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ABSTRACT
Although the health effects of exposure to low-dose ionizing radiation have been the focus of many studies, the affected
biological functions and underlying regulatory mechanisms are not well-understood. In particular, the influence of
radiation exposure at doses of less than 200 mGy on the regulation of genes and pathways remains unclear. To
investigate the molecular alterations induced by varying doses of low-dose radiation (LDR), transcriptomic analysis
was conducted based on ribonucleic acid (RNA) sequencing following exposure to 50 and 150 mGy doses. Human
peripheral blood was collected, and the samples were divided into three groups, including two treatments and one
control (no radiation). A total of 876 (318 upregulated and 558 downregulated) and 486 (202 upregulated and
284 downregulated) differentially expressed genes (DEGs) were identified after exposure to 50 mGy and 150 mGy,
respectively. Most upregulated genes in both the 50 mGy and 150 mGy groups were associated with ‘antigen processing
and presentation,’ which appeared to be the major targets affected by LDR exposure. Several interacting genes,
including HLA-DQA1, HLA-DQA2, HLA-DQB2, HLA-DRB1, and HLA-DRB5 were mapped to ‘antigen processing
and presentation,’ ‘immune system-related diseases’ and the ‘cytokine-mediated signaling pathway,’ suggesting that
these genes might drive the downstream transmission of these signal transduction pathways. Our results suggest
that exposure to LDR may elicit changes in key genes and associated pathways, probably helping further explore the
biological processes and molecular mechanism responsible for low-dose occupational or environmental exposures in
humans.
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INTRODUCTION
The United Nations Scientific Committee on the Effects of Atomic
Radiation defines low-dose radiation (LDR) that may cause determin-
istic effects (tissue effects) as those of 200 mGy or less and low dose
rates as 0.1 mGy.min−1 (averaged over one hour or less) for radiation
such as external X-rays and gamma rays [1]. Humans are continuously
exposed to low doses of natural and anthropogenic ionizing radia-
tion every day. The increasing use of ionizing radiation in medical
procedures, industrial applications, and scientific research continues

to increase the potential for exposure. In America, England and Aus-
tralia, the average yearly medical exposure dose increased dramatically
between 1982 and 2006 [2]. In America, for example, the average
yearly medical exposure dose increased from 0 to 5 mGy in 1982 to
30 mGy in 2006; and the average yearly medical exposure dose doubled
in England and tripled in Australia between 1982 and 2006 [2]. In
China, with the increasing use of diagnostic and therapeutic proce-
dures in the fields of radiology and nuclear medicine, the annual per
capita dose has doubled over the past two decades [3]. Exploring the
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biological effects of exposure to low-dose/low-dose-rate ionizing radi-
ation is therefore necessary for adequately protecting both individuals
and the environment [4–5]. A better understanding of the biological
processes affected by of LDR could lead to advances in patient care and
reduce the detrimental impact of radiation therapy on patients [6].

Since the 1970s, the linear no-threshold (LNT) model has been
used to estimate the health risks of LDR by extrapolating the risks
determined in high-dose studies [7–8]. However, advances in LDR
biology and cell molecular techniques have demonstrated that the LNT
model does not appropriately reflect the biological or health effects in
the low-dose range [9–12]. In fact, LDR can positively affect biological
processes such as immunity, DNA repair, and cellular stress resistance
[11, 13–15], and the dose–effect relationship could be hormesis, which
is a biphasic dose response relationship in which there are beneficial
effects at low doses and harmful effects at high doses [16–17]. There
have been many large-scale epidemic studies in populations exposed
to low doses of radiation, including atomic bomb survivors [18–20],
those who have worked with high-background radiation [21–23] and
those who have received medical diagnosis and disease treatment [24–
26], but the association between LDR and carcinogenesis is still con-
troversial. For example, among the atomic bomb survivors or radiation
workers, LDR exposure has a positive association with leukemia, but
no radiation-associated risks for either Hodgkin lymphoma or multiple
myeloma were found [18, 22–23]. Low-dose exposure from medical
X-ray examination and treatment is a risk factor of disease, such as
atherosclerosis, leukemia and brain tumors [24–25]. However, other
studies have shown that mortality among both medical professionals
and nuclear workers who are exposed to LDR is similar to that among
non-exposed workers [27–31]. Moreover, even though epidemiologi-
cal studies of exposed human cohorts have found that some diseases
appear under LDR exposure, such as visual disturbances, leukemia
and cataract [22, 32–33], there are still uncertainties regarding the
determining mechanisms associated with low-dose occupational or
environmental exposures in humans. The issue remains controversial,
and the exact health risks of exposure to LDR are unclear [34].

Advanced genomic tools have provided new insights related
to the hazard assessment of radiation exposure; however, most
radiation-inducible gene expression profiling has been performed
using hybridization-based microarrays [35–37]. Microarray tech-
nology presents some limitations, including indirect quantification
from hybridization-signal intensities [38], background and cross-
hybridization problems [39] and reproducibility issues [40]. In addi-
tion, previously published work has mainly focused on differentially
expressed genes (DEG) and their potential to be used as biomarkers
or for individualized biodosimetry [36, 41–44]. There are very few
existing studies on the regulation of genes and related pathways,
especially the molecular alterations caused by exposure to a dose of
less than 200 mGy. The effects of radiation on gene expression have
biological consequences [45–47]. Recently published data show that
LDR can elicit changes in metabolic and immune pathways, potentially
increasing the risk of immune dysfunctions and metabolic disorders
[14, 37]. Further investigation is needed to elucidate the possible
transcriptional regulation mechanisms in response to LDR.

Here, we present the whole-transcriptome gene expression
profiling of LDR-induced human peripheral blood through RNA
sequencing and pathway enrichment analysis. RNA-Seq presents

several advantages over microarrays, including the following: (i) RNA-
Seq is not dependent on prior knowledge about the target sequence,
(ii) it exhibits a large dynamic range and high sensitivity because of its
digital nature, and (iii) the quantification of the transcriptome is more
accurate because the quantification of each transcript is directly based
on the digital counts of the transcript [48]. This study provides novel
insights into specific gene expression and pathway-level differences that
are associated with different radiation doses based on technological
improvements and combined approaches. The overarching goal of
this study is to use global transcriptomic and pathway analysis to
identify candidate genes and pathways for understanding the biological
processes and molecular mechanisms that occur in human peripheral
blood exposed to LDR.

MATERIALS AND METHODS
Sample collection and radiation

In this study, blood samples from nine healthy adult donors (five males
and four females; aged 20–48 years) were collected in PAXgene Blood
RNA tubes for transcriptomic sequencing. The eligibility of the donors
was evaluated using questionnaires and regular medical examinations.
Peripheral blood samples (5 ml) were collected from each subject. The
subjects had no history of chronic disease, substance abuse, smoking,
or toxic chemical exposure. In addition, they had not been exposed
to radiation nor did they have a history of viral infections during the
months preceding the study. The present study was approved by the
Ethics Committee. Written informed consent was obtained from all
human subjects prior to enrollment in the present study.

Irradiation with 137Cs γ -rays was performed in the Beijing Radi-
ation Center (Beijing, China). The exposure setup was calibrated by
physical measurement using a tissue-equivalent ionizing chamber. The
radiation dose rate was calculated using the source radioactivity and
the distance between the source and samples: dose rate of 58.4 cGy/h
corresponds to a source-sample distance of 70 cm. The homogeneous
irradiation field was 30 × 30 cm; the samples were placed within a
5 cm-radius circle, and the uncertainty of the calibration was 1%. A
control group (non-radiation) and two different radiation groups were
used (50 and 150 mGy). Nine blood samples were divided into three
dose groups, and each group included three biological replicates. Fol-
lowing irradiation, blood samples were incubated for 6 hours at 37◦C
in RPMI-1640 medium of equal volume (Thermo Fisher Scientific,
Inc., Waltham, MA, USA), supplemented with 10% fetal bovine serum
(FBS; HyClone; GE Healthcare Life Sciences, Logan, UT, USA), see
Supplementary Fig. S1.

RNA-seq and analysis
Red blood cell (RBC) lysis was performed before RNA extraction.
Total RNA was extracted using Trizol reagent (Invitrogen, Gaithers-
burg, MD) following the manufacturer’s instructions and then treated
with DNase I (Fermentas, Hanover, MD). We checked the purity of the
samples using a Nanodrop 2000 (Thermo Fisher Scientific, Waltham,
MA), the concentration was assessed in a Qubit 2.0 fluorometer (Life
Technologies, Carlsbad, CA), and RNA integrity was verified using an
Agilent 2100 BioAnalyzer (Agilent Technologies, Santa Clara, CA). In
this study, the RNA integrity number (RIN) ranged between 7.9 and
9.2, which is greater than 7 and could be acceptable for further analysis.

https://academic.oup.com/jrr/article-lookup/doi/10.1093/jrr/rrab091#supplementary-data
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Library construction and sequencing were performed in a
BGISEQ-500 system at the Beijing Genomic Institution (www.ge
nomics.org.cn, BGI, Shenzhen, China). Clean reads were mapped
to human reference gene and genome hg19 available in the NCBI
database (https://www.ncbi.nlm.nih.gov/assembly) by using Bowtie2
and HISAT [49–50], respectively. The original sequence data have
been submitted to the NCBI Sequence Read Archive (Accession
number: PRJNA622427). For gene expression analysis, the matched
reads were calculated and then normalized to RPKM values using
RSEM software [51]. The differential expression analysis between
treatments and controls was performed using Cuffdiff program, and
the significant DEGs for further data analysis were filtered with false
discovery rate (FDR) corrected P value ≤0.001 and fold change ≥1.5.

Bioinformatics analysis
DEGs were used as the input for a series of bioinformatics analyses per-
formed with the WEB-based GEneSeTAnaLysis Toolkit (WebGestalt)
[52–53]. WebGestalt is an open online analytical platform that inte-
grates Gene Ontology (GO) [54], KEGG [55], and protein interaction
networks for a variety of functional enrichment analyses (http://www.
webgestalt.org). The GO, pathway annotation and enrichment analy-
ses were based on the GO database (http://www.geneontology.org/)
and the KEGG pathway database (http://www.genome.jp/kegg/).

Quantitative real-time PCR and data analysis
In the above mentioned selected DEGs, 10 newly discovered radiation-
related genes were selected to be validated. Validations of the mRNA
levels of DEGs were performed using quantitative real-time PCR (qRT-
PCR). Peripheral blood samples (30 ml) were collected from another
three healthy adult subjects (two males and one female: aged 28–
30 years). The health status of the sample and sample irradiation were
same as the above materials for RNA-seq. Then, blood samples were
incubated at 37◦C for 6 hours in RPMI-1640 medium of equal volume
(Thermo Fisher Scientific, Inc., Waltham, MA, USA), supplemented
with 10% FBS (HyClone; GE Healthcare Life Sciences, Logan, UT,
USA). After RBC lysis, total RNA for qPCR was obtained using Trizol,
treated with DNase (Fermentas, Hanover, MD), as described above
(also see Supplementary Fig. S1). First-stranded cDNA was synthe-
sized by RevertAid First Strand cDNA synthesis Kit (Thermo Scien-
tific, Waltham, MA, USA). QRT-PCR was performed on an ABI7500
Real-Time PCR System using SYBR Green PCR Master Mix (Applied
Biosystems, Foster City, CA, USA) and gene primer sequences are
provided in Supplementary Table S3. The relative expression levels of
each gene were normalized according to β-actin gene expression and
analyzed using the 2-��Ct method. Each group, composed of three
parallel samples, was analyzed after irradiation. All experiments were
performed three times.

Each data represents the means ± standard deviation (SD) of three
independent biological experiments. Data management and statisti-
cal analysis was performed using MedCalc version 15.2.2 (MedCalc
Software bvba, Ostend, Belgium). Comparisons were analyzed using
Student’s t test with statistical significance at P < 0.05.

Table 1. Total number of DEGs

Comparison (mGy) Up-regulated genes Down-regulated
genes

50 vs 0 318 558
150 vs 0 202 284
150 vs 50 263 225

RESULTS
Identification of differentially express genes (DEGs)

High-throughput sequencing was used to identify mRNA expression
in the radiation-treated and control groups. The clean reads obtained
from the control, 50 and 150 mGy groups totaled 24.11, 23.87 and
24.11 Mb, respectively, and all Q30 values were higher than 90%. The
comparison of differential gene expression between the radiation and
control groups revealed 318 upregulated DEGs and 558 downregu-
lated DEGs in the 50 mGy group, and the number of DEGs decreased
to 202 upregulated and 284 downregulated genes in the 150 mGy
group. In addition, 489 DEGs were found in the 150 vs 50 mGy
groups, among which 263 DEGs were upregulated and 225 DEGs
were downregulated. The complete DEG list can be found in Table 1.
The Venn diagram analysis (Supplementary Fig. S2) showed that only
112 upregulated and 136 downregulated DEGs were altered by both
gamma doses, whereas large numbers of DEGs were uniquely regulated
by the different gamma doses, especially at the 50 mGy dose.

GO and KEGG pathway enrichment analysis of DEGs
To understand the distribution of the DEGs at a macro level, the set
of DEGs identified under different doses of radiation were mapped in
accordance with GO terms and KEGG pathways. The goal of the GO
consortium is to produce a dynamic, controlled vocabulary that can
be applied to all eukaryotes even as knowledge of the roles of genes
in cells accumulates, and our understanding of these roles changes
[54]. The GO enrichment analysis revealed a wide range of cellular
components, molecular functions and biological processes, including
54 important functional groups (Fig. 1). KEGG enrichment revealed
that 758 DEGs and 1335 DEGs were enriched in 291 pathways in the
50 mGy and 246 pathways in the 150 mGy group, respectively, within
six main categories. For both the 50 and 150 mGy groups, ‘human
diseases,’ ‘organismal systems’ and ‘metabolism’ were the top three
categories with the highest proportions of different DEGs. With a P-
value <0.05 as the threshold, the top 20 significant enriched pathways
of the DEGs were determined and are shown in Fig. 2. Among these
pathways, ‘signal transduction,’ ‘immune system,’ ‘cancer: overview,’
‘transport and catabolism’ and ‘signaling molecules and interaction’
showed significant enrichment. In addition, several pathways related
to metabolism and human diseases were found, including ‘global and
overview maps,’ ‘lipid metabolism’ and ‘amino acid metabolism’ as well
as ‘infectious diseases.’ The results indicated that the greatest numbers
of genes were active in environmental information processing, organ-
ismal systems, human diseases, cellular processes and metabolism.

Among the most enriched pathways, 11 pathways were identified
under both the 50 and 150 mGy doses, and nine pathways were unique

www.genomics.org.cn
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Fig. 1. Gene ontology (GO) plot of genes with different expression patterns, including comparisons of the 50 vs 0 mGy, 150 vs
0 mGy and 150 vs 50 mGy groups.

to the 50 and 150 mGy groups (Fig. 3). We found that the most down-
regulated genes at 150 mGy were related to the ‘rap1 signaling pathway,’
‘calcium signaling pathway,’ ‘ras signaling pathway,’ ‘cAMP signaling
pathway,’ and ‘cGMP-PKG signaling pathway,’ while at 50 mGy,

the most downregulated genes were enriched in numerous diseases,
including herpes simplex infection, Huntington’s disease, Alzheimer’s
disease, Parkinson’s disease and non-alcoholic fatty liver disease and
in cytokine-cytokine receptor interaction. At both radiation doses,
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Fig. 2. Pathway classifications of DEGs identified in the 50 vs 0 mGy, 150 vs 0 mGy and 150 vs 50 mGy comparisons.

‘antigen processing and presentation’ was found to be the most
enriched pathway among the upregulated genes.

Gene interaction network
The genes and the associated pathways were grouped into categories,
which included ‘antigen processing and presentation,’ ‘immune system
process,’ ‘immune system disease,’ ‘cytokine-mediated signaling
pathway’ and ‘gas transport’ under both doses, the ‘response to stress’
at 50 mGy and the ‘calcium signaling pathway’ at 150 mGy. The
interaction network was constructed based on co-expression data
and experimental validation. Fig. 4 shows that the radiation-sensitive
genes (HLA-DQA1, HLA-DQA2, HLA-DQB2, HLA-DRB1, and HLA-
DRB5) located on chromosome 6 were not only mapped to ‘antigen
processing and presentation,’ ‘immune system-related diseases’ and
‘cytokine-mediated signaling pathway,’ but may also directly interact
with each other, mediating the effects of varying doses of radiation.

Key candidate DEGs and pathways involved in the
radiation-responsive mechanisms

At both doses, differential expression analysis showed that there
were more downregulated DEGs than upregulated DEGs (Table 1),
and these downregulated DEGs were enriched in immune system-
and human disease-related processes and signaling molecules and
interaction pathways (Fig. 3). Interestingly, signaling molecules and
interaction pathways such as the‘rap1 signaling pathway,’ ‘calcium
signaling pathway,’ ‘ras signaling pathway,’ ‘cAMP signaling pathway’
and ‘cGMP-PKG signaling pathway,’ were specific to the 150 mGy
group, which is an indication that molecular signaling may be
activated when irradiation reaches a certain dose, which was not
observed in the initial stage at 50 mGy. The upregulated DEGs

were generally enriched in antigen processing and presentation at
both doses (Fig. 3), demonstrating the importance of the immune
system after LDR. The top 10 most enriched pathways of the DEGs
included antigen processing and presentation, asthma, rheumatoid
arthritis, type I diabetes mellitus, malaria, the cytokine-mediated
signaling pathway and gas transport (see Supplementary Tables S1
and S2). At both doses, many DEGs such as HLA-DQA1, HLA-
DQA2, HLA-DQB2, HLA-DRB1, HLA-DRB5, KIR2DL1, KIR2DL3,
TNFSF10, TNFSF13B and TNFRSF4 were shared among the top
10 most enriched pathways (Supplementary Tables S1 and S2) and
even directly interacted with each other (Fig. 4), which indicated that
these genes could play important roles in the molecular mechanisms
responding to LDR.

Verification of the key genes’ expression profiles by
qRT-PCR

To verify the expression profiles of the key candidate DEGs
(Supplementary Table S3) in the RNA sequencing experiment, we
performed qRT-PCR assays using samples of human peripheral blood
obtained from three healthy donors. These DEGs were selected for
their potential role involving in the radiation-responsive mechanisms,
because they were shared among the top 10 most enriched pathways
(Supplementary Tables S1 and S2) and directly interacted with each
other (Fig. 4). Samples were analyzed at 6 hours following ex vivo
irradiation with 0, 50 and 150 mGy of γ -rays. As shown in Fig.5,
the qRT-PCR results showed that the expression patterns of the
selected genes were similar to those of RNA sequencing experiment
(Fig. 5A and B), indicating their signal perception and transcription
reactions after receiving radiation. Thus, the specific functions of these

https://academic.oup.com/jrr/article-lookup/doi/10.1093/jrr/rrab091#supplementary-data
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Fig. 3. The most enriched pathways of DEGs, including upregulated and downregulated genes under 50 and 150 mGy.

genes in human peripheral blood at different dose and different time
should be further investigated in the future studies.

DISCUSSION
According to ICRP Publication 90, the lowest experimentally observed
doses causing persistent damage at the anatomical and structural level
are in the range of 100–300 mGy of acute low-LET radiation [56].
Even evidence of malformations found at considerably lower doses,
i.e. within a dose range of 50–250 mGy, cannot be ignored [56]. As
mentioned in the ICRP103 report, the occupational exposure from
existing and planned exposure sources should meet the requirements
of individual dose limit [57]. However, the temporary constraint value
of emergency exposure may reach 100 mGy and higher, such as nuclear
accident or emergency disposal of nuclear facilities. Moreover, the
irradiation of patients in medical irradiation should meet the require-
ments of medical irradiation guidance level for radiation diagnosis and
nuclear medicine diagnosis, but there may be cases where the cumula-
tive dose exceeds 150 mGy in a short time, such as multiple abdominal
multi-slice spiral CT diagnosis [57]. The radiation in the range of 50–
150 mGy is the focus of effect research, which is closely related to some
scenes in emergency and medical irradiation [57]. Therefore, this study
focused on the DEGs of transcriptome in peripheral blood of healthy
people irradiated by 50 and 150 mGy dose, providing targets for the
study of LDR effect mechanism and theoretical reference for the study
of radiation protection.

The dose–response relationship is usually nonlinear and difficult
to establish under LDR, potentially due to the dynamics between
the compensatory mechanisms defending against radiation-induced
damage in an organism [56]. In the present study, different dose-
related gene expression patterns were observed at the transcriptional
level. These changes suggest that radiation, even at low levels, could

modulate cellular processes [37], and that gene expression, even at low
levels, could be used as a sensitive endpoint for evaluating the effect
of radiation under environmentally realistic low-dose exposure. In this
study, we found a decreasing number of DEGs that were affected by
radiation at doses from 50 mGy to 150 mGy (Table 1), showing that
the effect of radiation on gene expression may be dose dependent at the
transcriptome level. Similar observations of different dose–response
patterns after LDR exposure have been reported at the transcriptional
level [56–58]. The high radiation dose resulted in a lower number of
DEGs, indicating a possible phase shift in the response to radiation
doses above 150 mGy. The genes that were responsive to 50 mGy radia-
tion were mostly associated with the immune system and diseases (e.g.
Parkinson’s disease, rheumatoid arthritis, type I diabetes mellitus and
asthma), whereas a radiation dose of 150 mGy induced gene expression
changes related not only to the immune system and human diseases but
also to environmental information processing (e.g. calcium signaling
pathway) (Figs 3 and 4; Supplementary Tables S1 and S2). Significant
changes in pathways observed at different doses indicated that they may
be involved in the response to radiation.

GO terms represent gene product properties, and KEGG enrich-
ment analysis can supply information for understanding gene functions
and signaling pathways in metabolism. On the basis of GO analysis, we
found that LDR significantly changed cellular components, biological
processes, and molecular functions in human peripheral blood
(Fig. 1). The relevant genes were included TNFSF10, TNFSF13B
and TNFRSF4 (Supplementary Table S1), which belong to the tumor
necrosis factor (TNF) superfamily (TNFSF), the TNF cell surface
receptors, and the TNF receptor superfamily (TNFRSF), respectively.
TNFSF–TNFRSF interactions activate signaling pathways for cell
survival, death, and differentiation that control immune function and
disease [59–66]. As members of the TNF superfamily, TNFSF10
induces apoptosis in transformed and tumor cells, and TNFSF10

https://academic.oup.com/jrr/article-lookup/doi/10.1093/jrr/rrab091#supplementary-data
https://academic.oup.com/jrr/article-lookup/doi/10.1093/jrr/rrab091#supplementary-data
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Fig. 4. Gene interaction networks specific to varying doses of 137Csγ radiation exposure. (A) Gene interactions associated with
antigen processing and presentation; (B) gene interactions associated with immune system diseases; (C) gene interactions
associated with immune system processes; (D) gene interactions associated with the cytokine-mediated signaling pathway; (E)
gene interactions associated with gas transport; (F) gene interactions associated with the response to stress; (G) gene interactions
associated with the calcium signaling pathway.

could stimulate the activation of MAPK8/JNK, caspase 8 and
caspase 3 by binding to its receptors (TNF-related apoptosis-inducing
ligand, TRAIL) [67]. TRAIL has been reported to mediate the
calcification of aortic valve interstitial cells through the apoptosis
mechanism [68]. Previous reports have shown that TNFRSF4 can
be upregulated by activated T cells [62], playing an important
role in supporting/sustaining the immune response [69]. In this
study, TNFRSF4 was downregulated after LDR by both RNA-
seq and qRT-PCR experiments (Fig. 5; Supplementary Table S1),
suggesting its impact on the immune process. Based on the pathway
enrichment results, DEGs related to human disease were more
enriched at 50 mGy (53 genes) than at 150 mGy (31 genes) (Fig. 3;
Supplementary Table S2), and most of these genes have been reported
to play important roles in human diseases. For instance, the HLA-
DQA1 and HLA-DQB2 genes, which regulate type I diabetes and
rheumatoid arthritis [70–74], were highly expressed under both
the 50 and 150 mGy doses in our study (Fig. 5). Pathways involved
in immunity were altered after radiation exposure at both the 50
and 150 mGy doses (Supplementary Table S1), which indicated

that radiation exposure, even at low dose levels, may have harmful
effects disrupting the immune system. Previous studies have shown
that the mature lymphocytes and bone marrow stem cells of atomic
bomb survivors were severely damaged, which significantly weakened
their immune system, thus reducing their ability to resist microbial
invasion [75–76]. Thus, many of these people died from infections.
In our study, we found many more upregulated genes involved in
antigen processing and presentation, as well as human diseases such
as type I diabetes mellitus, malaria, rheumatoid arthritis and systemic
lupus erythematosus (Fig. 3; Supplementary Table S2). Researchers
also found fewer CD4 T-cells and increased levels of inflammatory
proteins in A-bomb survivor blood samples [75–76]. LDR has been
shown to impact type I diabetes in a mouse model receiving whole-
body radiation [77]. Additionally, the Radiation Effects Research
Foundation reported that mortality attributed to heart diseases
increased with the radiation dose in a Life Span Study cohort [78].
Metabolic risk factors, including diabetes mellitus and high blood
pressure, may increase the risk of coronary heart disease [79], and
radiation exposure might enhance the risk of coronary heart disease

https://academic.oup.com/jrr/article-lookup/doi/10.1093/jrr/rrab091#supplementary-data
https://academic.oup.com/jrr/article-lookup/doi/10.1093/jrr/rrab091#supplementary-data
https://academic.oup.com/jrr/article-lookup/doi/10.1093/jrr/rrab091#supplementary-data
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Transcriptome of human blood response to low-dose radiation • 15

Fig. 5. The expression profiles of 10 genes in human peripheral blood by the quantitative RT-PCR. (A) The expression patterns of
DEGs under irradiation and no radiation treatment by RNA-seq; (B) the expression patterns of DEGs following irradiation
(50 mGy and 150 mGy) and no radiation by qPCR; Data are presented as means ± SD of three independent experiments. The
asterisks indicate significant differences compared with the control treatment, ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.005, t-test.

via metabolic pathway disruption [37]. This is supported by the
enriched KEGG pathways, which showed that type I diabetes mellitus
was significantly enriched after 50 mGy radiation, and the number of
enhanced genes related to type I diabetes mellitus was greater than the
number of suppressed genes (Fig. 3, Supplementary Table S2).

The KEGG analysis indicated that one of the most important path-
ways responding to radiation exposure was antigen processing and pre-
sentation (Fig. 3; Supplementary Table S2), which has been reported
to be related to immune response, transport pathogenesis, secretion,
and phagocytosis. As shown in Fig. 4A, in the gene interaction network,
the expression of several genes was associated with the antigen process-
ing and presentation pathway, including the HLA-DQA1, HLA-DQA2,
HLA-DQB2, HLA-DRB1, HLA-DRB5, KIR2DL1 and KIR2DL3 genes.
As protein-coding genes, HLA-DQA1 and HLA-DQB2 belong to the
HLA class II alpha chain paralogues and are anchored in the mem-
brane. These genes are expressed in antigen presenting cells and play a
central role in the immune system by presenting peptides derived from
extracellular proteins [80–81]. Overexpression of HLA-DQA1 and
HLA-DQB2 was demonstrated to be associated with diseases including
type I diabetes and rheumatoid arthritis [70–74]. Our research also
indicated that HLA-DQA1 and HLA-DQB2 were upregulated in type
I diabetes and rheumatoid arthritis. The KIR2DL3 gene has been
revealed to be associated with protection against rheumatoid arthritis
(RA) [82–85]. Previous studies suggested that RA subtypes with dif-
ferent KIRs could result in clinical heterogeneity of the disease. For
example, the presence of the KIR2DL3 gene in the absence of the
KIR2DL2 gene is associated with seronegative RA, while the presence
of the KIR2DL2 gene is associated with seropositive anti-CCP [83].
Interestingly, 17 relevant genes were found to be uniquely enriched in
the calcium signaling pathway among the KEGG pathways at 150 mGy
(Fig. 3; Supplementary Table S2), and this pathway has been reported
to be important in radiation-induced bystander effects [86–89]. As
shown by the gene interaction network (Fig. 4G), ATP2B2 (ATPase
plasma membrane calcium transporter 2) exhibited co-expression with
many other genes in this pathway, which was experimentally validated,

indicating its importance in the calcium signaling pathway, especially
in bystander effects. ATP2B2 encodes a human Ca2+-pumping ATPase
[90] with critical roles in intracellular calcium homeostasis [91]. It
has been reported to be expressed predominately in the brain and
mammary gland, acting as an emerging player in autism and breast
cancer [63, 92–96]. ATP2B2 exhibits the fastest activation and is one
of the primary ATP pumps found in the brain and sensory epithelium.
Investigations of this gene have highlighted its pivotal role in the nor-
mal function of the auditory system as well as the vestibular system.
The differentially expressed HLA-DQA1, HLA-DQB2, KIR2DL3 and
ATP2B2 genes, which were enriched in the immune system processes
and human diseases, probably play important roles in the response
to LDR.

In this study, we used RNA-Seq to screen DEGs and signaling
pathways involved in LDR impacts and verify the expression patterns
of some key candidate genes in the RNA-seq experiment by qRT-
PCR. Although our study provides a more complete list of candi-
date genes or pathways that play important roles in response to LDR
and indicates the coregulation of several new signaling pathways, the
precise molecular mechanisms of these interacting pathways remain
unclear. Furthermore, different tissues respond to radiation differently,
the conclusions in this study are only referred from human peripheral
blood responsible for LDR. Further efforts are needed to assess more
novel DEGs and study how these signaling pathways guide humans to
respond to LDR.
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