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Abstract

There is an urgent need to understand the intracellular mechanisms by which synthetic opioids, 

such as fentanyl, depress breathing. We used L-NAME (NG-nitro-L-arginine methyl ester), a 

nitric oxide synthase (NOS) inhibitor, to provide evidence for a role of nitric oxide (NO) and 

nitrosyl factors, including S-nitrosothiols, in fentanyl-induced suppression of breathing in rats. 

We measured breathing parameters using unrestrained plethysmography to record the changes 

produced by bolus administration of fentanyl (25 μg/kg, IV) in male Sprague Dawley rats that 

were pretreated with vehicle (saline), L-NAME (50 μmol/kg, IV) or the inactive D-isomer, D-

NAME (50 μmol/kg, IV), 15 min previously. L-NAME produced a series of ventilatory changes 

that included (i) sustained elevations in breathing frequency, due to the reductions in the durations 

of inspiration and expiration, (ii) sustained elevations in minute ventilation, accompanied by 
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minimal changes in tidal volume, and (iii) increases in inspiratory drive and expiratory drive, 

and peak inspiratory flow and peak expiratory flow. Subsequent administration of fentanyl in rats 

pretreated with vehicle produced negative effects on breathing, including decreases in frequency, 

tidal volume and therefore minute ventilation. Fentanyl elicited markedly different responses in 

rats that were pretreated with L-NAME, and conclusively, the negative effects of fentanyl were 

augmented by the NOS inhibitor. D-NAME did not alter ventilatory parameters or modulate 

the effects of fentanyl on breathing. Our study fully characterized the effects of L-NAME on 

ventilation in rats and is the first to suggest a potential role of nitrosyl factors in the ventilatory 

responses to fentanyl. Our data shows that nitrosyl factors reduce the expression of fentanyl-

induced changes in ventilation.

Graphical Abstract

Panel A: Fentanyl-activated μ-ORs recruit histidine triad nucleotide-binding protein 1 (HINT1) 

while simultaneously activating neuronal NOS (nNOS). HINT1 then recruits nNOS to the 

μ-OR-HINT1 complex (Sánchez-Blázquez et al., 2010; Rodríguez-Muñoz et al., 2011). nNOS 

produces small molecule Snitrosothiols and S-nitrosylated proteins which serve to protect against 

fentanyl-induced respiratory depression. Panel B: Fentanyl-activated μ-ORs recruit HINT1 but 

nNOS is inhibited by L-NAME and nNOS cannot produce small molecule S-nitrosothiols 

and S-nitrosylated proteins. Blockade of nNOS has a number of effects including preventing 

the formation of the μ-OR-NMDA (N-methyl-D-aspartate) receptor super complex, which is a 

possible mechanism for the potentiation of fentanyl-induced respiratory depression in the absence 

of NOS activity (Rodríguez-Muñoz and Garzón, 2013; Shah et al., 2019).
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1. Introduction

Fentanyl is a potent opioid receptor (OR) agonist that is widely prescribed for pain 

relief (Muijsers Wagstaff, 2001; Nelson and Schwaner, 2009). The misuse of fentanyl 

causes several adverse consequences, including fatal depression of breathing (Nelson and 

Schwaner, 2009; Baby et al., 2021a). Fentanyl is usually considered to be selective for 

μ-ORs (Trescot et al., 2008; Hajiha et al., 2009) and indeed has high affinity/efficacy at 

these ORs (Raynor et al., 1994; Huang et al., 2001). However, fentanyl also has biologically 

relevant affinities and intrinsic activities for δ- and κ-ORs (Yeadon and Kitchen, 1990; Zhu 

et al., 1996; Butelman et al., 2002; Gharagozlou et al., 2006).

The potential sites involved in the suppression of breathing and antinociception/analgesia 

effects produced by fentanyl drugs are a constant area of study (Mayer et al., 1989; Sarton 

et al., 1999; Moshourab and Stein, 2012). Henderson et al (2014) found that pretreatment 

with the peripherally restricted μ-OR antagonist, naloxone methiodide, diminished, but did 

not abolish the actions of fentanyl on ventilatory parameters and gas-exchange in the lungs 

of rats. As such, the actions of fentanyl most likely involve peripheral (e.g., carotid bodies), 

central structures free of an effective blood-brain barrier (e.g., area postrema), and brain 

structures within the barrier such as the nucleus tractus solitarius (NTS), Kölliker-Fuse 

nucleus and pre-Bötzinger complex (Mayer et al., 1989; Campbell et al., 1995; Boom et al., 

2012; Henderson et al., 2014; Varga et al., 2020).

Nitric oxide (NO), and a multitude of nitrosyl factors, including S-nitrosothiols (SNOs), 

circulating in the blood (Doctor et al., 2005; Allen et al., 2009; Gaston et al., 2014; 2020), 

the carotid bodies (Wang et al., 1995; Moya et al., 2012; Prabhakar and Semenza, 2012; 

Gaston et al., 2020) and brain nuclei, such as the NTS (Ogawa et al., 1995; Vitagliano et 

al., 1996; Lipton et al., 2001; Granjeiro and Machado, 2009), ventral and dorsal respiratory 

groups, nucleus retrofacialis of the pre-Bötzinger complex (Li et al., 2003), nucleus raphe 

magnus (Nucci et al., 2004), rostral ventrolateral medulla (de Paula and Branco, 2003), 

medial pontine reticular formation (Leonard and Lydic, 1997), locus coeruleus (Fabris et 

al., 1999, 2000), and pontine respiratory group (Ling et al., 1992), play key roles in the 

regulation of breathing. Moreover, systemic injections of NO synthesis inhibitors affect 

breathing and the ventilatory responses to hypoxia (Haxhiu et al., 1995; Gozal et al., 

1996a,b, 1997; Reeves et al., 2008). The involvement of nitrosyl factors with regards to the 

effects of fentanyl, including analgesia, have received some attention (Kissin et al., 2000; 

Maegawa and Tonussi, 2003; Célérier et al., 2006; Erkant et al., 2006; Lu et al., 2014; 

Gupta et al., 2015). However, there is nothing present in the literature as to whether nitrosyl 

factors participate in the deleterious actions of fentanyl on breathing. The aim of the present 

investigation was to evaluate how pretreatment with the NOS inhibitor, NG-nitro-L-arginine 

methyl ester (L-NAME) (Rees et al., 1990; Whalen et al., 2000; Mendoza et al., 2014) 

modulates the deleterious changes in breathing induced by fentanyl in unanesthetized male 

rats.
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2. Methods

2.1. Rats and surgeries

All of the experiments were performed in strict agreement with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 80–23) 

revised in 1996. The protocols were approved by the Animal Care and Use Committees 

of Case Western Reserve University and the University of Virginia. Adult male Sprague 

Dawley rats were purchased from Harlan industries (Madison, WI, USA). The rats were 

anesthetized (2% isoflurane) and a catheter was placed in the jugular vein and exteriorized to 

the back of the neck. All incisions were closed, and the rats were given 7 days for recovery. 

The jugular vein catheters were flushed with phosphate-buffered saline (0.1 M, pH 7.4) 3–4h 

before commencing the studies. The experiments were done in a quiet room with relative 

humidity of 51 ± 2% temperature of 21.2 ± 0.2 °C.

2.2. Ventilatory parameters

Ventilatory parameters (Table 1) were continuously monitored in unrestrained rats using 

whole body plethysmography (PLY3223; Data Sciences International, St. Paul, MN) as 

detailed previously (Young et al., 2013; Jenkins et al., 2021; a,b et al., 2018, 2021; Gaston et 

al., 2020, 2021). The in-built software program – Fine Pointe, BUXCO – provided constant 

corrections of the digitized values for alterations in the humidity and temperature of the 

chambers. The fluctuating changes in chamber pressure due to the respiratory waveforms 

were converted to volumes via algorithms developed by Epstein and associates (Epstein and 

Epstein, 1978; Epstein et al., 1980). The directly recorded and derived parameters detailed 

in Table 1 were chosen to provide the first set of analyses detailing how blockade of NOS 

affects respiratory timing and ventilatory mechanics in unanesthetized rats, and to define 

the processes by which inhibiting NOS modulates fentanyl-induced changes in ventilatory 

parameters, including percentage (%) of non-eupneic breaths per epoch (i.e., non-eupneic 

breathing index, NEBI). Since there were no between group differences in body weights 

(Table 2), the ventilatory (i.e., flow-related) data were not corrected for body weight. 

The nonsignificant, small changes in body temperature (Table 5) meant that the above 

algorithms provided accurate conversions of the box flow signals (Mortola and Frappell, 

1998; Henderson et al., 2014).

2.3. Protocols for plethysmography studies

The rats used in this study (Table 2) were placed in whole body plethysmography 

chambers for 60–75 min to settle before beginning the study protocol. Data were recorded 

continuously (i.e., every breath was accounted for) during the entire experiment, including 

the acclimatization and study phases. One group of rats (n=6) was injected with vehicle 

(saline, 100 μL/100 gram, IV). Another group (n=6) was injected with L-NAME (50 

μmol/kg, IV). Another group (n=6) was injected with D-NAME (50 μmol/kg, IV). Following 

15 min, all the rats were injected with fentanyl (25 μg/kg, IV) and breathing was 

continuously monitored for an additional 60 min.
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2.4. Protocols for body temperature studies

Male Sprague Dawley rats were placed in open top plastic containers and given 60 min to 

settle. The body temperature of the rats was recorded by placing a thermistor probe 5–6 cm 

into the rectum (Henderson et al., 2014). The probe cable was attached to a telethermometer 

(Yellow Springs Instruments, South Burlington, Vermont) that was attached to the tail of the 

rat by tape. Temperature was recorded at regular intervals throughout the experiment (Table 

5). One group of rats (n=5; 315 ± 2 grams) was injected with vehicle (saline, 100 μL/100 g 

body weight, IV) and after 15 min was injected with fentanyl (25 μg/kg, IV). Another group 

(n=5; 317 ± 3 grams) was injected with L-NAME (50 μmol/kg, IV) and then after 15 min 

was injected with fentanyl (25 μg/kg, IV).

2.5. Drugs

Fentanyl citrate (50 μg/ml) was provided by the Animal Resource Centers of Case Western 

Reserve University and the University of Virginia. L- and D-NAME were obtained from 

Sigma Aldrich (St. Louis, MO, USA).

2.6. Statistics

Directly recorded data points (binned into 15 sec epochs), parameters derived from directly 

recorded parameters, and the calculated response areas (i.e., the cumulative percent changes 

from pre-values) were analyzed. To accurately determine baseline values for each parameter, 

the pre-drug 1 min bins (i.e., pre-values) taken for analyses did not include occasional 

marked deviations from baseline that were caused by abrupt movements, such as grooming 

or scratching. All data are shown as mean ± SEM and were analyzed by one-way or 

two-way analysis of variance (ANOVA) (Winer, 1971) followed by Student’s modified t-test 

with Bonferroni corrections for multiple comparisons between means using the error mean 

square terms from each ANOVA (Wallenstein et al., 1980; Ludbrook, 1998; McHugh, 2011). 

A value of P < 0.05 was taken to denote the initial level of statistical significance that was 

modified according to the number of comparisons between means as described in detail by 

Wallenstein et al (1980). A full description of the above statistical approaches we used is 

provided in Getsy et al (2021).

3. Results

3.1. Baseline ventilatory parameters

The numbers, ages and body weights of the three groups of rats that were used in the whole 

body plethysmography studies are presented in Table 2. The ages and body weights of the 

three groups were equivalent to one another (P > 0.05, for all comparisons). The average 

resting (i.e., pre-drug) ventilatory parameter values for the three groups are also presented in 

Table 2. As can be seen, there were no differences between the groups for any parameter (P 

> 0.05, for all comparisons).

3.2. Ventilatory parameters

3.2.1. Frequency of breathing, tidal volume, and minute ventilation—The 

administration of vehicle produced minor changes in ventilation (Figures 1–7). As can 
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be seen in Figure 1 (panel A), the administration L-NAME (50 μmol/kg, IV) elicited an 

immediate increase in breathing frequency that remained in effect at 15 min post-injection 

(i.e., the moment that fentanyl was administered. L-NAME had minimal effects on tidal 

volume (panel B), thus the sustained increase in minute ventilation (i.e., frequency × tidal 

volume, panel C) was due entirely to the increase in breathing frequency. Administration 

of fentanyl (25 μg/kg, IV) to rats pretreated with vehicle produced a relatively transient 

fall in breathing frequency and tidal volume, and therefore minute ventilation, which 

lasted approximately 5–10 min and then returned close to baseline. Tidal volume began 

to increase from baseline about 35 min post-injection of fentanyl in the vehicle group and 

was still evident at 60 min. Administration of fentanyl into the L-NAME-treated rats elicited 

substantially greater transient decreases in breathing frequency, tidal volume, and minute 

ventilation compared to rats pretreated with vehicle. In addition, the post-fentanyl increases 

in tidal volume that were seen in vehicle-treated rats were not seen in the L-NAME-treated 

rats.

3.2.2. Inspiratory and expiratory times—As can be seen in Figure 2, the 

administration of L-NAME (50 μmol/kg, IV) produced immediate decreases in inspiratory 

time (i.e., inspiratory duration) (panel A) and expiratory time (i.e., expiratory duration) 

(panel B) that were consistent with the increases in breathing frequency (Figure 1). 

Subsequent administration of fentanyl (25 μg/kg, IV) in rats that received L-NAME elicited 

rapid and sustained increases in inspiratory time that were similar in the rats that received 

vehicle (panel A). In panel B, the subsequent administration of fentanyl elevated expiratory 

time in both rats treated with vehicle or L-NAME, however, the elevation in expiratory time 

was greater and longer lasting in the rats that had received L-NAME.

3.2.3. End inspiratory and expiratory pauses—As also seen in Figure 2, 

administration of L-NAME (50 μmol/kg, IV) produced minor changes in end inspiratory 

pause (EIP) (panel C) and end expiratory pause (EEP) (panel D). Subsequent administration 

of fentanyl (25 μg/kg, IV) in the rats that had received L-NAME, produced prompt and 

sustained elevations in EIP that were somewhat similar to the rats that had received vehicle 

(panel C). The subsequent administration of fentanyl elevated EEP in rats that had received 

vehicle or L-NAME. Nonetheless, the increase in EEP was greater and longer lasting in the 

rats that had received L-NAME.

3.2.4. Peak inspiratory and expiratory flows and EF50—As seen in Figure 3, the 

injection of L-NAME (50 μmol/kg, IV) elicited a transient elevation in peak inspiratory flow 

(PIF) (panel A) and EF50 (panel C), and a smaller sustained elevation in peak expiratory 

flow (PEF) (panel B). The administration of fentanyl (25 μg/kg, IV) elicited rapid and 

sustained decreases in PIF that were similar in the rats that received either vehicle or 

L-NAME (panel A). Administration of fentanyl also produced a decrease in PEF in the 

rats that received vehicle or L-NAME (panel B), however, this response lasted longer in 

rats treated with L-NAME (panel B). Additional, administration of fentanyl (25 μg/kg, 

IV) produced sustained elevations in EF50 that were comparable in rats that had received 

vehicle or L-NAME, however this sustained increase in EF50 was not immediate and seen 

approximately 7 min post fentanyl injection.
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3.2.5. Relaxation time and apneic pause—As seen in Figure 4, administration of L-

NAME (50 μmol/kg, IV) produced a pronounced decrease in relaxation time (panel A), but 

did not affect apneic pause [AP = (RT/Te)-1] (panel B). The administration of fentanyl (25 

μg/kg, IV) produced transient increases followed by sustained decreases in relaxation time 

of similar pattern in rats that received vehicle or L-NAME (panel A). The administration 

of fentanyl (25 μg/kg, IV) elicited a prompt increase in apneic pause in rats that had either 

received vehicle or L-NAME, with the response being of substantially greater magnitude in 

the rats that had received L-NAME.

3.2.6. Inspiratory and expiratory drives—As shown in Figure 5, administration 

of L-NAME (50 μmol/kg, IV) elicited substantial increases in inspiratory drive (TV/Ti) 

(panel A) and expiratory drive (TV/Te) (panel B) that were not seen in vehicle-treated rats. 

Administration of fentanyl (25 μg/kg, IV) caused rapid long-lasting decreases in inspiratory 

drive that were similar in rats that had received vehicle or L-NAME (panel A). The 

administration of fentanyl elicited a prompt reduction in expiratory drive in rats that had 

received vehicle or L-NAME. Nevertheless, the transient decrease in expiratory drive was of 

greater duration in rats that had received L-NAME (panel B).

3.2.7. Non-eupneic breathing indices—As seen in Figure 6, administration of L-

NAME (50 μmol/kg, IV) produced small, non-significant reductions in the non-eupneic 

breathing index (NEBI) (panel A), as well as the corrected rejection index (NEBI/Freq) 

(panel B). The administration of fentanyl (25 μg/kg, IV) produced a transient (4–5 min) 

increase in both parameters in rats that had received vehicle or L-NAME (panels A and B). 

The magnitudes and durations of these fentanyl-induced increases in NEBI and NEBI/Freq 

were much greater in magnitude in the rats that had received L-NAME (panels A and B).

3.3. Peak responses

The peak alterations in ventilatory parameters produced by fentanyl (25 μg/kg, IV) in rats 

that received vehicle, L-NAME (50 μmol/kg, IV) or D-NAME (50 μmol/kg, IV) are shown 

in Table 3. The peak responses elicited by fentanyl in these three groups of rats were 

generally equivalent to one another, except for the following parameters: (1) the decrease in 

minute ventilation was greater in rats that had received L-NAME than in those that received 

vehicle, and (2) the increases in (a) expiratory time, (b) end expiratory pause, (c) apneic 

pause, (d) NEBI and (e) NEBI/Freq were greater in rats that had received L-NAME than in 

those that received vehicle. The peak responses elicited by fentanyl in the D-NAME-treated 

rats were equivalent to those in vehicle-treated rats.

3.4. Total ventilatory responses

3.4.1. L-NAME—The total responses (i.e., the sum of response values over a 15 min 

period, presented as %change from baseline (i.e., pre) values) of each ventilatory parameter 

elicited by vehicle or L-NAME (50 μmol/kg, IV) are shown in panel A of Figure 7. 

Administration of vehicle caused minor alterations in all parameters, none of which were 

significant. L-NAME elicited substantial elevations in frequency of breathing (Freq), minute 

ventilation (MV), end expiratory pause (EEP), peak inspiratory flow (PIF), EF50, apneic 

pauses (AP), and inspiratory (TV/Ti) and expiratory (TV/Te) drives. Additionally, L-NAME 
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produced substantial reductions in inspiratory time (Ti) and expiratory time (Te), end 

inspiratory pause (EIP), relaxation time (RT), non-eupneic breathing index (NEBI), and 

corrected rejection index (NEBI/F).

3.4.2. Fentanyl—The total responses (i.e., the sum of the response values presented as 

%change from baseline (i.e, pre) values) recorded in the first 15 min after injection of 

fentanyl (25 μg/kg, IV) in rats that had received vehicle-or L-NAME- (50 μmol/kg, IV) 

are shown in panel B of Figure 7. In rats that had received vehicle, fentanyl produced 

a reduction in tidal volume (TV), peak inspiratory flow (PIF), relaxation time (RT), and 

inspiratory (TV/Ti) and expiratory (TV/Te) drives. Additionally, fentanyl induced increases 

in inspiratory time (TI), end inspiratory pause (EIP), EF50, end expiratory pause (EEP) and 

the number of apneic pauses (AP). In rats that had received L-NAME, fentanyl elicited 

(i) greater decreases in breathing frequency (Freq), tidal volume (TV), minute ventilation 

(MV), and inspiratory (TV/Ti) and expiratory (TV/Te) drives than in vehicle-treated rats, (ii) 

similar changes in inspiratory time (Ti), end inspiratory pause (EIP), and peak inspiratory 

(PIF) and expiratory (PEF) flows compared to vehicle-treated rats, (iii) a diminished 

increase in EF50 compared to vehicle-treated rats, and (iv) enhanced increases in expiratory 

time (Te), end expiratory pause (EEP), NEBI, corrected rejection index (NEBI/F) and apneic 

pauses (AP) compared to rats that had received vehicle.

3.5. Effects of D-NAME

As shown in Table 4, D-NAME (50 μmol/kg, IV) did not affect resting breathing frequency, 

tidal volume or minute ventilation (data presented as total responses recorded during the 15 

min after injection) or modify the total negative responses of fentanyl on these parameters.

3.6. Body temperature study

The alterations in body temperatures in response to the injection of fentanyl (25 μg/kg, 

IV) in the vehicle- or L-NAME- (50 μmol/kg, IV) treated rats are shown in Table 5. 

Administration of fentanyl elicited minimal changes in body temperature in the rats that 

had received vehicle, although the increase in body temperature compared to Pre at the 60 

min time point reached statistical significance in vehicle-treated rats. The administration of 

L-NAME did not elicit changes body temperature, and the minor effects elicited by fentanyl 

were equivalent to those recorded in the rats that had received vehicle (P > 0.05, for all 

comparisons).

4. Discussion

The principal finding of this study was that the ventilatory depressant effects of fentanyl 

were substantially modified in the presence of the NO synthase inhibitor, L-NAME, but not 

in the presence of D-NAME (consistent with evidence that the D-isomer is inactive). There 

is substantial evidence revealing how systemic administration of NO synthesis inhibitors, 

such as L-NAME, affect breathing frequency, tidal volume and minute ventilation in 

unanesthetized rats (Haxhiu et al., 1995; Gozal et al., 1996a,b, 1997; Reeves et al., 2008). 

In general, L-NAME elicits robust sustained increases in frequency of breathing that are 

associated with minimal at first, but then gradually occurring and relatively minor decreases 

Seckler et al. Page 8

Biomed Pharmacother. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in tidal volume as time progresses. Thus, the observed increases in minute ventilation last 

for about 15 minutes. Our study extends these findings by showing that intravenous injection 

of L-NAME elicited numerous robust changes in ventilatory parameters in unanesthetized 

Sprague Dawley rats that were not elicited by D-NAME. In brief, L-NAME elicited (i) a 

sustained elevation in breathing frequency via reductions in both inspiratory and expiratory 

durations, (ii) minimal changes (slight decreases) in tidal volume, (iii) a sustained elevation 

of minute ventilation, (iv) sustained increases in peak inspiratory and expiratory flows 

accompanied by a robust, relatively transient increase in EF50, (v) sustained decreases in 

relaxation time, but no change in apneic pause, (vi) sustained elevations in both inspiratory 

drive and expiratory drive, and (vii) sustained decreases in NEBI (non-eupneic breathing 

index) per se and NEBI corrected for breathing frequency (NEBI/Freq). Currently, we do not 

know whether these effects on ventilatory parameters elicited by L-NAME involve inhibition 

of neuronal (type 1) and/or endothelial (type 3) isoforms of NO synthase since L-NAME 

blocks both (Rees et al., 1990; Gozal et al., 1996a,b). However, there is literature showing 

that L-NAME exerts its effects on ventilation by inhibiting NO synthase in the carotid 

bodies (Wang et al., 1995; Gozal et al., 1996a; Reeves, et al., 2008; Moya et al., 2012) and 

brainstem nuclei that regulate breathing (Ogawa et al., 1995; Fabris et al., 1999, 2000; de 

Paula and Branco, 2003; Nucci et al., 2004; Granjeiro and Machado, 2009).

The ventilatory responses elicited by fentanyl in the unanesthetized male Sprague Dawley 

rats are consistent with previous reports in such rats (Henderson et al., 2014; Baby et 

al., 2021a; Jenkins et al., 2021). Briefly stated, fentanyl elicited (i) a relatively minor 

and transient decrease in frequency of breathing that was associated with a substantial 

transient decrease in tidal volume and therefore minute ventilation, (ii) sustained elevations 

in inspiratory time and end inspiratory pause accompanied by robust, but more transient 

elevations in expiratory time and end expiratory pause, (iii) pronounced decreases in peak 

inspiratory and expiratory flows along with initial minor, but eventual robust, increases 

in EF50, (iv) a substantial decrease in relaxation time associated with a pronounced, but 

transient increase in apneic pause, (v) robust and long-lasting decreases in inspiratory and 

expiratory drives, and (vi) a brief increase in non-eupneic breathing index (NEBI). These 

responses elicited by fentanyl may involve stimulation of ORs on neurons in the brainstem 

and spinal cord that are involved in ventilatory control (Laferriere et al., 1999; Wang et al., 

2002; Haji et al., 2003; Lonergan et al., 2003a; Lonergan et al., 2003b), as well as structures 

in the periphery including the carotid bodies, pulmonary arteries, and neural and muscular 

elements of the chest-wall and diaphragm (Schurig et al., 1978; Shook et al., 1990; Hakim et 

al., 1992; Haji et al., 2000; Dahan et al., 2010).

The ability of L-NAME to markedly alter an array of ventilatory responses that were elicited 

by fentanyl strongly indicates that NO and/or nitrosyl factors, such as S-nitrosothiols, 

actively participate in the expression of the effects of the synthetic opioid. In particular, the 

ability of fentanyl to decrease breathing frequency, tidal volume and minute ventilation were 

substantially exaggerated in rats pretreated with L-NAME. Thus, it is evident that the loss 

of newly generated nitrosyl factors augment the negative effects of fentanyl on breathing. In 

other words, it appears that the active production of nitrosyl factors within the carotid bodies 

and/or central brainstem nuclei normally counteract the processes by which fentanyl exerts 

its negative effects on ventilation.
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The enhanced fentanyl-induced depression of breathing frequency in the L-NAME-treated 

rats was accompanied by greater increases in expiratory time and end expiratory pause 

compared to vehicle-treated rats. However the sustained fentanyl-induced increases in 

inspiratory time and end inspiratory pause were equivalent in rats that received vehicle 

or L-NAME. As such, it appears that the nitrosyl factors play a greater role in combating 

the expiratory phase rather than the inspiratory phase of breathing. This concept is further 

supported by data showing that the negative actions of fentanyl on expiratory drive, apneic 

pause [(expiratory time/relaxation time)-1], peak expiratory flow, and the early stages 

of depression of EF50 were exaggerated in rats that were pretreated with L-NAME in 

comparison to those that received vehicle, whereas the effects on inspiratory drive and peak 

inspiratory flow were not. Another key finding was that L-NAME enhanced the increase in 

non-eupneic breathing episodes (NEBI) that were elicited by fentanyl. Comparably previous 

studies provide evidence that fentanyl destabilizes breathing in rats most likely by enhancing 

the occurrence of apneas (Henderson et al., 2014; Baby et al., 2021a; Jenkins et al., 2021), 

and that this negative effect is normally counteracted by endogenous nitrosyl factors.

Finally, our data support the findings of Carnio et al (1999) and Benamar et al (2001) 

that administration of a 50 μmol/kg dose of L-NAME elicited negligible effects on body 

temperature in Sprague Dawley rats. Also similar to previous evidence, the administration 

of a 25 μg/kg dose of fentanyl elicited a minor elevation in body temperature in rats treated 

with vehicle (Geller et al., 1983; Savić Vujović et al., 2013), which was only evident at 60 

min post-injection. This increase in body temperature elicited by fentanyl in rats treated with 

L-NAME was very similar to those in the rats that were pretreatment with vehicle. These 

results agree with evidence that L-NAME does not affect the hyperthermia elicited by a 4 

mg/kg dose of morphine although it should be noted that L-NAME did blunt the pronounced 

hyperthermia elicited by a 15 mg/kg dose of morphine (Benamar et al., 2001). Nevertheless, 

the small increases in body temperature elicited by fentanyl in the rats that were pr etreated 

with vehicle or L-NAME (both approximately 0.4°C) is unlikely to have influenced the 

changes in ventilatory parameters observed in these rats.

5. Conclusion

The finding that the deleterious actions of fentanyl on breathing were augmented by the 

NOS inhibitor, L-NAME, raises several interesting possibilities about the potential roles 

of NO and nitrosyl factors, such as S-nitrosothiols, in the actions of this potent synthetic 

opioid. It has been well documented that NO exerts inhibitory actions in carotid bodies 

(Lahiri et al., 2006; Prabhakar and Semenza, 2012). Therefore, the ability of L-NAME 

to augment the negative effects of fentanyl on breathing could involve the inhibition of 

NO generation via blockade of NO synthase in structures, such as the carotid bodies, 

and in particular, carotid sinus chemoafferent nerve terminals whose cell bodies reside 

in the petrosal ganglia, and autonomic nerve terminals that emanate from the superior 

cervical ganglia (Höhler et al., 1994; Atanasova et al., 2016). Moreover, L-NAME may 

also inhibit the de novo synthesis and actions of S-nitrosothiols, which normally exert 

positive effects on carotid body activation in rats, that under normal circumstances, induce 

carotid sinus chemoafferent nerve-dependent increases in minute ventilation (Gaston et al., 

2020). Furthermore, it has been reported that microinjection of NO (Ogawa et al., 1995) 
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and S-nitrosothiols, such as S-nitroso-L-cysteine (Lipton et al., 2001) in the nucleus tractus 

solitarius (NTS), a key brainstem structure involved in ventilatory signaling (Ogawa et al., 

1995), exert positive effects on ventilation.

The intravenous injection of 50 μmol/kg dose of L-NAME would be expected to elicit 

a sustained hypertension in these unanesthetized rats (Whalen et al., 2006; Davisson et 

al., 2014). In contrast, administration of a 25 μg/kg dose fentanyl would be expected to 

produce a transient decrease in arterial blood pressure in these rats (Gautret et al., 1985; 

Yadav et al., 2018; Haouzi et al., 2020). The possibility that these cardiovascular effects 

of fentanyl are modified by L-NAME has yet to be determined. This study will soon 

be followed by reports on how intravenous infusion of the endogenous S-nitrosothiol, S-

nitroso-L-cysteine (Myers et al., 1990; Gaston et al., 2020), markedly blunts the deleterious 

actions of fentanyl and morphine on ventilatory parameters, arterial blood gases - pH, 

pCO2, pO2 and sO2, and Alveolar-arterial gradient (i.e., an indicator of gas exchange within 

lung alveoli) in unanesthetized and anesthetized rats. The finding that L-NAME modulates 

the negative effects of fentanyl on ventilatory parameters in unanesthetized rats raises 

numerous questions about the role that nitrosyl factors may have in (1) the expression of 

the pharmacological effects of fentanyl and other opioids, and (2) the actions of drugs being 

developed to selectively block the effects of opioids on breathing. We have recently reported 

that L-glutathione ethyl ester (Jenkins et al., 2021), Dcystine diethyl ester and D-cystine 

dimethyl ester (Gaston et al., 2021) and the superoxide/free radical scavenger, tempol (Baby 

et al., 2021a,b) markedly attenuate the negative effects of systemically-injected opioids 

(morphine, fentanyl) on breathing in unanesthetized rats while sparing both the analgesic 

and sedative actions of the opioids. We are evaluating the concepts that (1) L-glutathione 

ethyl ester and the reduced forms of the cystine thiolesters (D-cysteine ethyl ester, D-

cysteine methyl ester) exert their effects against opioids by becoming S-nitrosothiols (S-

nitroso-D-cysteine ethyl ester, S-nitroso-D-cysteine methyl ester), which act via numerous 

signaling pathways (see Gaston et al., 2020), and (2) tempol may exert its affects, at least 

in part by preventing the breakdown of endogenous S-nitrosothiols generated by opioids, 

thereby enhancing the signaling mechanisms by which S-nitrosothiols exert their effects.

With respect to potential mechanisms by which inhibition of NOS potentiates the negative 

effects of fentanyl on breathing, we have provided a graphical abstract that lays out a 

tentative proposal. As is depicted in Panel A, fentanyl-activated μ-ORs recruit histidine triad 

nucleotide-binding protein 1 (HINT1) while simultaneously activating the neuronal form of 

NOS (nNOS). HINT1 then recruits nNOS to the μ-OR-HINT1 complex (Sánchez-Blázquez 

et al., 2010; Rodríguez-Muñoz et al., 2011). A key process is that nNOS produces small 

molecule S-nitrosothiols and S-nitrosylated proteins which protect against fentanyl-induced 

respiratory depression. As depicted in Panel B, fentanyl-activated μ-ORs recruit HINT1 

but when nNOS is inhibited by L-NAME, nNOS cannot then produce small molecule 

S-nitrosothiols and S-nitrosylated proteins. Such blockade of nNOS has a number of 

effects including preventing the formation of the μ-OR-NMDA (N-methyl-D-aspartate) 

receptor super complex, which is a possible mechanism for potentiation of fentanyl-induced 

respiratory depression in the absence of NOS activity (Rodríguez-Muñoz and Garzón, 2013; 

Shah et al., 2019).
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Figure 1. 
Effects of NOS inhibition on fentanyl-induced changes in frequency of breathing, tidal 

volume and minute ventilation. L-NAME elicits pronounced effects of frequency of 

breathing and therefore minute ventilation and the negative effects of fentanyl on all three 

parameters were exaggerated in the presence of L-NAME. Panels: Frequency of breathing 

(panel A), tidal volume (panel B) and minute ventilation (panel C) prior to (pre) and 

following the administration of vehicle or L-NAME (50 μmol/kg, IV) and then fentanyl (25 

Seckler et al. Page 17

Biomed Pharmacother. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



μg/kg, IV) in unanesthetized adult Sprague Dawley rats. There were 6 rats in each group. 

The data are presented as mean ± SEM.
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Figure 2. 
Effects of NOS inhibition on fentanyl-induced changes in inspiratory/expiratory timing. 

L-NAME reduced both inspiratory and expiratory times but did not affect end inspiratory 

or end expiratory pauses. The negative effects of fentanyl on inspiratory time and end 

inspiratory pause were not affected by L-NAME whereas the negative effects of fentanyl 

of expiratory time and end expiratory pause are markedly augmented in the presence 

of the NOS inhibitor. Panels: Inspiratory time (panel A), expiratory time (panel B), end 

inspiratory pause (panel C) and end expiratory pause (panel D) prior to (pre) and following 

the administration of vehicle or L-NAME (50 μmol/kg, IV) and then fentanyl (25 μg/kg, IV) 

in unanesthetized adult Sprague Dawley rats. There were 6 rats in each group. The data are 

presented as mean ± SEM.
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Figure 3. 
Effects of NOS inhibition on fentanyl-induced changes in inspiratory and expiratory flows. 

L-NAME increased peak inspiratory flows and EF50 while minimally affecting peak 

expiratory flow. The negative effects of fentanyl on peak expiratory flow and EF50 were 

augmented in the presence of L-NAME. Panels: Peak inspiratory flow (panel A), peak 

expiratory flow (panel B) and EF50 (panel C) prior to (pre) and following the administration 

of vehicle or L-NAME (50 μmol/kg, IV) and then fentanyl (25 μg/kg, IV) in unanesthetized 
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adult Sprague Dawley rats. There were 6 rats in each group. The data are presented as mean 

± SEM.
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Figure 4. 
Effects of NOS inhibition on fentanyl-induced changes in relative expiratory timing. L-

NAME decreased relaxation time but minimally affected apneic pause. The negative effects 

of fentanyl on apneic pause were markedly augmented in the presence of L-NAME. Panels: 

Relaxation time (panel A) and apneic pause (expiratory time/relaxation time)-1), (Te/RT)-1) 

(panel B) prior to (pre) and following the administration of vehicle or L-NAME (50 

μmol/kg, IV) and then fentanyl (25 μg/kg, IV) in unanesthetized adult Sprague Dawley 

rats. There were 6 rats in each group. The data are presented as mean ± SEM.
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Figure 5. 
Effects of NOS inhibition on fentanyl-induced changes in inspiratory drive and expiratory 

drive. L-NAME enhanced inspiratory drive and expiratory drive but enhanced the negative 

effects of fentanyl on expiratory drive. Panels: Tidal volume/inspiratory time (TV/Ti) (panel 

A) and tidal volume/expiratory time (TV/Te) (panel B) prior to (pre) and following the 

administration of vehicle or L-NAME (50 μmol/kg, IV) and then fentanyl (25 μg/kg, IV) in 

unanesthetized adult Sprague Dawley rats. There were 6 rats in each group. The data are 

presented as mean ± SEM.
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Figure 6. 
Effects of NOS inhibition on fentanyl-induced changes in non-eupneic breathing indices. L-

NAME only minimally affected the non-eupneic breathing index (NEBI) or NEBI corrected 

for the frequency of breathing but augmented the negative effects of fentanyl on non-eupneic 

breathing. Panels: NEBI) (panel A) and NEBI/frequency of breathing (NEBI/Freq) (panel B) 

prior to (pre) and following the administration of vehicle or L-NAME (50 μmol/kg, IV) and 

then fentanyl (25 μg/kg, IV) in unanesthetized adult Sprague Dawley rats. There were 6 rats 

in each group. The data are presented as mean ± SEM.
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Figure 7. 
Effects of NOS inhibition on the total fentanyl-induced changes in ventilatory parameters. 

Inhibition of NOS markedly alters the negative effects of fentanyl on many individual 

ventilatory parameters. Panels: The Total ventilatory responses elicited by vehicle or 

L-NAME (50 μmol/kg, IV) (panel A) or by fentanyl (25 μg/kg, IV) in the vehicle- or 

L-NAME-treated rats (panels B). There were 6 unanesthetized adult Sprague Dawley rats in 

each group. The data are presented as mean ± SEM. *P < 0.05, significant response. † P < 

0.05, L-NAME-treated versus vehicle-treated.
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Table 1

Description of ventilatory parameters

Parameter Abbreviation Units Definition

A. Directly recorded parameters

Frequency of breaths Freq breaths/min Rate of breathing

Inspiratory Time Ti sec Duration of inspiration

Expiratory Time Te sec Duration of expiration

End Inspiratory Pause EIP msec Pause between end of inspiration start of expiration

End Expiratory Pause EEP msec Pause between end of expiration and start of inspiration

Relaxation time RT sec Decay of expiration to 36% maximum

Tidal Volume TV ml Volume of inspired air per breath

Minute Ventilation MV = freq × TV ml/min Total volume of air inspired per min

Peak Inspiratory Flow PIF ml/sec Maximum inspiratory flow

Peak Expiratory Flow PEF ml/sec Maximum expiratory flow

Expiratory flow at 50% EF50 ml/sec Expiratory flow at 50% expired TV

Non-eupneic breathing index NEBI % % of non-eupneic breaths per epoch

B. Derived parameters

Inspiratory Drive TV/Ti ml/sec Central urge to inhale

Expiratory Drive TV/Te ml/sec Central drive to exhale

NEBI/Frequency NEBI/Freq %/(b/min) Balanced rejection index

Apneic Pause AP = (Te/RT)-1 No units Elongated expiration
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Table 2

Description of rats used in whole body plethysmography and baseline ventilatory parameters

Parameter Vehicle L-NAME D-NAME

Number 6 6 6

Age, days 80 ± 2 81 ± 2 80 ± 2

Body weight, grams 328 ± 2 330 ± 2 331 ± 3

Frequency, breaths/min 99 ± 4 106 ± 4 103 ± 4

Tidal Volume (TV), ml 2.469 ± 0.045 2.323 ± 0.035 2.380 ± 0.051

Minute Ventilation, ml/min 245 ± 12 247 ± 9 243 ± 15

Inspiratory time (Ti), sec 0.203 ± 0.013 0.191 ± 0.011 0.197 ± 0.014

Expiratory time (Te), sec 0.375 ± 0.019 0.350 ± 0.025 0.368 ± 0.035

End inspiratory pause, msec 6.80 ± 0.23 7.18 ± 0.37 6.93 ± 0.33

End expiratory pause, msec 45.4 ± 7.7 47.5 ± 7.6 47.0 ± 6.5

Peak inspiratory flow, ml/sec 20.5 ± 1.2 21.5 ± 1.7 20.7 ± 1.9

Peak expiratory flow, ml/sec 16.2 ± 0.5 16.5 ± 1.6 17.0 ± 1.8

EF50, ml/sec 0.43 ± 0.06 0.46 ± 0.05 0.44 ± 0.07

Relaxation time (RT), sec 0.224 ± 0.010 0.206 ± 0.011 0.213 ± 0.022

Apneic pause, (Te/RT)-1 0.78 ± 0.13 0.73 ± 0.07 0.76 ± 0.09

TV/Ti, ml/sec 12.5 ± 1.0 12.4 ± 0.7 12.1 ± 1.2

TV/Te, ml/sec 6.8 ± 0.4 6.9 ± 0.6 6.7 ± 0.8

NEBI, % 5.5 ± 0.5 5.6 ± 0.7 5.4 ± 0.6

NEBI/frequency, %/(breaths/min) 5.4 ± 0.5 5.3 ± 0.7 5.5 ± 0.8

NEBI, non-eupneic breathing index. The data are presented as mean ± SEM. There were 6 rats in each of the vehicle-treated and L-NAME-treated 
groups, and 6 rats in the D-NAME-treated group. There were no between group differences for any parameter (P > 0.05, for all comparisons).
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Table 3

Peak changes in ventilatory parameters elicited by fentanyl in the three treatment groups

Parameter Vehicle L-NAME D-NAME

Frequency, breaths/min −25 ± 7* −39 ± 5* −24 ± 4*

Tidal Volume (TV), ml −46 ± 5* −47 ± 7* −45 ± 4*

Minute Ventilation, ml/min −44 ± 4*
−68 ± 3

*,† −43 ± 5*

Inspiratory time (Ti), sec +54 ± 14* +74 ± 9* +53 ± 8*

Expiratory time (Te), sec +131 ± 21*
+312 ± 46

*,† +133 ± 17*

End inspiratory pause, msec +112 ± 13* +139 ± 12* +107 ± 15*

End expiratory pause, msec +1102 ± 136*
+1702 ± 138

*,† +1092 ± 109*

Peak inspiratory flow, ml/sec −51 ± 4* −55 ± 6* −52 ± 5*

Peak expiratory flow, ml/sec −41 ± 6* −51 ± 6* −43 ± 5*

EF50, ml/sec +118 ± 12* +105 ± 16* +113 ± 13*

Relaxation time (RT), sec −36 ± 6* −36 ± 3* −33 ± 4*

Apneic pause, (Te/RT)-1 +365 ± 64*
+752 ± 149

*,† +357 ± 44*

TV/Ti, ml/sec −51 ± 4* −58 ± 4* −53 ± 7*

TV/Te, ml/sec −72 ± 6* −85 ± 5* −78 ± 9*

NEBI, % +345 ± 23
+724 ± 83

*,† +319 ± 27*

NEBI/Freq, %/(breaths/min) +352 ± 62*
+1296 ± 62

*,† +355 ± 51*

NEBI, non-eupneic breathing index. The data are presented as mean ± SEM. There were 6 rats in each of the vehicle-treated, and L-NAME- and 
D-NAME-treated groups.

*
P < 0.05, significant change from pre-value.

†
P < 0.05, L-NAME-treated versus vehicle-treated.
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Table 4

Total responses elicited by D-NAME and fentanyl in D-NAME-treated rats

D-NAME responses Fentanyl responses

Parameter Vehicle D-NAME Vehicle D-NAME

ΔFrequency, % +4.7 ± 4.6 +4.6 ± 3.9 +5.2 ± 5.7 +4.9 ± 3.3

ΔTidal Volume, % −2.9 ± 1.5 −2.7 ± 1.8 −12.9 ± 3.0* −14.3 ± 2.1*

ΔMinute Ventilation, % +1.9 ± 4.8 +2.0 ± 4.1 −7.1 ± 5.7 −8.8 ± 5.2

The data are presented as mean ± SEM. There were 6 rats in the vehicle-treated group and 6 rats in the D-NAME-treated group.

*
P < 0.05, significant change from pre-value. There were no between group differences for any parameter (P > 0.05, for all comparisons).
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Table 5

Changes in body temperatures during various time points of the experimental protocol

Stage Time (min) Vehicle L-NAME

Pre −15 37.5 ± 0.1 37.4 ± 0.1

0 37.4 ± 0.1 37.4 ± 0.1

Average 37.5 ± 0.1 37.4 ± 0.1

Post-vehicle or L-NAME +5 37.6 ± 0.1 37.5 ± 0.1

+10 37.5 ± 0.1 37.5 ± 0.1

+15 37.4 ± 0.1 37.3 ± 0.1

Post-fentanyl +5 37.5 ± 0.1 37.4 ± 0.1

+10 37.6 ± 0.1 37.4 ± 0.1

+15 37.5 ± 0.1 37.3 ± 0.1

+30 37.7 ± 0.1 37.6 ± 0.2

+45 37.7 ± 0.2 37.6 ± 0.2

+60 37.9 ± 0.2 37.8 ± 0.1

Arithmetic changes from the average pre value

Post-vehicle or L-NAME +5 +0.1 ± 0.1 +0.0 ± 0.1

+10 0.0 ± 0.1 +0.0 ± 0.1

+15 0.0 ± 0.1 −0.0 ± 0.1

Post-fentanyl +5 0.0 ± 0.1 +0.0 ± 0.1

+10 +0.1 ± 0.1 +0.0 ± 0.1

+15 +0.0 ± 0.1 −0.0 ± 0.1

+30 +0.2 ± 0.1 +0.2 ± 0.1

+45 +0.3 ± 0.2 +0.2 ± 0.1

+60 +0.4 ± 0.1* +0.4 ± 0.1*

The data are presented as mean ± SEM. There were 5 rats in each group.

*
P < 0.05, significant change from pre-value (Pre). There were no between group differences at any time point (P > 0.05, for all comparisons).
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