Cells

were spun at 500g for 10 min, then pellets stained form 10 min at RT in PBS with 15 mL live dead Aqua, diluted as per manufacturer’s

instructions) supplemented with 165 mg/well human Ig (Gammanorm, Octopharma), to block non-specific Fc receptors binding. Cells

were washed with 200 mL FACS buffer (PBS 10% FCS), 10min 300g and pellets were stained with each antibody mix in Brilliant Stain

Buffer (BD Biosciences), 20 min at RT. Cells were with 200 mL FACS buffer, 10 min 300g and fixed in IC Fixation Buffer (Thermo Sci-

entific) diluted 1:2 in PBS, total 200 ml/well. Cells were fixed a minimum of 30 min and a maximum of overnight before being acquired

at the BD Symphony X50.

Whole blood total RNA-seq
Total RNA-seq was performed with libraries prepared by Oxford Genomics Centre with the NEBNext Ultra II Directional RNA Library

Prep Kit for Illumina after rRNA and globin depletion. Libraries sequenced as a single pool of 144 samples (124 patients) on one

NovaSeq S4 flow cell (4 lanes) with a target of 50M 100bp read pairs per sample. Due to limitedmaterial availability influenza samples

were sequenced used a small-bulk RNA-sequencing method in order to facilitate genetic demultiplexing of the CITE-seq data.

Bulk BCR and TCR sequencing
Bulk isotype-resolved B cell receptor sequencing was performed onRNA fromwhole blood using a protocol adapted from (Bashford-

Rogers et al., 2019), with moderations including the use of a more sensitive reverse transcriptase (Superscript IV) and primer con-

centrations (primer sequences provided in Key Resources Table). Bulk TCR sequencing was based on the same protocol adapted

from (De Mattos-Arruda et al., 2019), in which the TRB primers were redesigned to capture the full productive repertoire (primer se-

quences provided in Key Resources Table). Sequencing libraries were prepared using Illumina protocols and sequenced using

300bp paired-ended sequencing on a MiSeq (Illumina).

10x Genomics Chromium CITE-seq
To minimize batch effects, cryopreserved PBMCs were processed in ten batches of 14 samples per batch, with each batch contain-

ing at least one sample from each comparator group and similar distribution of patients age and sex across the batches. After thaw-

ing, all 14 samples were mixed together to form a single pool (at a ratio that yielded the same number of live cells pooled per sample

based on live/dead counting) followed by viability staining (7-AAD dye, BioLegend 420404) and live/dead sorting on a BD FACSAria

Fusion sorter.

Post sort, each pool was incubated with FcX block (BioLegend) for ten minutes on ice, washed, and stained with a 192 TotalSeq-C

antibody panel (BioLegend 99814) for 30 min on ice. Cells were washed three times in PBS + 1% BSA, counted on the BioRad TC20

Automated Cell Counter and loaded onto the 10X Genomics Chip G at 50,000 cells per channel. Each pool was loaded across seven

channels.

scVDJ-seq data generation
scVDJ data was generated on the same cells as the scCITE-seq and GEX datasets. Cell Ranger software (v3.1.0) was used to

process the Chromium scRNA-seq output data. The FASTQ files were filtered per sequence library plex (i.e., per-pool) using

the 10x Genomics index-hopping-filter (https://support.10xgenomics.com/docs/index-hopping-filter) that implements a strategy

to mitigate the known index hopping issue with the Illumina machines that use patterned flow cells. The IMGT’s reference genome
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was used as a reference for the BCR and TCR VDJ libraries. Cell Ranger was also used to filter read alignments, cell barcodes and

UMIs, excluding those droplets with low numbers of reads (e.g., erythrocytes or droplets with encapsulating ambient RNA from

dying cells).

10x Genomics scATAC-seq
Similar to the CITE-seq approach, cryopreserved PBMCs were processed in two batches of five samples per batch with each batch

containing at least one sample from each comparator group. Each sample underwent viability staining (7-AAD dye, BioLegend

420404) followed by live/dead sorting on aBD FACSAria Fusion sorter. Post sort, five samples of an equal number of cells weremixed

together to form a single pool, and each pool underwent cell lysis and nuclear extraction according to the 10X demonstrated protocol

Nuclei Isolation for Single Cell ATAC Sequencing CG000169 Rev D. Briefly, 200,000 cells from each sample were added to form the

pool and cell lysis was performed with 100 mL chilled Lysis Buffer (10 mM Tris-HCl (pH 7.4), 10 mMNaCl, 3 mMMgCl2, 0.1% Tween-

20, 0.1% Nonidet P40 Substitute, 0.01% digitonin and 1%BSA) for three minutes on ice. The lysis reaction was quenched with 1 mL

chilled Wash Buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20 and 1% BSA) and the nuclei were centri-

fuged (500g for 5 min at 4�C). After removal of supernatant, the nuclei were resuspended in chilled diluted nuclei buffer (10X Geno-

mics; 2000153) and concentration determined with the Bio-Rad TC20 Automated Cell Counter. Each pool of nuclei was loaded

across four channels of the 10X Genomics Chip E (15,000 nuclei per channel).

Tims-TOF mass spectrometry
Sample preparation of non-depleted plasma/serum for LC-MS/MS analysis

Samples. Plasma and serum samples were stored at �80�C then thawed overnight at 4�C before use.

Protein precipitation and protein digestion using S-trap. For the bottom-up proteomics approach, proteins were precipitated using

Isopropanol (IPA) and loaded into the S-trap 96-well plates (Profiti, Huntington, NY, USA) where proteins were retained for subse-

quent trypsin digestion following S-trap manufacturer instructions (Zougman et al., 2014). Briefly, five microliters of plasma or serum

were pipetted under a category 2 fume hoods into standard 96-well plates pre-filled with 200 ml of isopropanol following the 96-well

plate layouts. Precipitation plates were kept at room temperature for 1h before transferring the isopropanol – plasma (serum) mixture

into the 96-well S-trap plates. 200 ml of S-trap binding buffer (90% methanol, 100mM Triethylammonium bicarbonate (TEAB)) were

added into each well of the precipitation plate to recover any protein precipitates and transferred into the corresponding 96-well S-

trap plates. Plates were then spun at 1500g for 2 min. Protein colloidal precipitates were retained into the S-trap mesh. S-trap plates

were then subjected to four consecutive washes with S-trap binding buffer (200 ml for the first wash and 350 ml the three remaining),

followed by a 2min spin at 1500g. 125 ml 50 mM TEAB containing trypsin (Worthington) to a 1:25 wt:wt ratio was added into each well

and incubated overnight at 37�C. Tryptic peptides were sequentially eluted from the S-trap into a clean 96-well plate with 80 ml of 50

mMTEAB, 80 ml of 0.2% formic acid (FA) in LC-MSwater and 80 ml of 0.2% FA in 50% acetonitrile with 2min spins at 1500g after each

solvent addition. Finally, plates containing tryptic digests were dried in the speed vac and reconstituted with 70 ml of 0.1% FA for

subsequent LC-MS/MS analysis after two serial dilutions (1/100 and 1/10) in 0.1% FA for a final 1/1000 dilution plate to achieve suit-

able peptide concentration for LC-MS/MS loading.

Pools. For quality control (QC) purposes and for repeat injections, a pool for each clinical sample group was created and processed

as described above. In addition to the sample group pools, an overarchingmaster pool for each of the plasma and serum cohorts was

also built from the individual non-diluted tryptic peptide sample group pool with master pools built to reflect the contribution of each

individual group to the overall study.

High pH fractionation of Master pools to generate plasma/serum libraries

To increase the depth of the non-depleted plasma/serum proteome,master pools were subjected to a high pH fractionation using the

SOLA HRP cartridges (Thermo Fisher) with the aim to create a protein library. In brief, an equivalent of 150mg of peptides from each

master pool was fractionated into eight different fractions going from 0% to 70% acetonitrile in 10 mM ammonium formate at pH 10.

Prior sample loading, SOLA HRP columns were conditioned with 0.1% trifluoroacetic acid (TFA) in 70% acetonitrile and washed with

0.1% TFA. Following the sample loading, columns were washed with 0.1% TFA before starting the stepwise high pH fractionation

elution with 200ml of 0%, 10%, 15%, 20%, 25%, 30%, 40% and 70% ACN in 10 mM ammonium formate pH 10. Eluted fractions

were then dried in a speed vac and reconstituted with 40ml of 0.1% FA prior to LC-MS analysis.

LC_MS/MS using the high-throughput Evosep One - Bruker TimsTOF Pro platform

C18 Evotips (Evosep one, Odense Denmark) were prepared following manufacturer’s instructions. Briefly, Evotips were conditioned

with 1-propanol, washed with solvent B (0.1% FA in 100% acetonitrile) and equilibrated in solvent A (0.1% FA in LC-MSwater) before

loading them with a total volume of twenty microliters containing 10 ml of sample (peptides) from dilution 1/1,000 plate (equivalent to

an estimated 30 ng of peptides). Evotips were washed once with solvent A and stored in 100 ml solvent A till the sample injection.

Samples were analyzed using an Evosep One LC system connected to the TimsTOF Pro mass spectrometer (Bruker Daltonics).

Peptides were analyzed using the pre-built 100 samples / per day method (Evosep) with an 11.5 min gradient (total cycle time of 14.4

min) at a 1.2 ml/min flow rate (Bache et al., 2018). In brief, tryptic peptides were transferred from the pre-loaded C18 Evotips with a

pre-built gradient to a sample loop and separated on an 8 cmC18 analytical column (Evosep Pepsep, 3 mmbeads, 100 mm ID) with an

overall gradient from 3 to 40% acetonitrile.
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Mass spectrometry data were acquired in PASEF mode (oTOF control v6.0.0.12). The ion mobility window was set to 1/k0 start =

0.85 Vs/cm2 to 1/k0 end = 1.3 Vs/cm2, ramp time 100 ms with locked duty cycle, mass range 100 - 1,700 m/z. MS/MS were acquired

in 4 PASEF frames (3 cycles overlap). Target intensity was set to 6,000 and threshold intensity 200. The data acquisition method has

been deposited within the raw data in the ProteomeXchange data repository (PXD023175) (Perez-Riverol et al., 2019).

To assess the technical reproducibility, master pools were run before each sample group and sample group pools were run after

the master pools, every twenty sample runs and after the last sample of the group. Blanks were injected in between groups to control

for carry over.

Luminex assay
The concentrations of selected proteins in the plasma and serum were measured with Human Magnetic Luminex Kits (Bio-techne)

with 3 panels containing total 51 analytes: C-C motif ligand (CCL)2/3/4/11/17/18/19/20, CD40 Ligand (CD40L), CD163, complement

component 5a (C5a), C-X-C motif chemokine ligand (CXCL)1/5/10, epidermal growth factor (EGF), basic fibroblast growth factor

(FGF2), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), granzyme B

(GrB), interferon (IFN)a/b/g, interleukin (IL)-1a/1b/2/3/5/6/8/10/12/13/15/17A/23/33, lactoferrin (LF), Lipocalin-2 (LCN2), Lympho-

toxin-alpha (LT-a), macrophage colony-stimulating factor (M-CSF), Myeloperoxidase (MPO), beta-nerve growth factor (b-NGF), On-

costatin M (OSM), S100 calcium-binding protein A9 (S100A9), stem cell growth factor (SCGF), tissue factor (TF), tissue factor

pathway inhibitor (TFPI), transforming growth factor alpha (TGF-a), Thrombopoietin (THPO), tumor necrosis factor (TNF) and trig-

gering receptor expressed on myeloid cells 1 (TREM-1). The assays were conducted according to the manufacturer’s instruction.

Results were obtained with a Bio-Rad Bio-Plex� 200 Systems. Fluorescence intensity (FI) data from the assays were used for further

analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical and unsupervised analysis of clinical phenotyping using clustering
To analyze demographic and clinical features cohorts the following statistical tests were applied. For approximately Gaussian distrib-

uted continuous datawe used the anova test (using the function f_oneway fromPython’s scipy.stats package). For other distributions

of continuous variables, we used the Kruskal-Wallis-test (using the function kruskal from Python’s scipy.stats package). For categor-

ical data we used the chi-square test (using the function chi2_contingency from python’s scipy.stats package).

Unsupervised and consensus k-means clustering were used to analyze the clinical data (Moniti et al., 2003; Seymour et al., 2019).

We prepared the data by applying quantile-normalization to counts and shift+rescaling to zero mean and unit variance to all features

(applying quantile normalization to all features, not just counts, further improves the correlation of the ordered consensus matrix with

theWHO severity_at_sample classes).We then ran consensus k-means clustering to identify the best number of clusters. Thismeans

we sample from our clinical dataset 50% of the entries, run k-means clustering (where we vary k, i.e., the number of clusters), and

record how often two elements were clustered together out of the time where they were in the 50% of samples data points in a so-

called consensus matrix. We repeated this process 600 times for k = 2,3,4,5,6 clusters. For each k, we computed the empirical cu-

mulative distribution (CDF) and the change in the area under the CDF curves for different k. The optimal cluster number is obtained for

the k after which the CDF curves (and hence the areas) do not change significantly anymore. We then performed an unsupervised

consensus k-means clustering analysis of (subsets) of the clinical variables (using python’s sklearn library). In order to mitigate

the question of which features are independent, we performed this analysis on the principal components (using sklearn). After

consensus clustering, we sorted the consensus matrix using hierarchical clustering. The methods were implemented in python

and used the packages numpy, scipy and pandas. We also performed hierarchical clustering directly on the PCs, rather than on

the consensus matrix (using AgglomerativeClustering and dendrogram from sklearn).

Mass cytometry data analysis
CyTOF data pre-processing

After acquisition, data was normalized and concatenated on CyTOF Software v7.0, compensated on CATALYST (version 1.5.3.23).

Then, data was further processed for removal of beads and of DNA negative events and for Gaussian parameters using a manual

gating strategy using FlowJo v10.6 as described in Data S3. Then, samples were manually debarcoded (FlowJo v10.6) and

CD45+ events (non-depleted samples), or CD66-Siglec8-CD45+ (granulocytes-depleted samples) events were selected for further

processing. For each batch, two control samples were run together with the patients’ samples to allow for correction for batch ef-

fects. Batch correction was performedwith CytoNorm software (version 0.0.5) separately for granulocyte depleted and non-depleted

samples. For both analyses, the training of the algorithm was done with 20,000 cells per sample and 5 clusters (parameter nClus)

using one of the control samples and the results were assessed using the other control sample. Doublet cells were removed by

manual gating on FlowJo v10.6 (Data S3) and were deemed as IridiumhighKi67� cells to avoid removing proliferating cells. Finally,

to correct for potential biases due to highly varying cell numbers per sample, down-sampling was performed to a maximum

75,000 cells per sample for the granulocyte depleted samples and 40,000 for the non-depleted samples.
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Clustering

Clustering analysis and the identification of the different immune cell population was done using the analytical pipeline described in

Data S3. Clustering analysis was performed separately for granulocyte depleted and non-depleted samples using a self-organizing

map algorithm through an implementation of FlowSOM via the CATALYST R package (version 1.10.3). The initial clustering was per-

formed using a resolution of 144 clusters (dimensions 12x12) and metacluster merging by consensus clustering was performed at a

resolution of 25 clusters for both datasets. The clusters were then manually annotated to define the populations. Three major pop-

ulations (T/NK, B/Plasmablasts and Myeloid) from the granulocyte depleted samples were further clustered to identify finer subpop-

ulations using a resolution of 225 (dimensions 15x15) for T/NK and 144 (12x12) for the other two. The metacluster merging was per-

formed at a resolution of 50 clusters for the T/NK population, 25 for the B/Plasmablast and 30 clusters for the Myeloid population.

Clusters were manually annotated and further managed to provide cell type resolution at two different depths - one to define major

cell types, and a finer one to define subpopulations. The cell type assigned to each cell ID in each of the three major population was

then used to reconstitute the frequency of each population inside the granulocyte depleted sample. The finer annotation was used to

evaluate the frequency of cell subtypes.

Differential abundance analysis

Differential abundance analysis was performed using code from the diffcyt package (version 1.8.8) with the option testDA_edgeR.

The analysis was adjusted for the confounding variables batch, age and sex. For the analysis of the non-depleted samples the

normalization for composition bias was deemed necessary to account for the pronounced differences in neutrophil proportions.

For all other analyses no normalization was performed. The subpopulations of the granulocyte depleted samples were analyzed inde-

pendently of each other to avoid composition effects.

The full results of the clustering and differential abundance analysis results are shown for non-depleted whole blood together with

principal components analysis (Data S3); and clustering and differential abundance analysis for granulocyte depleted whole blood

broad populations, myeloid, B cell and T/NK populations (Data S3).

Manual gating and CD38 median intensity (MI)

Two subpopulations of cells were more precisely defined by manual gating rather than by clustering. To do that, the cluster of the

parent population (cMono or MAIT) was exported from the R environment and gated in FlowJo. Also, the median intensity of

CD38 expression were identified in different cell types within the granulocyte depleted samples.

Density plots

The density plots weremade by down-sampling to have the same number of events across all different conditions and using the geo-

m_pointdensity function of the ggpointdensity package, with an adjust of 4, to generate the ggplot.

Integration of CyTOF and CITE-Seq data
The two datasets were aligned using Seurat (v3.9.9.9010) using only samples that had been analyzed on both technologies (115 sam-

ples, after exclusion of one sample due to low number of cells in CITE-Seq). The integration was based on an overlapping set of 38

markers that were common between the CyTOF and ADT antibody sets. Both datasets were filtered to exclude cells with unclassified

or uncertain annotations. The CITE-Seq dataset was further filtered to exclude potentially low-quality cells with i) number of genes, ii)

number of features of ADT, iii) number of total UMI (RNA) or iv) number of total UMI of ADT lower than 0.001 of their relevant distri-

butions. The two datasets were then down-sampled to 1,000 cells per sample and the integration was performed on 230,000 cells

in total.

The anchors between the query and reference datasets were found based on a CCAwith 30 dimensions and the labels were trans-

ferred using a PCA for the weight reduction of the query dataset. The analysis was performed with either the CITE-seq or the CyTOF

as reference datasets in turn and all cells were given a predicted annotation from their counterpart dataset. Then the predicted anno-

tation of the cells was compared to their original annotation and all the common major cell types were validated with very high ac-

curacy (Figure S2B). Finally, the visualization of the two datasets was performed with the CITE-seq data as a reference. The anchors

were used to impute the ADT markers for the CyTOF cells which were then merged with the CITE-seq data and centered in order to

run a UMAP analysis to visualize all the cells together (Figure S2A).

Flow cytometry data analysis
Data were analyzed with FlowJo version 10. Cells were gated on live leukocytes and recompensated in FlowJo. Frequencies of indi-

vidually gated populations were exported and plotted in Prism. Alternatively, 15,000 CD3+ cells per sample were concatenated and

exported for subsequent analysis in R. Supporting data for analysis of memory CD4+ T cell subsets is shown (Data S3).

Whole blood total RNA-seq analysis
RNA-sequencing data processing

We trimmed adaptor sequences using TrimGalore (v0.6.2, https://github.com/FelixKrueger/TrimGalore), and aligned reads to the

reference genome (GRCh38.100) usingmulti-sample 2-pass mapping with STAR v2.7.3 (Dobin et al., 2013) (ENCODE Best Practices

recommended parameters). We quantified gene expression using featureCounts (v1.6.4) (Liao et al., 2014) and annotations from

Ensembl (v100). We calculated and checked QC metrics from FastQC, mapping metrics from STAR, duplication rates and other

RNASeq metrics from Picard (v2.23) (http://broadinstitute.github.io/picard/) and RNASeQC (v2.3.5) (DeLuca et al., 2012) and
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checked for outliers in principal component analysis. We removed 1 sample with high proportions of duplicates and short reads, low

exonic rate, number of mapped reads and number of genes identified, and which was also clearly outlying on PCA. We also

confirmed that there were no sexmismatches that could indicate sample mix-ups based on sex chromosome gene expression using

QTLTools (Delaneau et al., 2017). This resulted in a dataset of 143 samples from 123 patients. We filtered out features that did not

have at least 10 reads in at least 10 samples, retaining 23,063 features for downstream analysis. We then normalized the data using

the trimmedmean of M-values method R package from edgeR; https://doi.org/10.1093/bioinformatics/btp616 and log2-transforma-

tion of counts-per-million. Code is available on GitHub (https://github.com/COMBATOxford/bulkrnaseq/mapping/).

Exploratory analysis

We carried out principal component analysis (PCA) on the normalized filtered data for 123 patients using prcomp (R v 3.6.2) with

default parameters. We additionally performed PCA on just the samples from hospitalized COVID-19 patients (n = 64). We selected

informative PCs by taking the first n PCs that cumulatively described at least 80% of variance in the data. We explored the relation-

ship between these PCs and the clinical variables available (transformed and filtered as described above) using Spearman correlation

(Figure S3A). Additionally, we investigated the biological relevance of the PCs through pathway enrichment analysis with the R pack-

age XGR (Fang et al., 2016b) and Reactome pathways. For each PC, we took the 500 genes with the highest absolute loading scores

as input and compared to a background of all detected genes.

Data ellipses

For PCA plots, to aid visualization 95% data ellipses were generated assuming a multivariate t-distribution. These were drawn using

the stat_ellipse method from the R package ggplot2, using default parameters. Data ellipses were prepared in the same fashion for

CITE-seq composition and expression analysis, and proteomics.

Differential expression

Weperformed differential expression analysis on the normalized data with one sample per patient using the limmaR package (Ritchie

et al., 2015) . We included age, age2 and sex as fixed effects and compared each patient subgroup with all others, as well as inves-

tigating COVID-19 severity as a quantitative trait (mild = 1, severe = 2, critical = 3).We defined significance for downstream analysis as

FDR < 0.05 and fold change > 1.5.We investigated the impact of variation in cell proportions across samples calculated from hospital

measurements for neutrophils, monocytes, and lymphocytes, by adding neutrophil and monocyte proportions to the model and

comparing the estimated fold changes to the results to themore basic model (correlation plot showing the influence of cell proportion

on detection of differentially expressed genes in Figure S3C). Pathway enrichment analysis was performed using Reactome path-

ways via the XGR R package (Fang et al., 2016b), with Fisher’s exact test and filtering of redundant terms by the xEnrichConciser

function.

Weighted gene correlation network analysis

We applied weighted gene correlation network analysis (WGCNA) to describe modules of highly correlated genes within the whole

blood total RNA-sequencing data (i.e., 143 samples from 123 patients) (Langfelder and Horvath, 2008). We utilized the ‘‘cornet’’ pipe-

line to wrap the WGCNA R package and perform gene set enrichment analyses (https://github.com/sansomlab/cornet). In brief, a

stepwise approach of correlation network construction and module detection was adopted using log2-transformed counts-per-

million RNA-sequencing data. Using the soft thresholding power of 4, a signed-hybrid network was built implementing the biweight

midcorrelation as the adjacency function. The adjacency matrix was transformed into a topological overlap matrix in order to calcu-

late the dissimilarity and a dissimilarity threshold of 0.3 was used to merge modules with very similar expression profiles. Module

eigengene values (module first principal component) were used to summarizemodules and performmodule-trait correlation analyses

(Pearson correlation). Gene set over representation analyses were performed using the default settings of the ‘‘cornet’’ pipeline

(https://github.com/sansomlab/cornet).

CITE-seq: pre-processing and multimodal annotation
Pre-processing of 10X Libraries (Gene expression, ADT, TCR, BCR)

As described above a total of n = 140 PBMC samples fromCOVID-19, sepsis, influenza and healthy volunteers weremixed into n = 10

pools. Each pool comprised of n = 14 samples (each from a different individual) and cells from each pool were captured using n = 7

10X channels (Figure S1D). From each channel, four libraries were generated, Gene expression (GEX), Surface proteome (ADT), TCR

andBCR repertoires. The libraries were sequenced on an IlluminaNovaSeq 6000 sequencer across nine S4 flowcells (4 lanes per flow

cell). For each of the sample pools, the n = 7 GEX and ADT libraries were sequenced on 3 dedicated lanes (to prevent index hopping

between sample pools). The BCR/TCR libraries were sequenced on the remaining 6 lanes. Mapping indexes for the bulk and single

cell data were built usingGRCh38 genome sequences and Ensembl version 100 annotations. For construction of theCellranger refer-

ence transcriptome we included genes with the following Ensembl biotypes: protein_coding, IG_V_gene, IG_V_pseudogene,

IG_D_gene, IG_J_gene, IG_J_pseudogene, IG_C_gene, IG_C_pseudogene, TR_V_gene, TR_V_pseudogene, TR_D_gene,

TR_J_gene, TR_J_pseudogene, TR_C_gene (n = 20,615 genes; lncRNA not included). FASTQ files were generated using Cellranger

(v3.1.0) mkfastq and individually QC’ed using FastQC (Andrews, 2010). To mitigate index hopping between channel libraries within

sample pool FASTQ files were filtered per pool using the 10x Genomics index-hopping-filter (https://support.10xgenomics.com/

docs/index-hopping-filter) (v1.0.1). Per-channel (n = 70) GEX and CITE-seq matrices were prepared using Cellranger (v3.1.0) count.

Cell identification was performed on the GEX modality with both Cellranger (v3.1.0) and EmptyDroplets (Lun et al., 2019) (1.8.0) and

the union of the calls from both algorithms taken forward as the set of identified cells.
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Genetic demultiplexing of 10X GEX data

The GATK variant calling pipeline (https://github.com/gatk-workflows/gatk4-rnaseq-germline-snps-indels) (v4.1.7.0) was applied to

the bulk RNA-seq data to identify sequence variants for the genetic demultiplexing of the single cell data. Minor modifications were

made to the variant calling pipeline to allow execution from FASTQ files, incorporate metadata into the BAM alignment files, and pro-

duce a block gVCF file. We applied both Demuxlet (Kang et al., 2018) (v2; https://github.com/statgen/popscle/commit/

038044660337b50ec89b0b355493ceb707f18ecd) and Vireo (Huang et al., 2019) (v0.4.0; https://github.com/single-cell-genetics/

vireo/commit/4aecb54a4f2fa3a3413e2cd3e9f3515744385cba), proceeding with the demultiplexing calls from Vireo as they were

more robust to variation in read depth. The dataset was demultiplexed using full genotypes (per-pool gVCF files) from the bulk

sequencing. For each of the n = 70 10x channel sequence libraries, Vireo consistently demultiplexed 60 – 75% of cells. A total of

n = 884,587 singlet cells were demultiplexed.

QC of 10X GEX data and preparation of GEX matrices

The pre-processing workflow was encapsulated in a set of CGAT python pipelines (Cribbs et al., 2019) and version controlled. Cell

quality was assessed with a suite of metrics that included total UMI (GEX), number of genes detected, percent mitochondrial gene

expression, percent ribosomal gene expression, percent IgG expression, Scrublet doublet score (Wolock et al., 2019) and total UMI

(ADT). Ambient RNA was assessed. Cell QC statistics, demultiplexing assignments and cell and patient metadata were centrally

warehoused in an sqlite database. Following inspection of the QC metrics, the dataset was filtered to retain cells with ngenes >

300 and pct_mitochondrial < 10%. In total, n = 836,148 cells were selected for downstream analysis. Expression data for selected

cells was extracted from the per-channel count matrices using R and combined into a single market matrix with AWK. RNA velocity

matrices were computed for each of the channels with Velocyto (http://velocyto.org/) (La Manno et al., 2018) (v0.17.5). Velocity data

for selected cells was extracted and combined into a single matrix using the Loompy Python library (http://loompy.org).

Multimodal cell annotation strategy overview

Weused expert immunological knowledge to guide a curated integration of the data from the different modalities (GEX, ADT and VDJ)

to identify and label the cell sub-populations present in the CITE-seq dataset (Figure 1B). As detailed below, we first performed sepa-

rate clustering of gene expression, clustering of surface protein expression, and analyses of T and B cell receptor V(D)J sequences.

Next, led by expert understanding of the three feature spaces we prioritized use of ADT surface phenotype for definition of major cell

lineages and subsets where definitive marker expression was available. Cell types and subsets were further refined using information

from the repertoire and GEX layers, or in the absence of definitive ADT information were identified by GEX cluster phenotype. Finally,

the identified cell types and subsets were further divided by inferred functional state based on targeted assessment of information

from all threemodalities. For example, cell cycle phase was determined byGEX phenotype, T cell memory versus effector status was

distinguished using information from both the GEX and ADT layers, while assignment of B cell maturation status involved use of in-

formation from all three modalities (including BCR mutational status). Information from all three modalities was used to identify and

exclude doublets from downstream analysis.

Alignment and clustering of 10X GEX data

Prior to alignment data was normalized and log1p transformed using Scanpy (Wolf et al., 2018). The top n = 3000 highly variable

genes (HVG) were selected (Seurat flavor with n_top_genes set). The following MHC and variant immune receptor genes were

excluded from HVG identification A/B/C/D/E/F/G]*, IGH[D/J/V]*, IGK[J/V]*, IGL[J/JCOR/L/ON/V]*, TRA[J/V]*, TRB[D/J/V/VA/VB]*,

TRD[D/J]* and TRG[J/JP/V/VA/VB]*). Effects associated with total number of UMIs were regressed out and PCA components

computed. We evaluated alignment with Harmony (Korsunsky et al., 2019), Scanorama (Hie et al., 2019) and BBKNN (Pola�nski

et al., 2020) and chose to proceed with Harmony following inspection of UMAP projections of the alignment results (data not shown).

Following inspection of the PCA scree (knee/elbow) plot, Harmony alignment of samples (n = 140 levels) was performed in Python

using the top n = 65 PCs. Leiden clustering, marker discovery (wilcox tests) and visualization (with violin plots, UMAPs, volcano plots,

MA plots and heatmaps), automatic cell type identification (with singleR (Aran et al., 2019) and via over-representation analysis of

xCell (Aran et al., 2017) genesets), basic composition analysis, geneset over-representation analysis (including of GO, KEGG and

Biocarta genesets) and visualization of the aligned datasets was performed using pipeline_scxl.py (https://github.com/

sansomlab/tenx). Neighbor graphs were built using Euclidean distance and the ‘‘HNSW’’ algorithm (as implemented in ScVelo (Ber-

gen et al., 2020), following the example of Pegasus (Li et al., 2020)). Clustering was performed using Scanpy, marker discovery with

Seurat (Stuart et al., 2019) and pathway over-representation analysis with gsfisher (Croft et al., 2019) (https://github.com/sansomlab/

gsfisher).

After alignment of the full manifold, we iteratively divided, re-aligned and re-clustered the dataset to achieve high-resolution clus-

tering of different cell subsets. Variable gene identification was performed separately within each subset as described above. In the

first step themajor cell types – T/NK,myeloid and B/plasmablast cells were extracted into n = 3 separate subsets. Each of these three

subsets was then separately aligned and clustered (n = 45 PCs for n = 482k T/NK cells; n = 45 PCs for n = 279k myeloid cells; n = 40

PCs for n = 66k B/plasmablast cells). This process was then repeated with a final (third) round of alignment and clustering being per-

formed separately on six subsets: (A) cells in the CD4 region of themanifold (with n = 50PCs, n = 302k cells), (B) cells in the CD8 region

of themanifold (with n = 45PCs, n = 180k cells), (C) cells in themyeloid region of themanifold (with n = 50PCs, n = 261k cells), (D) cells

in the B cell/Plasmablast cell region of the manifold (with n = 40PCs, n = 57k cells), (E) cells identified as doublets based on scrublet
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scores and marker gene expression (with n = 40PCs, n = 26k cells), (F) other cells types not falling into any of the first five categories

(with n = 50PCs, n = 10k cells). The clustering strategy is shown in Figure S1E. Choice of principal component number was guided by

inspection of the scree plots.

Each of the cell six subsets was subject to Leiden clustering with a range of resolutions (1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 6, 8) and cluster

phenotypes assessed using pipeline_scxl.py (https://github.com/sansomlab/tenx) as described above, and ADT surface phenotype.

For each subset a base resolution was selected and sub-populations further refined by manual splitting or merging of clusters based

on alternate cluster resolutions guided by expert knowledge of cell identities and phenotypes to define a total of n = 131GEX clusters.

These clusters were intersected with information from the ADT and repertoire modalities for the final multimodal annotation of the

dataset as described below.

Pre-processing and analysis of the surface protein (ADT) data

For each channel the ADT signal was normalized independently to its background, using the DSB algorithm (Mulè et al., 2020) taking

the set of cells identified from the GEX data as the foreground and unassigned GEMs with log10(GEX_nUMI +1) R 1.5 as the

background. The workflow was written in R and Python, encapsulated in CGAT pipelines and version controlled. The normalized

ADT datawas subject to hierarchical stochastic neighbor embedding (hSNE) and unsupervisedGaussianmean shift (GMS) clustering

as implemented in Cytosplore (van Unen et al., 2017) (https://www.cytosplore.org). This analysis, whichwas based on the expression

of all n = 192 ADT tags, partitioned the dataset into 66 discrete clusters. Based on expression of known lineage markers (CD3, CD4,

CD8, CD56, CD19, CD20, CD27, CD38, CD14, CD123, CD1c, CD33, CD235, CD34, Vd2, Va72 and CD161) these clusters were

apportioned to NK cells, B cells, Plasmablasts, Vd2+ T cells, CD14+ Monocytes, CD123+ pDC, CD1c+ DC, red blood cells (RBC),

CD34+ cells and distinct populations of CD3+ T cells (Data S3) (clustering of surface protein ADT data). For identification of

Va25+Ja18+ cells (iNKT cells), Vd2-Vg9+ cells, TCRgd+ cells, Va7.2+CD161+ (MAIT) cells and non MAIT T cells a sequential manual

gating strategy was employed. After exclusion of likely contaminant CD33+ CD3+ and CD56+ cells subpopulations of B cells and

plasmablasts were defined by re-clustering these cells based upon expression of CD10, CD24, CD25, CD19, CD20, CD22, HLADR,

CD21, CD23, IgD, CD1c, IgM, CD38, CD29, CD71, CD39, CD27, HLA-ABC and IgA. In total, this analysis of the ADT data identified 12

T cell subpopulations, 7 B cell/plasmablast subpopulations and five distinct sets of doublets (with markers of more than one major

immune lineage). These clusters were intersected with information from the GEX and repertoire modalities for the final multimodal

annotation of the dataset as described below.

Pre-processing and analysis of 10x V(D)J B and T cell repertoire data

T and B cell V(D)J gene usage and receptor sequences were quantified using Cellranger VDJ (v3.1.0) with reference sequences from

the IMGT. For TCR chain usage we recorded additional information for each cell including (i) ‘‘clone proportion,’’ computed as the

proportion of the entire T cell repertoire occupied by the clone in the sample, (ii) whether the cell was a doublet (defined as a singlet

clone with TRA-TRA-TRB-TRB chains), (iii) whether the cell possessed an iNKT receptor phenotype (TRAV10 with TRAJ18), and (iv)

whether the cell carried a MAIT receptor phenotype (TRAV1-2, with either TRAJ12/TRAJ20/TRAJ33). Immunoglobulin sequences

were further analyzed using IMGT High V-Quest. B cell/plasmablast doublets were identified as cells with multiple heavy chain

(HC) contigs where the ratio of the number of UMIs for the top two ranked HC contigs was > 0.125. Light chain (LC) information

was not used for doublet identification as it is known that 1% of B cells may express dual light chains. The TCR and immunoglobulin

chain usage information was intersected with information from the GEX and ADT modalities for the final annotation of the dataset as

described below.

Multimodal cluster annotation

As described below, we performed curated intersections of the information from the different modalities to discern the cellular iden-

tities and functional phenotypes of the different PBMC populations. Information from all three modalities was used to screen and

exclude doublets: in addition to inspection of Scrublet scores (computed from theGEX layer), lineage according to surfacephenotype,

immune receptor sequence and gene expression profile was required to be congruent. In total, following curated intersection of GEX,

ADT and repertoire information we obtained n = 853 clusters. Of thesewe retained n = 346 clusters (n = 787,928 cells) for downstream

analysis. The retained cells comprised of n = 343 clusters (n = 782,245 cells) that were assessed to represent genuine singlet cell clus-

ters based on expert knowledge. We assigned each of these clusters to a ‘‘minor subset,’’ ‘‘major subset’’ and ‘‘cell type’’ category in

order to accommodate downstreamanalyses at different levels of granularity as summarized in Figure 1C. In addition, we retained two

clusters that appeared to comprisemonocyte-platelet doublets (n =5562cells) andaminor, lower confidencecluster of AXL+DCs (n=

121 cells) for inclusion in cluster-level analyses. We excluded n = 92 clusters (n = 20,391 barcodes) that likely represented cell-cell

doublets/multiplets and n = 286 clusters (n = 19,858 cells) which appeared to be comprised of mixtures of cell types. A further n =

129 clusters (n = 7,971 cells) of uncertain phenotype were also excluded. Scripts were written in Python and R and version controlled.

Known T and NK cell subsets were identified by surface protein (ADT) and immune receptor (TCR) phenotype as recorded in Table

S2. These identity assignments were then intersected with the gene expression clusters (GEX) to identify subsets of the different lin-

eages that displayed distinct transcriptional phenotypes (e.g., naive versus memory T cells). These sub-populations are shown in

Data S4 for CD4 T cells, for CD8 T cells, for double positive (DP) T cells, for double negative (DN) T cells, for mucosal associated

invariant T (MAIT) cells, for Vd2+ gamma-delta (gd) T cells, Vd2-ve Vg9-ve gd T cells, Vd2-ve Vg9+ve gd T cells and invariant natural

killer T cells (iNKT). The identified NK cell subsets are also shown in Data S4.

B cell and plasmablast cell subsets were defined using information from the GEX, ADT and immunoglobin repertoire modalities as

detailed and shown in Data S4. Sub populations of innate immune cells and other blood cells were delineated according to gene
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expression clusters and annotated based on their GEX and ADT phenotypes. The identified sub-populations are shown in Data S4 for

mononuclear phagocytes (MNPs), for hematopoietic stem (and progenitor) cells (HSCs) and for platelets and erythrocytes.

To assess the relative immune receptor diversity of the different T, B and plasmablast populations we computed repertoire Shan-

non and Gini indices (detailed in the Repertoire analysis section, and as shown in Data S4). Because of the large variance in cell num-

ber between clusters we estimated the indices by bootstrapping with a sample size of n = 30, n = 1,000 times. Individual bootstrap

samples were drawn without replacement to avoid introduction of artificial clonality. The indices were not estimated for clusters with

fewer than n = 30 cells.

CITE-seq: cell composition analysis
Overview

Three samples with < 500 cells in total, and three samples with confirmed or suspected malignancy, were excluded from all compo-

sition analyses. For the hospitalized COVID-19 and sepsis clinical categories, only samples closest tomaximum severity and only one

sample per individual were included, such that for each category the following numbers of samples were analyzed: healthy volun-

teers, n = 10; COVID-19 acute in-patient mild (OUH), n = 12; COVID-19 acute in-patient severe (OUH), n = 20; COVID-19 acute

in-patient critical (OUH), n = 18; COVID-19 community COVID-19, n = 12; influenza, acute in-patient, n = 10; and sepsis acute in-pa-

tient, n = 15. Scripts for all analysis were written in Python and R and version controlled.

Composition analysis was performed for the different levels of cellular granularity summarized in Data S5, including for cell types;

major cell subsets; minor cell subsets; T and natural killer (NK) cell clusters; B and plasmablast (PB) cell clusters; and mononuclear

phagocyte (MNPs) clusters. To initially inspect cluster abundance across clinical categories, the percentage frequencies of cell sub-

populations were quantified per sample and visualized as boxplots. For cell types, major cell subsets and minor cell subsets (Data

S5), percentages were calculated out of total PBMCs. For higher resolution immune cell clusters (Data S5), frequencies were calcu-

lated out of total T and NK cells, total B and PB cells, or total MNPs. Selected panels are reproduced in the main and supplemen-

tary figures.

Principal component analysis

Principal component analysis (PCA) was used for exploratory analysis, with pre-filtering to remove clusters with a count of n < 10 cells

in < 10 individuals. Cluster counts were converted to centered log-ratios (CLRs) using the ALDEx2 R package, v1.18.0. Briefly, 1,000

Monte Carlo samples of the Dirichlet distribution were generated from the cluster counts for each sample and converted to CLRs. The

median CLR for each cluster-sample combination was used for PCA which was performed using prcomp (R version 3.6.2) with

default parameters. Association tests for clinical variables were performed using an omnibus analysis of variance (ANOVA) to test

for association between the top 15 PCs (collectively explaining > 80% of the total variance) and clinical category (source), age,

sex, and sample pool, with the Benjamini-Hochberg procedure for multiple testing correction and a significance threshold of Pc <

0.05. For the hospitalized COVID-19 cases, association tests with additional variables that were related to acute disease or were sec-

ondary to infection were also performed. All variables had one or no missing values. These additional variables included: ethnicity;

weight; days from symptom to sample and from symptom to admission; maximum temperature in the 24 hours preceding sampling;

persistent fever in the 24 hours preceding sampling; fever, WHO ordinal, ventilation status, SaO2/FiO2 ratio, and SOFA oxygenation

score at the time of sampling; quantile normalized white cell, neutrophil, lymphocyte, monocyte and platelet counts in the 24 hours

before or after sampling; quantile normalized highest concentration of C-reactive protein in the 24 hours before or after sampling;

clinical and/or radiological evidence of thromboembolism during hospitalization; length of hospital stay; OpenSAFELY COVID-19

mortality propensity score; and death in the hospital.

The full results of the PCA and association test results are shown in Data S5 for the cell types; for themajor cell subsets for theminor

cell subsets; for the T and NK clusters; for the B and PB clusters; and for the MNP clusters with selected panels reproduced in the

main and supplementary figures.

Differential abundance analysis

To compare cell subset/cluster abundance across clinical categories, the percentage frequencies of cells were quantified per sample

and visualized as boxplots. For major and minor cell subsets, percentages were calculated out of total PBMCs. For higher resolution

immune cell clusters, frequencies were calculated out of total myeloid cells, total B and plasmablast cells, or total T and natural killer

(NK) cells. To determine the statistical significance of differences in cell subset/cluster abundance between groups, differential abun-

dance analysis was performed using edgeR, v3.28.1 (Amezquita et al., 2020). Cell subset/cluster counts were modeled adjusting for

age, sex and sample pool using a quasi-likelihood negative binomial generalized log-linear model (glmQLFit function), with pre-

filtering to remove clusters with a count of n < 10 cells in < 10 individuals. Counts were normalized by the total number of cells in

each sample for the major and minor cell subset analyses, or by the total myeloid, the total B and plasmablast, or the total T and

NK cells for higher resolution immune cell cluster analyses. Differential abundance testing was performed using the quasi-likelihood

F-test. The Benjamini-Hochberg procedurewas implemented to correct for the number of clusters and the number of pairwise clinical

category comparisons, and a significance threshold of Pc < 0.05 was used. Testing for composition effects did not provide evidence

for biases in cluster abundance. In addition, for the hospitalized COVID-19 patients, edgeR analysis was performed using ANOVA to

identify statistically significant associations between cluster abundance and patient characteristics/clinical variables (as detailed for

the PCA association tests).
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The full results of the differential abundance and covariate analysis results are shown in Data S5 for the cell types; for the major cell

subsets; for the minor cell subsets; for the T and NK clusters; for the B and PB clusters; and for the MNP clusters.

CITE-seq: GEX PCA, differential expression and pathway analysis
Data pre-processing

Pseudobulk counts were generated for each combination of gene and sample at minor subset, major subset and cell type level by

summing together the within-group gene counts. These were then converted to reads-per-million (RPM) by normalizing by the total

count across all genes for each combination of sample and cell type. Finally, residuals were calculated by taking the log(1 + count)

and subtracting the predicted value from a linear model with pool as the independent variable. The six poorly performing samples

mentioned in the Composition section above were removed from all further processing.

PCA analysis

PCAwas carried out on the residuals using the prcomp function in R.We generated PCs separately atminor subset, major subset and

cell type level using residual values from genes with a mean RPM > 1 in among all sources, and with six poorly performing samples

removed. Outlying samples (more than 5 SDs away from the mean across the top 10 PCs) were then removed and PCs recalculated.

Plots are shown in Data S6 for the first two principal components of pseudobulk gene expression for each of the major subsets. To

test differences in major subset PCs across categories, we used an omnibus ANOVA (i.e., a test of a linear model including all diag-

noses/severity categories as dummy variables, against a model with no difference between these groups) to test for association be-

tween the first 10 PCs and diagnosis/severity (across all samples) and disease severity (measured by WHO criteria, within COVID-19

samples) (Data S6). The linear model also includes terms for age and sex. Omnibus p values were corrected for multiple testing using

the Benjamini-Hochberg procedure. We also repeated the principal component analysis only within hospitalized COVID-19 samples

and tested their association with clinical covariates. Only two major subsets showed adjusted p values < 0.01, classical monocytes

and DCs, with association patterns shown in Data S6 for clinical covariates in hospitalized patients.

We generated UMAPs from the top n = 10 PCs for each level of cell clustering (using the R package ‘‘umap’’). For this analysis we

excluded clusters with n = 0 cells forR 10 samples and excluded samples with n = 0 cells in remaining clusters. The resulting UMAP

plots are shown in Data S6 combining PCs across all clusters at the minor subset, major subset or cell type levels.

Differential Expression Analysis

We carried out differential expression tests for a range of contrasts (including subgroups of COVID-19 against healthy volunteers,

sepsis and influenza versus healthy volunteers, COVID-19 versus sepsis, COVID-19 versus influenza and COVID-19 subgroups

against one another. These tests were performed using the R edgeR library (McCarthy et al., 2012). We included age, sex and

pool as covariates, and filtered out samples with < 5 cells and gene with mean RPM < 1, with significant genes selected based

on log fold change (logFC) > 2 and false discovery rate (FDR) < 0.01 (calculated by Benjamini-Hochberg). To test for a set of genes

that differed across COVID-19 severity categories, we also carried out a ‘‘COVID-19 omnibus’’ likelihood ratio test, with dummy vari-

ables for WHO severity and a separate variable for mild recording healthcare workers (in this case, genes were selected if they had

logFC > 2 between any pair of categories).

The number of differentially expressed genes (FDR < 0.01, absolute log-fold change > 2) in each cell cluster for each contrast is

shown in Data S6, volcano plots of differentially expressed genes for critical COVID-19 patients versus healthy volunteers for

eachmajor subset are shown in Data S6, and the top 10most differentially expressed genes for each contrast (across all cell clusters)

in Table S3. We also investigated the relationship between the frequency of a cell subset and the number of differentially expressed

genes (Data S6), and the relationship between differential composition and number of differentially expressed (Data S6).

Pathway Analysis

Gene-set enrichment analysis GSEA of differentially expressed genes were performed using the FGSEA algorithm (Korotkevich et al.,

2021). We performed GSEA for biological pathways from the MSigDB database (including for KEGG, GO, canonical pathways, reg-

ulatory sets, immune signatures and Hallmark genesets). Enrichment analysis was carried out separately for each pair of cell cluster

and contrast, with genes ranked by p value. For the Hallmark genesets, we also carried out a signed enrichment test (ranking by

log(pvalue) x sign(logFC)), shown as a heatmap for major subsets and a range of contrasts in Figures S4D, S5E and S6H. The top

10 pairs of cell cluster and GO term, canonical pathway and immunologic signature for critical COVID-19 versus healthy volunteers

are shown in Table S3.

In addition, we applied GSEA to a set of experimentally derived interferon-stimulated genes (ISGs) (Schoggins et al., 2011). Genes

within this gene set were differentially expressed across a wide range of minor subsets and contrasts (Figure S4E), with the most

significant enrichment being seen in HSCs in critical COVID-19 patients (Figure S4F). We focused in on classical dendritic cells,

as this minor subset showed enrichment of differential expression in ISGs (p < 1e-5) in 9 out of 13 contrasts tested. A subset of

ISGs were identified both as driving the ISG enrichment signature (leading edge genes) and showing individually strong differential

expression (FDR < 0.001, absolute fold change > 3), shown in a hierarchically clustered heatmap of gene expression in classical den-

dritic cells of highly differentially expressed genes from the leading edges of interferon stimulated gene sets (Figure S4G).

CITE-seq: WGCNA analysis
We performed separate WGCNA (Langfelder and Horvath, 2008) analyses of n = 7 selected ‘‘major cell types’’ consisting of cell pop-

ulations that were annotated as ‘‘cell types’’ (B cells, Plasmablasts, NK cells) or ‘‘major subsets’’ (cMono, ncMono, CD4 T cells, CD8
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T cells). For this analysis per-patient pseudobulk-summarized RPM-normalized counts from the prioritized sample set were used as

input. Patients with low total cell numbers (< 500 cells; n = 3), with confirmed or suspected malignancies (n = 3), or from the London

COVID-19 cohort (n = 2) were excluded from the analysis.

Input gene expression matrices were filtered to retain genes with expression above a certain threshold in a given minimum number

of samples. Based on inspection of expression distributions RPM thresholds of 1 (cMono, NK cells, CD4 T cells and CD8 T) and 3

(ncMono, PB and B cells) were chosen for the indicated ‘‘major cell types.’’ The number samples that constituted the smallest patient

group was used as the minimum number of samples. After filtering we retained 9,000-12,000 genes per ‘‘major cell type.’’ Log2
RPM+1 values were batch corrected using the ComBat algorithm (sva R package v 3.36.0) (Johnson et al., 2007; Leek et al.,

2012) specifying the multiplexing sample pool as the adjustment variable (together with an intercept term).

The WGCNA analysis was performed using pipeline_wgcna.py from the https://github.com/sansomlab/cornet repository, and

geneset over-representation analysis was carried out using the gsfisher R library https://github.com/sansomlab/gsfisher. The

parameters used for WGCNA runs are given in Data S6. We excluded 3 ‘‘ambient_rna’’ modules whose eigengene gene loadings

correlated strongly with ambient RNA species abundance (as quantitated in ‘‘empty’’ droplets) (Spearman’s rho R 0.83, p <

2.2 3 10�16; data not shown) and unassigned gray modules from downstream analysis.

Modules were characterized and named by inspection of their gene membership, over-representation of biological pathways (GP

Biological Process, Go Cellular Component, KEGG, MSigDB REACTOME and MSigDB transcription factor motifs) and correlation

with AUCell (Aibar et al., 2017) (v 1.12.0) expression scores for specific sets of genes (Data S6) (identified WGCNA modules). The

‘‘curated type I IFN response’’ geneset comprised of GBP2, IFI27, IFI44L, IFIT1, IFITM1, IFITM3, IFNA1, IFNA10, IFNA13, IFNA14,

IFNA16, IFNA17, IFNA2, IFNA21, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNB1, IRF1, IRF3, IRF7, IRF9, ISG15, MX1 MX2, OASL,

RSAD2, SIGLEC1, TRIM56, USP18 and XAF1.The ‘‘curated AP1 TF family’’ geneset comprised of the genes shown in Figure 3C.

The custom ‘‘zf-C2H2 (PF00096) domain’’ geneset comprised of genes containing the PF00096 domain (Pfam database; Figure 3B).

For geneset over-representation analysis only genesets with a BH corrected p value < 0.05 are reported (separate corrections per-

formed within major cell type and ontology).

Module eigengene correlations with disease were computed by numerically coding the given x_vs_y disease groups as x = 1 and

y = 0 respectively (Figure 3A). Module eigengene associations with variance between patient groups were assessed by ANOVA

(COVID+HV_ANOVA, All_Groups_ANOV-A, Figure 3A). Module eigengene correlations with clinical variables were computed using

pairwise-complete observations. Where appropriate clinical variables were quantile normalized as described below for analysis of

clinical phenotype. Stars in Figure 3A indicate a significant association between the contrast, clinical variable or geneset score

and the module eigengene (BH corrected p value < 0.05, p value correction performed separately for each contrast, variable

or score).

Repertoire analysis
Strategic approach

Here, we used both single cell (sc) and bulk cell VDJ sequencing to decipher the immune responses in COVID-19 patients. The benefit

of scVDJ-seq is the joint analysis of the VDJ BCR or TCR sequence along with the gene expression and CITE-seq for each individual

cell, allowing for a detailed linking of antigen receptor function or type with cellular phenotype or function. However, this is limited by

the number of cells that can be captured in a single experiment, usually between a few 10’s to 1,000’s. Therefore, bulk VDJ-seq can

also be used to capture amore holistic view of the immune cell repertoire. While this does not capture VDJ sequences on a single cell

level, many aspects of the repertoire may be investigated, such as changes in clonality, dynamics, selection and tolerance. Because

bulk VDJ-seq is able to capture the immune receptors of 1,000’s to 100,000’s of cells, this means that the resulting repertoire is more

representative of the individual than single cell VDJ-seq, and has greater power to detect low frequency clones or repertoire features.

Finally, through capturing a higher magnitude of BCR/TCR sequencing, imputing the germline IGHV/J germline alleles becomes

possible, and therefore allowing for analyses of differential genetics between groups.

Additional pre-processing of scBCR-seq data for repertoire analysis

The BCR outputs from CellRanger were run through IMGT V-QUEST (Giudicelli et al., 2004) to determine the TCR chain types and

annotation. In addition, only BCRs from droplets that were confidently annotated as (a) singlets, (b) within the B cell annotated clus-

ters in the GEX data, and (c) were confidently genetically demultiplexed were included. Processed FASTA sequences, corresponding

to high confidence VDJ contigs from 10X Genomic’s Cell Ranger v4.0.0 pipeline, were annotated using IMGT HIGHV-QUEST. To

ensure high quality contigs, non-productive rearranged sequences were removed and only sequences corresponding to cell barc-

odes that past QC cut-offs for gene expression data were analyzed. For B cell VDJ sequences where multi-chains were detected,

e.g., two or more heavy or light chain sequences, only contigs ranked above the first derivative of log10 ranked contig ratios were

selected for downstream analysis. Contig ratios were defined by:

Contigrank2umis=Contigrank1umis

Where multi-chains passed this quality threshold, the contig corresponding to the lowest UMIs detected was considered ambient

RNA contamination and removed.Wheremulti-chains did not pass this threshold, we considered these to be low confidence of being

true single cell droplets and likely to represent homotypic doublets; thus, they were removed from further analysis.
Cell 185, 916–938.e1–e40, March 3, 2022 e33

https://github.com/sansomlab/cornet
https://github.com/sansomlab/gsfisher


ll
OPEN ACCESS Resource
Cells with filtered BCRs were concentrated in the regions annotated as B cells or plasmablasts/plasma cells through gene expres-

sion analysis (Data S3). Plasmablasts/plasma cells exhibited higher BCR IGH/ IGK/L expression compared to non-plasmablasts/

plasma cell populations.

Additional pre-processing of scTCR-seq data for repertoire analysis

The TCR outputs from CellRanger were filtered based on called productivity, and chain identity (TRA or TRB). Only T cells that con-

tained either (a) 1 beta chain, (b) 1 alpha and 1 beta, (c) 2 alpha chains and 1 beta were retained. Given that bona fide T cells with UMI

counts of 1 have been validated in previous datasets (data not shown), the minimum number of UMIs required per cell to accept was

1. In addition, only TCRs from droplets that were confidently annotated as (a) singlets, (b) within the T cell annotated clusters in the

GEX data, and (c) were confidently genetically demultiplexed were included.

The IMGT annotation of cell types demonstrated that the majority of droplets for which TCRs were captured were able to pass the

chain type filters (Table S2). After removal of low-quality droplets, there remain 94 samples corresponding to the maximal disease

severity per patient. Four samples were excluded due to low T cell capture (< 200 cells). Age was used as a co-variate in downstream

analyses.

scBCR clonality measurements

Clonal assignment was performed using a custom procedure. First, concatenated VH/VJ nucleotide sequences were clustered using

an adapted R implementation of CD-HIT (https://github.com/thomasp85/FindMyFriends). Subsequently, within-cluster CDR3

normalized Levenshtein distances were generated using the ‘‘stringdist’’ R package. The clonal threshold was set as the local min-

imum of the CDR3 distance distribution. Convergent clones were assigned using the same procedure without constraints accounting

for biological replicates. The presence of published SARS-CoV-2 binding antibody sequences from CoV-AbDab (Raybould et al.,

2021) within the dataset was identified by first requiring identical VH and VJ gene pairings, followed by CDR3 distance thresholding

(as described above).

The clonal expansion index (CEI) was calculated as the Gini index (unevenness) of the number of total BCRs per clone. The clonal

diversification index (CDI) was calculated as the Gini index of the number of unique BCRs per clone. This is a measure of unevenness

based on how many non-identical members of each clone are diversified from their inferred germline ancestor.

scTCR clonality measurements

A clone IDwas defined by a concatenation of amino acid CDR3 chains present, with cells sharing identical clone IDs classed asmem-

bers of the same clonotype. Clonal proportions were calculated by dividing the number of cells in each clone per sample by the total

of number of cells per sample. Shannon diversity was calculated from count data of clones per sample using the R package entropy

(Hausser, 2009). Statistical analysis was performed using a linear model with covariates for age and sample size.

For the scTCR analysis the cluster annotations were merged to create simplified clusters for analysis. The following reannotated

clusters were used in TCR clonality analysis, with constituent ‘‘minor subsets’’ shown in brackets: CD8 T effector memory

(CD8.TEMRA + CD8.TEM); CD8 T central memory (CD8.TCM + CD8.TCM.CCL5); CD8 T effector (CD8.TEFF + CD8.TEFF.prolif);

CD8 naive (CD8.NAIVE); CD4 T effector (CD4.TEFF + CD4.TEFF.prolif); MAIT (MAIT). Where comparisons of clone size across sam-

ples has been performed in terms of absolute number of member cells each sample was randomly down-sampled without replace-

ment (n = 1250 for CD4, n = 250 for CD8) to generate repertoires of identical size across all samples. The mean size of clone was then

calculated from the down-sampled repertoires. This process was bootstrapped 100 times and the mean size from these iterations is

presented. This approach allows for accurate comparisons between samples containing different cell numbers and controls for sam-

ple size.

scTCR cytotoxicity and Kmer analysis

Cytotoxicity score was calculated using the AddModuleScore function in Seurat (Butler et al., 2018) with a gene-set of the top 50

genes that significantly correlatedwith IFNGexpression in an independent single cell dataset (Watson et al., 2020) andwere identified

as variable features in Seurat. The gene-set was then used as an input to generate phenotype scores.

CDR3b sequences of T cells identified as CD4+ or CD8+ T cells were broken down into 4-amino acid length sequences (Kmer). A

Fisher’s exact test was performed per Kmer across each group of patients (HV, COVID-19 or sepsis patients) and p values adjusted

using a Bonferroni’s correction, with a leave-one-out re-sampling of individuals employed to ensure inter-individual reliability. Kmer

sequences significantly enriched in COVID-19 patients over HV or sepsis patients across more than 95% of the re-samples were

identified as COVID-enriched Kmers. The proportion and cellular phenotype (i.e., subset and cytotoxicity) of T cells with a CDR3b

sequence containing a COVID-enriched Kmer was subsequently compared between COMBAT clinical groups. The method used

to identify CDR3 Kmers associated with COVID-19 is illustrated (Data S3).

Identification of SARS-CoV2 specific T cell clones using public CDR3 databases

Putative viral antigen specificity of clonotypes within COMBAT cohort was determined using publicly available databases of viral an-

tigen specific CDR3 sequences. At the time, two databases containing TCR sequences with reported binding to SARS-CoV-2 epi-

topes were available: VDJdb (Bagaev et al., 2020) and ImmuneCODE (Nolan et al., 2020). From VDJdb, all unique CDR3 amino acid

sequences (alpha as well as beta chain of human TCR) of all lengths and MHC-restrictions with reported binding to known SARS-

CoV2 associated antigens were selected. Sequences with low confidence scores assigned to TCR:peptide:MHC complexes or

missing sequencing/ specificity validation data were then filtered out. ImmuneCODE database includes deeply sampled TCRb rep-

ertoires from over 1,400 subjects exposed to or infected with the SARS-CoV-2 virus. Within these, over 135,000 TCRs were deemed

to be SARS-CoV-2-specific with high-confidence using Multiplex Identification of Antigen-Specific T Cell Receptors Assay (MIRA)
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and were included(Klinger et al., 2015). Unique CDR3 amino acid sequences thus identified were collated and interrogated against

TCR sequences within COMBAT cohort for matcheswithin CDR3a, CDR3a2 andCDR3b regions. A similar strategy was used to iden-

tify CMV, EBV and Influenza specific clones. Finally, proportions of individual repertoires occupied by viral clones were compared

between COMBAT clinical groups.

Bulk BCR and TCR quality control and filtering

Raw sequencing reads were filtered for base quality (median Phred score > 32) using QUASR (Watson et al., 2013). Forward and

reverse reads were merged if they contained identical overlapping region of > 50bp, or otherwise discarded. Universal barcoded re-

gionswere identified in reads and orientated to read fromV-primer to constant region primer. The barcoded region within each primer

was identified and checked for conserved bases. Primers and constant regions were trimmed from each sequence, and sequences

were retained only if there was > 80% per base sequence similarity between all sequences obtained with the same barcode, other-

wise discarded. The constant region allele with highest sequence similarity was identified by 10-mer matching to the reference con-

stant region genes from the IMGT database (Lefranc, 2011), and sequences were trimmed to give only the region of the sequence

corresponding to the variable (VDJ) regions. Isotype usage information for each BCRwas retained throughout the analysis hereafter.

Sequences without complete reading frames and non-immunoglobulin/TCR sequences were removed and only reads with signifi-

cant similarity to reference IGHTCR V and J genes from the IMGT database using BLAST (Altschul et al., 1990) were retained. Ig/

TCR gene usages and sequence annotation were performed in IMGT V-QUEST, where repertoire differences were performed by

custom scripts in Python.

Bulk BCR sequencing resulted in 2,356,813 BCRs consisting of 1,905,867 unique BCR sequences, resulting in 79 samples passing

all QC measures and with the minimum number of BCR sequences per sample at 1,000. Bulk TCR sequencing resulted in 1,200,656

TCRs consisting of 1,159,363 unique TCR sequences, resulting in 77 samples passing all QC measures and with the minimum num-

ber of TCR sequences per sample at 1,000.

Isotype frequencies, somatic hypermutation, CDR3 lengths and IGHV gene usages

Analysis methods are based on (Bashford-Rogers et al., 2019). To account for the greater numbers of BCR RNAmolecules per plas-

mablast compared to other B cell subsets, the normalized isotype usages, defined as the percentage unique VDJ sequences per

isotype, thus controlling for differential RNA per cell and reducing potential biases from differential RNA per cell. Similarly, mean so-

matic hypermutation levels and CDR3 lengths were calculated per unique VDJ region sequence to reduce potential biases from dif-

ferential RNA per cell. IGHV gene usages were determined using IMGT, and proportions were calculated per unique VDJ region

sequence. The representation of IGHV genes in the BCR repertoire reflects their presence in the germline, the naive repertoire

and their expansion after antigenic exposure. We therefore compared the frequency of IGHV gene use in PBMC-derived BCRs iden-

tified by sequence as being enriched for naive (IgM+D+SHM�: > 78% naive B cells by flow cytometry) and antigen-experienced B

cells (including both unswitched (IgM+D+SHM+) and class-switched memory (IgA+/G+/E+) subsets) as shown in (Bashford-Rogers

et al., 2019).

Bulk BCR class-switching event analyses

Relative class-switch event frequency was the frequency of unique VDJ regions expressed as two isotypes (i.e., frommore than one

B cell, where one has undergone class-switch recombination). This was determined as proportion of unique BCRs present as both

isotypes IgX and IgY within a random subsample of 8,000 BCRs, where the mean of 1,000 repeats was generated. This provides

information on the frequency of BCRs observed associated with any two isotypes (class-switching events) while accounting for total

read depth, but not accounting for differences in the relative frequencies of BCRs per isotype.

The per-isotype normalized class-switch event frequencies determine frequency of unique VDJ regions expressed as two isotypes

while normalizing for differences in isotype frequencies. To account for differences in isotype proportions, BCRs from each isotype

were randomly subsampled to a fixed depth of 100 BCRs, and the proportion of unique VDJ sequences present between each pair of

isotypes was counted. The mean of 1,000 repeats was generated.

RNA-velocity B cell analysis

The single-cell RNA-seq datasets were subjected to the standard RNA-velocity pipeline, and the trailing analyses were performed

using the scVelo package (v0.1.24). The scVelo package was used to normalize the counts and select highly variable genes based

on spliced counts. Following this, the dynamical model implemented in scVelo was used to estimate the RNA velocity for the cells.

The estimated velocities were then visualized using Partition-based graph abstraction (PAGA) plots using the previously computed

UMAP embeddings.

Supporting plots are provided in Data S3 for B cell cluster proportions; plasmablast diversity indices, clonal expansion index and

clonal diversification index; correlation analysis of IGHV genes by single cell VDI and RNA VDJ; and IGHV gene usage of IGHD/M

unmutated sequences, IGHD/M mutated sequences and class-switched sequences; constant region genes across B cell clusters;

clonal overlap across comparator groups; and frequencies of known SARS-CoV-2 binding BCRs.

scATAC-seq data analysis
Raw data pre-processing was performed with Cell Ranger ATAC (10X Genomics). ‘cellranger-atac count’ pipeline was used to align

reads and generate single-cell accessibility counts for the cells. The reference genome assembly file was Ensembl GRCh38 v100

Primary Assembly corresponding to hg38, downloaded from http://ftp.ensembl.org/pub/release-100/fasta/homo_sapiens/dna/

Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz. This file was used as the reference genome file for alignment and generation
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of single-cell accessibility counts. Annotations were from Ensembl GRCh38 v100 Gene Annotation downloaded from http://ftp.

ensembl.org/pub/release-100/gtf/homo_sapiens/Homo_sapiens.GRCh38.100.gtf.gz. VIREO (Huang et al., 2019) and demuxlet

(Kang et al., 2018) packages were used to demultiplex patient samples within a channel and identify inter-sample nuclei doublets.

Concordantly filtered barcodes from individualized samples were then used to create individual fragment files for each patient using

HTSlib –c function. Following the creation of fragment files, downstream analysis of the scATAC-seq data was performed using the

ArchR v0.9.3 R package (Granja et al., 2021). Fragment files were first checked using the reformatFragmentFiles function. Arrow files

were then generated by reading each sample’s specific fragment files and a tile matrix was created using 500-bp bins. Cells with a

transcription start site enrichment score < 4, with fewer than 1,000 detected fragments or containing intra-sample nuclei doublets

were removed, resulting in �46,000 cells, which were subjected to dimensionality reduction with iterative Latent Semantic Indexing

(LSI) and Singular Value Decomposition (SVD), followed by Uniform Manifold Approximation and Projection (UMAP) embedding

calculation to visualize the data structure in the two-dimensions. �4,000 cells were manually removed at this stage, as we identified

putative batch effects. The resulting �42,000 cells were subjected to UMAP and were clustered using the implementation from

Seurat R package (Stuart et al., 2019). Cluster-specific gene activity scores were identified based on the local chromatin state,

and marker genes were identified (FDR % 0.01 & log2FC R 1.25). Unconstrained integration with cognate scRNA-seq profiles

was performed using the addGeneIntegrationMatrix (ArchR) method and scRNA-seq cell type annotations were used to label scA-

TAC-seq clusters. We performed peak calling using MACS2 with the addReproduciblePeakSet (ArchR) function using pseudo-bulk

replicates. Such replicates were groupedwith different variables, such as cell-type, condition and patient, as well as a combination of

these variables. Differentially accessible peaks (FDR % 0.1 & log2FC R 0.5) were identified between pairwise comparisons, and

peak-to-gene linkages were calculated using the addPeak2GeneLinks (ArchR) method using a correlation cut-off of 0.45 and reso-

lution = 1,000.We then used the ‘cisbp’ motif set to annotate motifs in accessible peaks using the addMotifAnnotations (ArchR) func-

tion. Motif enrichments in differentially accessible peaks were calculated using the peakAnnoEnrichment (ArchR) method. Finally,

motif footprinting was performed by measuring Tn5 insertions in genome-wide motifs and normalized by subtracting the Tn5 bias

from the footprinting signal.

Luminex data analysis
Cytokine enrichment profile analysis

The concentrations of 51 circulating proteins in plasma were presented as mean fluorescence intensity (FI) ± SEM and compared

between HV and each disease severity group of COVID-19 using unpaired Student’s t test, and then depicted with Prism (Data S3).

Principal Component Analysis (PCA)

PCA on 171 plasma samples was conducted with the scater package in R. The values of FI were normalized with logNormCounts

function, and then calculated with the RunPCA function. The loadings were generated by the value of first two components of eigen-

vectors multiplied by 10.

Heatmap

The heatmap was colored by the log10 of the fold change in the natural log of the FI, normalized against the mean value of HV for the

plasma cohort and HS for the serum cohort. When comparing mortality in severe and critical COVID-19 patients, the data is normal-

ized to the survivor group. The color-scale is bounded at ± 5-fold change (0.7 in log10), with an increased FI shaded red; decreased FI

shaded green; unchanged FI shaded yellow (Data S3).

Volcano plots

The p values in the Volcano plots are calculated using a two-tailed two-sample unpaired t test (ttest2, MATLAB). The t test was taken

for the natural log of the FI of the test and control conditions. The p values are plotted against the log2 of the fold change in the natural

log of the FI between the test and control conditions.

Uniform manifold approximation (UMAP)

The UMAPs [McInnes L., Healy, J., and Melville, J. (2018)] UMAP: Uniform Manifold Approximation and Projection for Dimension

Reduction, arXiv:1802.03426] (Data S3) were calculated using the MATLAB package (https://uk.mathworks.com/matlabcentral/

fileexchange/71902-uniform-manifold-approximation-and-projection-umap) TheUMAP is partially supervised, with 2/3rds of the pa-

tients in each condition randomly chosen to train the network. The UMAPs are set to have 45 nearest neighbors, with a minimum

distance of 0.3 with a correlation metric. The UMAP was reduced over 2,000 epochs.

Linear correlation between analytes / Linear correlation between clinical traits

The correlation coefficient, r, was calculated using a Pearson correlation coefficient (corcoeff, MATLAB). All quoted r values have an

associated p value (also computed by corcoeff) of less than 0.05.

Correlation network analysis

All values used for the correlation network analysis were the FI of Luminex results and/or the clinical readout. Severities were scored

as HV = 0, CH = 1, CM = 2, CS = 3 and CC = 4. Quality control (QC) was conducted on the matrix of expression values. Seven out of

total 51 proteins were removed from the correlation analysis due to their low FI (< 10 after subtracting FI in blank) and small SD (< 10).

Pearson correlation coefficient was performed using pairwise-complete correlation. Correlation matrix plots were generated using a

modified package corrplot. Correlation matrix summary plots were made manually by R. Network plots were created by ggraph, and

nodes were selected based on |r|>0.5 and p < 0.05.
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Tims-TOF mass spectrometry analysis
Primary data analysis (Identification and Quantitation)

Data was analyzed by the Fragpipe pipeline consisting of Fragpipe 13.0 (Kong et al., 2017), MSFragger 3.0, Philosopher 3.2.9 (da

Veiga Leprevost et al., 2020) and Python 3.8.2. Blank runs were excluded and each file defined as experiment to facilitate LFQ.

Data were searched against a fused target/decoy database generated by Philosopher and consisting of human UniProt SwissProt

sequences and UniProt SARS-nCov02 (retrieved 17/07/2020), plus common contaminants. The database had 40,860 entries

(including 50%decoy entries). MSFragger parameters were set to allow a precursor mass tolerance of plus/minus 10ppm and a frag-

ment tolerance of 20ppm. Isotope error was left at 0/1/2 and masses were set to re-calibrate. Protein digestion was set to semi spe-

cific trypsin with up to 2 allowed missed cleavage sites, allowing peptides between 7 and 50 residues and mass range 500 to 5,000

Da. N-terminal protein acetylation and Methionine oxidation were set as variable modifications. ID validation was done with Pepti-

deProphet and ProteinProphet (Nesvizhskii et al., 2003) with default settings.

Label free quantitation was conducted with IonQuant (Yu et al., 2020) andMatch-Between-Runs enabled (with default parameters)

and using Top-3 quantitation. Feature detection tolerance was set to 10ppm and RTWindow to 0.6 min with an IMWindow of 0.05 1/

k0. For matching, ion, peptide and protein FDRs were relaxed to 0.1 and min correlation set to 0 in order to allow pre-fractionated

library samples to be included. MBR top runs was set to 600.

Data handling

The proteomics dataset was processed as follows: (1) Protein filtering such that proteins with at least 50%of valid values in one group

were kept; (2) Sample filtering such that samples with more than 50% of missing values were removed from the dataset; (3) Data

normalization with log2 transformation and median-centering of the dataset. Imputation of missing values was performed using a

mixed model that combines a K-Nearest Neighbor approach (KNN) when at least 60% of valid values are present, otherwise a Min-

imumprobability approach is usedwheremissing values are randomly drawn from aGaussian distribution (shift = 1.8, nstd = 0.3). The

resulting data matrix contains 353 samples and 105 proteins. Thirteen samples were further excluded from analysis for malignancy,

immunosuppression, or being alternative samples.

Statistical analysis

Unsupervised hierarchical clustering was performed based on Euclidean distance and Ward’s method for calculating linkage (Data

S3). Differential abundance analysis was performed by fitting protein abundance in linear models with the limma package, using only

one sample at the maximal severity of the patient and including age and sex as covariates. The Benjamini-Hochberg procedure was

applied to correct for multiple comparisons. FDR < 0.05 and fold change > 1.5 was taken as statistical significance. Pathway enrich-

ment analysis was performed using the XGR package with annotations either from Gene Ontology Biological Process or the Reac-

tome pathway database. Significantly enriched terms were defined by FDR < 0.05 in hypergeometric tests with all proteins detected

in plasma (including in library samples) as the background. Statistical analysis was performed in R.

Protein-protein interaction network

Protein-protein interaction data was retrieved from STRING v11 database with a confidence score cut-off of 0.7 and zero additional

interactors. The networkwas visualized throughCytoscape v3.8.0 platform (Shannon et al., 2003) using perfuse force directed layout,

and divided into clusters with the Markov cluster algorithm applied in the ‘‘clusterMaker’’ plugin. Node color was mapped to Pear-

son’s correlation coefficients of PC1 scores and the protein level across samples, as lower PC1 score was shown to correlate with

higher disease severity.

Clinical knowledge graph

The MS-based proteomics data were also analyzed using the Clinical Knowledge Graph (CKG) (Santos et al., 2020). CKG provides a

Python framework for downstream analysis and visualization of proteomics data: protein ranking, dimensionality reduction, func-

tional Principal Component Analysis (PCA), Analysis of Variance (ANOVA), protein-clinical variable correlation analysis and network

summarization.

CKG runs 3 feature reduction algorithms: Principal Component Analysis (PCA), Uniform Manifold Approximation and Projection

(UMAP) and functional PCA. The functional PCA is based on the results of the method single-sample Gene Set Enrichment Analysis

(Subramanian et al., 2005), which identifies enrichment of Biological processes (Gene Ontology) (GOBP) in single samples derived

from the ranked intensities of the identified proteins. This method generates a vector of biological processes enrichment scores for

each sample. Loadings of the top 15 proteins and GOBP driving the separation of the conditions studied are included in the PCA and

functional PCA respectively. In this analysis, the drivers are biological processes such as acute-phase response and inflammation

and retinoid and lipoprotein metabolic processes and cholesterol transport.

We performed ANOVA analysis to identify differentially regulated proteins across conditions. Further, we run posthoc analysis

(pairwise t test) to show specific differences when comparing disease conditions to healthy volunteers or community COVID-19

and also between severity levels.

We performed functional enrichment analysis (Fisher’s exact test) to identify enriched GO among the up- and downregulated pro-

teins in each pairwise comparison. Enrichments are plotted as scatterplots showing up- or downregulated enriched GOBP and their

adjusted p values (Benjamini-Hochberg FDR: cutoff 0.05).

CKG performed a Spearman correlation analysis using the clinical metadata and the proteomics dataset. This Protein-clinical cor-

relation is shown in a network where nodes are either clinical variables (diamond shape) or proteins (circle shape), and edges repre-

sent correlation (red = positive correlation, blue = negative correlation; Spearman correlation cutoff R 0.5; Benjamini-Hochberg
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FDR: cutoff 0.05). CKG applied a clustering algorithm (Louvain community detection) to identify clusters of highly connected nodes

(nodes colored by cluster).

The results from all CKG analyses are summarized in a single visualization all the findings in the different analyses and all relevant

biomedical context associated (diseases, drugs, biological processes, pathways, protein complexes, publications). The summariza-

tion algorithm prioritizes what nodes are shown in the network based on betweenness centrality. The top 15 central nodes are shown

for each node type.

Plasma protein abundance for specific proteins is summarized (Data S3).

Similarity network fusion analysis
The similarity network fusion (SNF) analysis was performed using the function in CKG that makes use of the python library pySNF.

The method was used to analyze the proteomics datasets (MS-based proteomics and Luminex) in combination to identify in an

unsupervised manner clusters of similar patients. The number of clusters was not defined initially and optimized using the eigengap

method and the clusters identified using Spectral clustering. The SNF analysis used Euclidean distance to calculate similarity

(k_affinity = 20, mu_affinity = 0.6). The function returns the clusters and a mutual information score for each feature included in

the analysis (MIscore). We used this score to prioritize a reduced number of features mainly driving the separation of the clusters

(11 features) (MIscore R 0.15). The clusters are visualized using PCA plots.

SNF Cluster validation

In order to validate the identified clusters using SNF on the proteomics data, we used an independent cohort studied using a different

technology, namely targeted proteomics by Olink (Filbin et al., 2021). Access to the dataset was granted by Olink https://info.olink.

com/mgh-covid-study-overview-page. The processing of the data was done usingCKGanalytics core functions tomap protein iden-

tifiers to names, transform the data into wide format and impute missing values using a mixed model as previously described. The

clustering on these data followed a similar approach to how the SNF clusters were calculated (optimal clusters and Spectral clus-

tering) but using only the selected features in the SNF analysis (7/11 features).

SNF clusters survival analysis

To evaluate the clinical relevance of the identified clusters in COMBAT, we performed a survival analysis and plotted the Kaplan-

Meier curve using R packages survival (Therneau and Grambsch, 2000) and survminer. The input data is a data frame specifying

the time to event, the event (death or end of observation) and the groups (SNF clusters). The comparison of the survival distributions

between clusters was performed and the p value given using log-rank test. The hazard ratio was calculated using Cox proportional

hazard model. In the Olink dataset survival status is only available at 4 time points: 0, 3, 7 and 28 days. Deaths at these time points

were collected according to WHO category 1, defined as death, in these time points (WHO 0, WHO 3, WHO 7 and WHO 28). We

compared the 28-day mortality between the two SNF clusters by chi-square test.

Olink and COMBAT correlation analysis

To evaluate the robustness of the identified clusters between technologies/studies and to eliminate the possibility that only the 7

selected features used for the clustering of the Olink data were similar, we calculated the correlation (Pearson correlation) of fold-

changes between clusters for all the common proteins in these studies (n = 43).

Tensor and matrix decomposition
A tensor and matrix decomposition method, Sparse Decomposition of Arrays (SDA), as defined in (Hore et al., 2016), was used to

integrate 152 samples from the different ‘omics datasets defined above, allowing that some samples were missing certain

‘omics data.

Thewhole blood total RNA-seq (9missing samples) and the pseudobulk from 10XCITE-seq scRNA-seq (22missing samples) were

combined into a three-dimensional tensor consisting of 152 samples by 9 tissue types by 14,989 genes (which passed QC in both

datasets). This expression was normalized by sample in each tissue type by log2-transformation of counts-per-million + 1.

The number of cells per cell type was included as defined by 10X CITE-seq (a two-dimensional matrix of 152 samples by 97 cell

types, with 22 samplesmissing); andmass cytometry (CyTOF) (One two-dimensional matrix of 152 samples by 10 cell types for the all

cells dataset, with 21 samples missing, and a further two-dimensional matrix of 152 samples by 51 cell types for the granulocytes-

depleted cells dataset, with 20 samplesmissing). We filtered out any samples with fewer than 500 cells in anymatrix. The data in each

matrix was normalized by a log2 transformation of counts-per-million + 1.

The proteomics data from Luminex (in a two-dimensional matrix of 152 samples by 51 proteins, with 20 samplesmissing) andmass

spectrometry (Tims-TOF) (in a two-dimensional matrix of 152 samples by 105 proteins, with 17 samples missing) were used, with the

data normalized as described in the Luminex and Tims-TOF sections.

As described in (Hore et al., 2016), to find robust components we ran the tensor andmatrix decomposition ten times for 1,000 com-

ponents. Each time, around 290 components were estimated to be zero. Once again, similar to the (Hore et al., 2016) method the

absolute correlation (r) was calculated for the sample scores for each pair of components, clustered using hierarchical clustering

on 1-r (dissimilarity measure) and formed flat clusters in which the components in each flat cluster have no greater a cophenetic dis-

tance than 0.4. We chose the flat clusters that had components from at least 5 of the 10 runs. The final sample, tissue and gene or

protein or cell score was the mean of all the components within the chosen clusters. This resulted in 381 clusters.
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Components were identified as associated with COVID-19 if they (1) showed significant variation (BH adjusted p < 0.01) in an anal-

ysis of variance between the COVID-19 categories and healthy volunteers and (2) showed a significant |spearman’s rho|R 0.5 (and

Benjamini/Hochberg adjusted p < 0.01) in at least one of the contrasts between the COVID-19 groups versus healthy volunteers (in

total we found n = 130 such components) (Figure S11C. To identify COVID-19 specific components the median loadings of the com-

ponents for the different comparator (source) groups (i.e., including influenza and all-cause sepsis) were clustered (k-means). Indi-

vidual component associations, for example with comparator group, severity or clinical features were assessed with Spearman cor-

relation (between component loadings and numerical variables) or ANOVA (between component loadings and categorical variables).

The overview heatmap (Figure S11A) was generated by combining the top significant (Benjamini/Hochberg adjusted p < 0.05, abs(r) >

0.5, max 10) components from each of the individual analyses. Pathway enrichment of gene expression (those with posterior inclu-

sion probability > 0.5, weighted by their ranking in loading score magnitude) for individual components was done using gene set

enrichment analysis as implemented in Pi’s xPierGSEA (Fang et al., 2019).

Integrated data analysis of multi-omics data using machine learning feature selection to distinguish COVID-19
severity groups
We used supervised machine learning (from sklearn) to classify samples according to their WHO severity based on PCs obtained

from data across the different modalities (timsTOF, Luminex, and total RNA-seq) (Figure S10A). We performed permutation feature

scoring to find the most important PCs to predict severity. After that, we extracted the most important features of the most important

PCs and reran the algorithm directly on these features, again ranking them according to their importance.

Machine learning using SIMON to distinguish COVID-19 and sepsis
Generation of an integrated COMBAT dataset

The pre-processed data from individual COMBAT assay datasets were automatically processed using the standard extract-trans-

form-load (ETL) procedure to generate an integrated dataset. Datasets were merged using shared variables, the COMBAT sample

ID and assay-specific sample IDs. Next, we generated novel features, such as name of specific assays to indicate if a sample was

analyzed in a specific assay (yes/no), ordering of samples shared between assays (first_sample_across_assays), day when sample

was obtained from themaximumdisease (day_sampling_from_max_disease), state of the diseasewhen sample was acquired (recov-

ered/ongoing), hospitalized, ventilation, oxygenation, sampling (£10 days as early or > 10 days as late phase of the disease), samples

acquired before or after maximum disease (sampling_from_max_disease) and disease progress for longitudinal samples (deteriora-

tion or recovery). Donors that were excluded or frail were not included in the integrated dataset. We standardized names of the im-

mune cells subsets and analytes to reflect the measurement, such as frequency (freq_cell subsets) or intensity (Luminex parameter_

intens). In total, the integrated COMBAT dataset contained information on 428 samples from 268 donors on more than a million

parameters.

Data pre-processing

For the multi-omics data integration, after filtering for samples not analyzed across all assay modalities and restricting to the first

available sample after admission from sepsis and hospitalized COVID-19 patients, the final dataset included 15 sepsis patients

and 53 hospitalized COVID-19 patients with 184 features analyzed using CyTOF, 79 using flow cytometry, 8 using GSA, 105

mass spectrometry, 102 Luminex and 23,063 features from whole blood total RNA-seq. The data for each assay was centered

and scaled, missing valueswere imputed, featureswith zero-variance and near-zero-variance were removed and finally, highly corre-

lated features with cut-off 0.85 were also removed.

Feature selection process

To avoid ‘curse of dimensionality’, reduce overfitting and improve accuracy, we implemented a wrapper approach as described (Ko-

havi and John, 1997). Briefly, the initial dataset containing all 68 donors was partitioned into training (52 donors) and test set (16 do-

nors) with balanced class distribution of sepsis and COVID-19 patients using the data partitioning function (Kuhn, 2008) as described

previously (Tomic et al., 2019). The same training/testing dataset split was used for each assay. The reduction of features using the

recursive feature elimination (RFE) algorithm was performed on the training set and the model was evaluated using the 10-fold cross-

validation repeated 5 times. For whole blood total RNA-seq, prior to training themodel using RFE algorithm, we have performed anal-

ysis of differentially expressed genes between sepsis and hospitalized COVID-19 patients, reducing the number of genes to 2,989

based on the FDR < 0.05 and fold change > 1.5, and accounted for age and sex in the model. The RFE method removes the features

that do not contribute to the final model, while it keeps the features that contribute the most to the final model as evaluated using the

variable importance score (Kuhn and Johnson, 2019). Finally, after the RFE analysis, the selected features from each assay (36 fea-

tures from CyTOF, 20 from flow cytometry, 20 from Luminex, 32 frommass spectroscopy, 28 from whole blood total RNA-seq and 1

from GSA dataset) were merged in the final training dataset containing 52 donors and 137 features.

Machine learning using SIMON

To identify immunological and molecular signatures that can discriminate between sepsis and COVID-19 patients, we used SIMON

(Sequential IterativeModeling ‘‘Over Night’’) (Tomic et al., 2019). SIMON is a free and open-source software that provides a standard-

ized ML method for data pre-processing, data partitioning, building predictive models, evaluation of model performance and selec-

tion of features. For the analysis, we applied four machine learning algorithms, naive Bayes, Shrinkage discriminant analysis (sda),

Support vector machine with linear kernel (‘svmLinear2’) and C5.0 decision tree. Since the entire ML process in SIMON is unified,
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resulting models built with different algorithms can be compared and the best performing models can be selected. First, models are

built on training set and the performance is evaluated using a 10-fold cross-validation repeated five times and cumulative error rate is

calculated. To prevent overfitting, in the second step, each model is evaluated on the withheld test set. The performance of classi-

fication models was determined by calculating the area under the receiver operating characteristic curve (AUROC) for test set (test

AUROC). The best performing model was built using the naive Bayes (testing AUROC 0.85, 95% CI 0.59-1.00). In the final step,

SIMON calculated the contribution of each feature to the model as variable importance score (scaled to maximum value of 100).

Data management
To support consistent and coherent communication of data andmetadatawithin the project, a unified identifier system for all samples

was implemented. The COMBAT sample identifier system encodes information regarding the sample providence in terms of cohort,

de-identified patient ID, location where the sample was taken, the time point of the sample relative to the initial collection and details

regarding the processing of the sample itself.

Datasets from each modality were stored within the consortium via the COMBAT datawarehouse, consisting of over 100TB of fast

storage connected to a research computing cluster. This enabled data processing to occur within the datawarehouse, reducing the

risk of duplication of datasets and the possibility of uncontrolled changes. Once datasets were ready to be shared within the con-

sortium, to support (for example) data integration work, they were formally given a unique identifier and placed in a dedicated dataset

directory. The existence of this deposition and its associatedmetadata, including information regarding associated samples and sta-

tus was then made available via a web application which captures this information in a back-end database. This application allows

consortium members to search by modality and status, providing information about the purpose of each dataset and its location in

the datawarehouse.

The governance of data management was supported by the existence of a short but well-defined Data Access Agreement, which

all consortiummembers were required to sign before gaining access to the datawarehouse. Furthermore, granular permissionswithin

the datawarehouse enabled careful access controls to be applied to particularly sensitive data (such as rich clinical data). Web ap-

plications supporting the consortium are all protected by a federated Shibboleth-based authentication approach, allowing collabo-

rators from outside of Oxford to gain access as required.

Data visualization
Multi-locus viewer

In order to visualize the data from the different modalities (experiments), amodule, Multi Experiment Viewer (MEV https://github.com/

Hughes-Genome-Group/MEV) was built for Multi Locus View (MLV DOI 10.1101/2020.06.15.151837) such that the data was pivoted

on sample rather than genome location. The data was loaded in from eachmodality and for the CITE-seq data, pseudobulk values (on

a sample/cell type basis) were used. In order to compare radically different datatypes (read counts, fluorescence, % cell type etc.),

percentiles for each observation were calculated from the 10th to the 90th, in steps of 10. Values were then placed into 10 bins, e.g., if

a value was% 10th percentile it would be given a value of 1 and if > 2nd and% 3rd, it would get a value of 2 etc. This was used as the

default value, although depending on the modality other values e.g., raw counts, log transformed values were also added and can be

selected by the user. Users can create their own views by searching for genes or loading in specific datasets and then combine them

with a limited set of clinical data. Charts such as histograms, heatmaps and scatterplots can then be added and cross-filtered to

identify samples or features of interest. An instance can be found at https://mlv.combat.ox.ac.uk, with links to predefined views

of the data.

Shiny apps

Shiny apps (https://shiny.combat.ox.ac.uk) were developed using the R package shiny to display the results of the whole blood total

RNaseq differential expression analysis and the principal component analysis. In each, derived data are loaded (limma fitted models

and pre-calculated principal components respectively) together with limited metadata, and plots are generated within the app using

ggplot2.
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Figure S1. Study cohorts, clinical covariates and CITE-seq analysis, related to Figure 1

(A,B) Unsupervised clustering of samples from hospitalized COVID-19 patients by consensus k-means clustering followed by hierarchical clustering on the

consensus matrix based on (A) 49 clinical features (excluding WHO severity classifiers) to determine patient groupings demonstrated the optimal cluster number

was 2 or 3 (B) acute measures of physiology and clinical biomarkers of response without significant missingness (including measures of oxygenation re-

quirements, blood cell counts, fever, ALT, CRP) (Data S2). (C) Biplot illustrating for PC1 and PC2 features driving clustering identified in Figure S1B. (D) Overview

of the CITE-seq experiment. A total of n = 140 PBMC samples from COVID-19, sepsis, influenza and healthy volunteers were mixed into n = 10 pools (left). Each

pool comprised of n = 14 samples from different individuals. After staining, viable cells were isolated by FACS and captured using n = 7 10X channels per pool

(center). From each channel, four libraries were generated from gene expression (GEX), surface proteome (ADT), TCR repertoire and BCR repertoire modalities

(right). (E) UMAP plots showing the iterative gene expression (GEX) clustering of the CITE-seq dataset. Initial GEX clustering of all cells identified four subgroups

(as demarcated by the ellipses in the UMAP, top left). Re-clustering of the T andNK cells (middle left) identified twomajor subgroupswhichwere extracted for final

cluster analysis as the ‘‘CD4 T region’’ and ‘‘CD8 T/NK region’’ (bottom left and bottom center left). A similar process was followed for analysis of the B cells and

plasmablasts (PB) (middle center and bottom center-right) and for the mononuclear phagocytes (MNP) (top center and top-right). A number of doublet clusters

were identified during initial re-clustering of the B/PB and MNPs and were re-clustered separately (bottom-right). The final group of cells identified in the initial

clustering consisted of platelets (PLT), hematopoietic stem (and progenitor) cells (HSC) and some dendritic cells (DC) which were extracted and clustered

together (middle right). The initial and intermediate clustering steps are shown in dashed boxes, while the final set of GEX clusters that were annotated and used

as an input for the multimodal annotation are shown in the solid boxes. As described in the STAR Methods, highly variable gene discovery, integration and

clustering were performed separately for each of the clustering results shown. For this figure, the final six GEX clustering analyses (bottom and right) were labeled

bymapping themultimodal annotations back onto the GEXmanifolds: white labels indicate that > 80%of cells in the GEX cluster mapped to the givenmultimodal

cell cluster, cyan labels indicate a mapping to multiple multimodal cell clusters (indicative names shown).
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Figure S2. Single cell compositional approaches, related to Figure 1

(A-B) Concordance and cross validation of cell composition using single cell resolution mass cytometry (Helios CyTOF system) clustering (from granulocyte

(CD66+) depletedwhole blood with down sampling to amaximumof 75,000 cells and 7,118,158 cells assayed) and CITE-seq analysis of viability sorted peripheral

blood mononuclear cells (PBMCs) from 140 samples profiled using the 10X Genomics platform. (A) Concordance in cell composition annotation between assay

types is demonstrated with UMAP showing joint visualization of CITE-seq and CyTOF datasets including side by side plot of CITE-seq cell surface protein

quantification (ADT) andmass cytometry together with a plot of cell annotations transferred between datasets and colored by cell type where concordant (94.5%

of cells) or discordant (gray) (B) Plots demonstrating cross validation of mass cytometry and CITE-seq cell clusters. (C-E) Stabilized whole blood (Cytodelics) from

COVID-19 patients (non-granulocyte depleted samples) analyzed by mass cytometry (including matched samples collected during convalescence from 16

COVID-19 hospitalized patients). A self-organizing map algorithm (FlowSOM) resolved 25 clusters by consensus clustering for 3,893,390 cells after down

sampling to a maximum of 40,000 cells. Clusters merged to identify broad immune cell populations (Data S3). (C) Cell frequencies by clinical group. Boxplots

showmedian, first and third quartiles; whiskers show 1.5x interquartile range. (D) Differential abundance analysis in patients compared to healthy volunteers, and

different disease states clustering major cell populations using empirical Bayes analysis (statistical inference estimating priors from the data). (E) PCAwith arrows

indicating drivers of variation by cell population. (F) Differential abundance analysis in patients compared to healthy volunteers, and between disease categories

for minor cell subsets using empirical Bayes analysis. Abbreviations for CITE-seq (panel F). B: B cell; cDC: classical dendritic cell; cMono: classical monocytes;

cyc: cycling; DC: dendritic cell; DN: CD4/CD8 double negative; DP: CD4/CD8: double positive; ERYTH: erythrocyte; GDT: gamma delta T; hi: high; HSC: he-

matopoietic stem (and progenitor) cells; iNKT: invariant natural killer T; INT/int: intermediate; MAIT: Mucosal associated invariant T; MEM: memory; mito:

mitochondrial; MNP: mononuclear phagocyte; ncMono: non-classical monocyte; neg: negative; NK: natural killer cell; PB: plasmablast; PBMC: peripheral blood

mononuclear cell; pDC: plasmacytoid dendritic cell; PLT: platelet/CD34- megakaryocyte progenitor; prolif: proliferating; RET: reticulocyte; T: T cell; TCM: T

central memory; TEFF: T effector; TEM(RA): T effector memory (CD45RA re-expressing); TREG: T regulatory cell. Comparator group abbreviations. HV: healthy

volunteer; CM: COVID-19 in-patient mild; CS: COVID-19 in-patient severe; CC: COVID-19 in-patient critical; CComm: COVID-19 community case in the recovery

phase (never admitted to hospital); CConv: COVID-19 convalescence (survivors from 28 days after discharge); Flu: influenza in-patient critical; Sepsis: in-patient

severe and critical sepsis; SeConv: sepsis convalescence.
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Figure S3. Signatures of COVID-19 severity revealed by bulk RNA-seq, related to Figure 2

Whole blood total RNA-seq for hospitalized COVID-19 patients showing (A) matrix correlation of principal components (PCs) with covariates (B) differentially

expressed immunoglobulin lambda chain gene IGLV3-25 and innate viral response geneOAS1 and (C) correlation plot showing the influence of cell proportion on

detection of differentially expressed genes. (D) Pathway enrichment for COVID-19 severe and critical versus sepsis using Reactome. Bars indicate 95% con-

fidence intervals. (E-H) Weighted gene correlation network analysis (WGCNA) of whole blood total RNA-seq. (E) Heatmap showing module trait relationships.

(F,G) Enrichment of WGCNA modules using gene expression data showing for (F) 64 immune and stroma cell types (xCell), (G) MSigDB canonical pathway

genesets, and (H) module eigengene values plotted by patient group. Comparator group abbreviations HV: healthy volunteer; CM: COVID-19 in-patient mild; CS:

COVID-19 in-patient severe; CC: COVID-19 in-patient critical; CComm: COVID-19 community case in the recovery phase (never admitted to hospital); Sepsis: in-

patient severe and critical sepsis.
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Figure S4. Signatures of COVID-19 severity revealed by single cell RNA-seq and mass cytometry, related to Figure 2

(A) Neutrophil marker expression whole blood assayed by mass cytometry comparing across patient groups. (B) Correlations between whole blood total RNA-

seqWGCNAmodules and neutrophil CyTOFmarkers. (C) Association p values between principal components of pseudobulk GEX for specific cell clusters (minor

subsets) across all clinical groups. (D) scRNA-seqMSigDB hallmark gene set enrichment by cell type. All boxplots showmedian, first and third quartiles; whiskers

show 1.5x interquartile range. (E) Enrichment of interferon-stimulated genes for each pair of minor subset and contrasts. Circled dots have p < 1e-5 (Bonferroni-

corrected threshold for the number of subsets/contrasts pairs). The most significant cell subset is highlighted for each contrast. (F) Volcano plot of differential

expression between critical COVID-19 and healthy controls, restricted to interferon-stimulated genes, in the HSC minor subset. (G) A hierarchically clustered

heatmap of gene expression in classical dendritic cells (cDCs) of highly differentially expressed (FDR < 0.001, absolute fold change > 3) genes from the leading

edges of interferon stimulated gene sets. Color shows mean zero-centered RPM in units of standard deviations within each group. Comparator group abbre-

viations HV: healthy volunteer; CM: COVID-19 in-patient mild; CS: COVID-19 in-patient severe; CC: COVID-19 in-patient critical; CComm: COVID-19 community

case in the recovery phase (never admitted to hospital); CConv: COVID-19 convalescence (survivors from 28 days after discharge); Flu: influenza in-patient

critical; Sepsis: in-patient severe and critical sepsis; SeConv: sepsis convalescence.
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Figure S5. Changes in myeloid populations associated with COVID-19 severity, related to Figure 4

(A-C) Single cell mass cytometry. (A) Mean metal intensity (MMI) of HLA-DR, CD33 and CD11c for classical monocytes (cMono) by patient group. (B) Repre-

sentative plot of Ki67+ expression and 191Iridium (DNA) labeling in a healthy volunteer and a COVID19 patient; two distinct population of Ki67+ proliferating cells

were identified, one containing the same amount of DNA as Ki67� cells (Ki67+DNAlow) and a rarer population containing double the amount of DNA (Ki67+DNAhigh)

which likely comprises proliferating cells in S, G2 andM phase. The boxplots describe the frequencies of Ki67+DNAlow and Ki67+DNAhigh across different disease

states. (C) Myeloid cell population frequencies by patient group. (D-G) CITE-seq PBMCmyeloid cell clusters. (D) Differential abundance analysis with boxplots of

cell cluster frequency by patient group where abundance significantly differs relative to healthy volunteers and (E) scRNA-seq MSigDB hallmark gene set

enrichment for cMono, ncMono and DC. (F,G) Differential gene expression in classical monocytes comparing (F) critical COVID-19 patients versus healthy

volunteers and (G) COVID-19 community cases versus healthy volunteers with volcano plots showing significant genes (FDR < 0.01 and logFC > 2) in red. (H-K)

scATAC-seq with cell lysis, nuclear extraction and tagmentation on viability sorted PBMC prior to single nuclei capture and sequencing. Data shown for 42,000

cells post QC (ArchR pipeline) for 8 COVID-19 samples (paired acute and convalescent) and 2 healthy volunteers with (H) label transfer (unconstrainedmethod) to

assign cell clusters based onCITE-seq, (I) comparison of chromatin accessibility (scATAC-seq peaks linked to genes) to CITE-seq gene expression, (J) differential

chromatin accessibility in myeloid cells comparing acute COVID-19 versus healthy volunteers, and (K) scATAC-seq tracks at FGFRL1 locus comparing cell

populations and condition (healthy, COVID-19 acute and convalescent). All boxplots show median, first and third quartiles; whiskers show 1.5x interquartile

range. Abbreviations for CITE-seq (panels D-G). cDC: classical dendritic cell; cMono: classical monocytes; DC: dendritic cell; hi: high; MT, mitochondrial;

ncMono: non-classical monocyte; pDC: plasmacytoid dendritic cell. Comparator group abbreviations. HV: healthy volunteer; CM: COVID-19 in-patient mild; CS:

COVID-19 in-patient severe; CC: COVID-19 in-patient critical; CComm: COVID-19 community case in the recovery phase (never admitted to hospital); CConv:

COVID-19 convalescence (survivors from 28 days after discharge); Flu: influenza in-patient critical; Sepsis: in-patient severe and critical sepsis; SeConv: sepsis

convalescence.Comparator group abbreviations HV: healthy volunteer; CM: COVID-19 in-patient mild; CS: COVID-19 in-patient severe; CC: COVID-19 in-patient

critical; CComm: COVID-19 community case in the recovery phase (never admitted to hospital); CConv: COVID-19 convalescence (survivors from 28 days after

discharge); Flu: influenza in-patient critical; Sepsis: in-patient severe and critical sepsis; SeConv: sepsis convalescence.
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Figure S6. Dynamic changes in lymphocyte populations associated with COVID-19 severity, related to Figure 4

(A) Frequency of activated CD4 and CD8 T cells assayed by single cell mass cytometry. (B-D) Multicolor flow cytometry analysis of PBMC. (B,C) Boxplots,

dotplots and heatmap describing the phenotype and frequency of subsets of memory CD4 T cell subsets defined based on the expression of CCR4, CCR6 and

CXCR3. (D) Frequency of TIM3+CD38+HLADR+ CD8+ T cells. (E) Frequency of CLA+ HLADR+ NK cells assayed by single cell mass cytometry. (F-H) CITE-seq

profiling CD4+ CD8+ T and NK cell clusters. (F) Frequency between comparator groups. (G) Principal Components Analysis (PCA) and correlation with clinical

covariates and severity measures for gene expression in acute hospitalized cases (mild, severe, critical) in activated NK cells. (H) scRNA-seq MSigDB hallmark

gene set enrichment for T cell populations. (I) Single cell mass cytometry composition analysis of B and plasmablast cell populations comparing study groups. (J)

CITE-seq compositional differential abundance analysis of B and plasmablast cell clusters. All boxplots showmedian, first and third quartiles; whiskers show 1.5x

interquartile range. Abbreviations for CITE-seq (panels F-H,J). B: B cell; cDC: classical dendritic cell; cyc: cycling; DN: CD4/CD8 double negative; DP: CD4/CD8:

double positive; hi: high; IFN, interferon; int: intermediate; mito, mitochondrial; NK: natural killer cell; PB: plasmablast; PBMC: peripheral blood mononuclear cell;

resp: responsive; TCM, T central memory; TEM(RA): T effector memory (CD45RA re-expressing); Th, T helper; TREG: T regulatory cell. Comparator group

abbreviations. HV: healthy volunteer; CM: COVID-19 in-patient mild; CS: COVID-19 in-patient severe; CC: COVID-19 in-patient critical; CComm: COVID-19

community case in the recovery phase (never admitted to hospital); CConv: COVID-19 convalescence (survivors from 28 days after discharge); Flu: influenza in-

patient critical; Sepsis: in-patient severe and critical sepsis; SeConv: sepsis convalescence.
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Figure S7. Differences in B and T cell repertoire associated with COVID-19 severity, related to Figure 5

(A-G) Analysis of B cell immune repertoire using bulk VDJ sequencing of whole blood (1,206,531 filtered BCR sequences analyzed) and single cells (CITE-seq). (A)

Clonal density plots with Kernels density estimates overlaid onto UMAP embeddings by comparator group. (B) IGHV total mutations across B cell subsets per

study group (naive B cells not shown, as no mutations). (C) Clonal overlaps across B cell clusters and across constant region genes per study group. Numbers

reflect binary detection events mutation and expansion proportions in plasmablast clone repertoire. (D) Junction lengths from resampled repertoires by patient

group per B cell cluster and in plasmablasts and in plasmablast immunoglobulin constant gene IGHG1. The line shows mean amino acid junction length; the

ribbon range is the 0.25-0.75 quantiles of bootstrapped samplings. (E) Ig constant region genes per B cell cluster (single cell VDJ data). (F) Sequence similarity

network of VDJ sequences, from single cell VDJ data (central nodes), to published monoclonal antibodies (peripheral nodes; references and epitopes described

in legend). Edges depict pairwise Levenshtein’s distance of CDR3s. CDR3 sequence logos are shown following multiple sequence alignment. (G) The proportion

of B cells across each B cell cluster per disease group of sequences shared between patient groups (observed in at least 2 patients). (H-P) Analysis of T cell

immune repertoire. (H) TRAV and TRAJ repertoire analysis. (I,J) UMAP of CD4+ T cells (I) and CD8+ T cells (J) with associated clusters used in repertoire analysis

indicating Shannon Diversity Index by patent group. For clusters used in repertoire analysis see Data S3. (K) Number of enlarged clones by comparator group in

CD4+ and CD8+ subsets. (L) Mean clone size CD4 and CD8. (M) Using a pre-defined cytotoxicity metric the overall cytotoxicity was calculated per individual for

both the CD4+ and CD8+ subsets. For each individual the number of enlarged clones in these subsets was determined (defined as > 2 cells with the same TCR

chain). Mean cytotoxicity per individual is correlated with the number of expanded clones across each individual, irrespective of cohort origin (Pearson’s r2). For

illustration of the method used to identify CDR3 Kmers associated with COVID-19 compared to cells from healthy volunteers and patients with sepsis see Data

S3. (N) Number of Kmers comparing COVID-19 versus healthy volunteers and sepsis. (O) Cytotoxicity of CD8+ T effector cells positive for a COVID-19 associated

Kmer across patient groups. (P) Cytotoxicity of CD8+ T effector memory cells with clonotypes matching published COVID-19 clonotypes. Comparator group

abbreviations. HV: healthy volunteer; CM: COVID-19 in-patient mild; CS: COVID-19 in-patient severe; CC: COVID-19 in-patient critical; CComm: COVID-19

community case in the recovery phase (never admitted to hospital); Sepsis: in-patient severe and critical sepsis. Wilcoxon Test age and sample size adjusted

linear model used *p < 0.05, **p < 0.01, ***p < 0.001. All boxplots show median, first and third quartiles; whiskers show 1.5x interquartile range.
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Figure S8. Plasma protein signatures and sub-phenotypes of COVID-19, related to Figure 6

(A-D) Plasma proteins assayed by HT-LC-MS/MSmass spectrometry. (A) Functional principal components analysis (PCA) in which a vector of biological process

enrichment scores is generated from single-sample Gene Set Enrichment Analysis (ssGSEA) derived from ranked intensities of the identified proteins. (B,C)

GOBP terms or Reactome pathways significantly enriched (FDR < 0.05) in proteins differentially abundant contrasting samples from (B) mild hospitalized COVID-

19 patients with those from healthy volunteers or from mild community COVID-19 cases and (C) severe versus mild or critical. Bars indicate 95% confidence

intervals. (D) Pairwise contrasts, severe versus mild, critical versus severe COVID-19, COVID-19 severe or critical versus sepsis for plasma proteins assayed. (E-

H) Luminex blood proteins. (E) PCA of all plasma samples. (F-H) Volcano plots comparing differential abundance of plasma proteins for (F) COVID-19 severity

groups versus healthy volunteers, (G) critical/severe COVID-19 versus sepsis, (H) critical COVID-19 versus influenza. (I,J) Similarity network fusion (SNF) when

analyzing hospitalized COVID-19 and sepsis patients shaded by (I) cluster group and (J) patient comparator group. Comparator group abbreviations. HV: healthy

volunteer; CM: COVID-19 in-patient mild; CS: COVID-19 in-patient severe; CC: COVID-19 in-patient critical; CC_Lnd: COVID-19 in-patient critical (London);

CComm: COVID-19 community case in the recovery phase (never admitted to hospital); Sepsis: in-patient severe and critical sepsis.

ll
OPEN ACCESS Resource



(legend on next page)

ll
OPEN ACCESSResource



Figure S9. Integrative approaches define hallmarks of COVID-19 response, see Figure 7

(A-E) Machine learning feature selection for COVID-19 severity. (A) Summary of process followed. (B) Performance of the 10 best algorithms when run on all PCs,

only the top-scored PCs, and the raw features extracted from the PCs (plot shows the mean balanced accuracy ± one standard deviation). We also show the

accuracies from training the algorithms with the train+test sets and evaluating them on the validation set (averaged over 50 runs). (C) Violin plots showing

distribution of final selected predictive feature set across WHO severity groups (horizontal lines in violin plots correspond to individual data points). Comparator

group abbreviations. CM: COVID-19 in-patient mild; CS: COVID-19 in-patient severe; CC: COVID-19 in-patient critical. (D,E) Machine learning to discriminate

between sepsis and COVID-19 using plasma proteins, whole blood total RNA-seq and mass cytometry as input variables in SIMON showing (D) discriminating

features with variable score > 70 (E) enriched KEGG pathways on all features with variable importance score > 50. (F-I) Tensor and matrix decomposition across

multi-omic datasets showing datasets including 152 samples by 8 cell lineage clusters (scRNA-seq, 22 missing samples) and whole blood (total RNA-seq, 9

missing samples) by 14,989 genes; cell composition from CITE-seq (152 samples by 64 pseudobulk cell types, 22 missing samples) and CyTOF (152 samples by

10 or 51 cell types, non-granulocyte depleted and depleted whole blood with 21 or 20 samples missing); and plasma proteins from Luminex (152 samples by 51

proteins, 20 missing samples) and high throughput liquid chromatography with tandem mass spectrometry (152 samples by 105 proteins with 17 samples

missing). (F) Heatmap summarizing top components identified on pairwise contrasts involving clinical covariates, measures of severity and patient group with

detail of tensor component 2 displayed for loading scores and relationship with gender, differential gene expression cell lineage clusters and whole blood. (G)

Feature types contributing to loading scores of the top components according to the posterior inclusion probability. (H) Component inclusion where significant on

analysis of variance betweenCOVID-19 source group and healthy volunteers. BH adjusted p < 0.01 and absolute spearman’s p > = 0.5 (and BH adjusted p < 0.01)

with at least one of the contrasts between the COVID-19 groups versus healthy volunteers. (I) Examples of components showing component number and cluster

membership: sample loading scores across comparator groups and features (cells, gene expression, proteins) whose variance contributes to that component are

shown; for gene expression, cell type and highest scoring genes listed (red upregulated, blue downregulated) together with top pathway enrichment (FDR < 0.05)

with pathway genes listed within bars (features shown or included in pathway analysis where posterior inclusion probability > 0.5). Boxplots show median, first

and third quartiles; whiskers show 1.5x interquartile range. Comparator group abbreviations. HV: healthy volunteer; CM: COVID-19 in-patientmild; CS: COVID-19

in-patient severe; CC: COVID-19 in-patient critical; CComm: COVID-19 community case in the recovery phase (never admitted to hospital); Flu: influenza in-

patient critical; Sepsis: in-patient severe and critical sepsis.
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