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Whole genome sequences reveal the Xanthomonas perforans
population is shaped by the tomato production system
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Modern agricultural practices increase the potential for plant pathogen spread, while the advent of affordable whole genome
sequencing enables in-depth studies of pathogen movement. Population genomic studies may decipher pathogen movement and
population structure as a result of complex agricultural production systems. We used whole genome sequences of 281
Xanthomonas perforans strains collected within one tomato production season across Florida and southern Georgia fields to test for
population genetic structure associated with tomato production system variables. We identified six clusters of X. perforans from
core gene SNPs that corresponded with phylogenetic lineages. Using whole genome SNPs, we found genetic structure among
farms, transplant facilities, cultivars, seed producers, grower operations, regions, and counties. Overall, grower operations that
produced their own transplants were associated with genetically distinct and less diverse populations of strains compared to
grower operations that received transplants from multiple sources. The degree of genetic differentiation among components of
Florida’s tomato production system varied between clusters, suggesting differential dispersal of the strains, such as through seed or
contaminated transplants versus local movement within farms. Overall, we showed that the genetic variation of a bacterial plant
pathogen is shaped by the structure of the plant production system.
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INTRODUCTION
Human activities have accelerated long-distance movement of
microbes, changing global distributions of microbes as well as
genetic variation within and among local populations. Modern
agricultural practices rely on the movement of plant materials
which can facilitate the establishment of new populations of
plant-associated microbes, including pathogens that can increase
crop losses and food security concerns [1-3]. The repeated,
inadvertent introduction of pathogens to plant production
systems has the potential to cause genetic shifts in local and
regional pathogen populations within each production cycle.
Disease management strategies may include focusing on the most
critical points of pathogen entry and spread, if knowledge of such
routes within the system exists [4, 5]. Whole genome sequencing
has enabled in-depth study of microbial populations in medical
settings and surveillance of bacterial pathogens affecting human
health [6-12]. For phytopathogenic bacteria, molecular epidemio-
logical studies utilizing whole genome sequences have begun to
shed light on pathogen evolution, geographic origins, and
dissemination [13-19]. Genomic variation of bacterial plant
pathogens can also be used to decipher pathogen movement in
complex agricultural production systems [19] and the role of
production systems in structuring regional populations.
Xanthomonas perforans (Xp) is one of four species that causes
bacterial spot of tomato and pepper, which can result in major

losses for growers via fruit spotting and foliar blighting [20-24].
Following its first report in 1991 in Florida, it quickly replaced X.
euvesicatoria as the predominant cause of bacterial spot [25]. Xp is
now broadly distributed on tomato throughout the world [21, 26].
Florida has been a focus of research on Xp, and is one of the top
fresh market tomato producers in the United States [27]. A
progression of studies looking at Xp populations since that time
has revealed the diversity and change in type lll secretion system
effector content over time despite lack of any commercially
deployed resistant cultivars [23, 28-32]. These results suggest that
the complex tomato production system may be contributing to
the diversity and structure of Xp populations.

Bacterial spot epidemics caused by Xp occur annually in Florida
and other eastern states, but little is known about the source of
inoculum each season [33-36]. To associate genetic variation in
local pathogen populations with components of the tomato
production system, we isolated and characterized 585 pathogenic
Xp strains from 70 commercial tomato fields located in Florida and
southern Georgia during the fall 2017 production season [28]. For
each plant from which we isolated a strain, we collected metadata,
including the specific farm and grower operation (each indepen-
dent grower operation may consist of two or more separate
farms), the geographic region (i.e., the county) of the farm, the
transplant facility where the plant was initially sown and grown,
and the specific tomato cultivar and seed producer. Sequencing of
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amplified portions of two genes (m/dB and maf) allowed us to
identify presence of all three previously reported Xp sequence
types. Non-metric multidimensional scaling and network analyses
using phenotypic and genotypic traits (including sequence type,
streptomycin resistance, bacteriocin production, tomato race, and
presence/absence of type lll secretion system effectors) enabled
us to associate sequence types with tomato production system
variables, including farms and transplant facilities, to a limited
extent. However, similar characterization profiles across strains
hampered our ability to evaluate the association of strain
genotypes to tomato production system variables. We hypothe-
sized that using whole genome sequences from the fall 2017
collection would enable us to associate tomato production system
variables with Xp population structure.

In this study, we analyzed 281 new Xp genomes from our fall
2017 collection, all isolated within a single Florida production
season [28], to identify variables that structure the population
genetic variation of Xp across the Florida tomato production
system. We were specifically interested in whether specific
pathogen genotypes were associated with specific sources (e.g.,
seed producers, transplant facilities, grower operations, farms, and
geographic regions), which would identify possible routes for
introduction and movement of new pathogen genotypes. Indeed,
genome sequencing uncovered a novel genotype associated with
multiple farms. We also found association of multiple components
of the production system with pathogen population structure.
Altogether, our study shows that the complexity of agricultural
production systems is reflected in local microbial populations.

MATERIALS AND METHODS

Bacterial strains and growth conditions

A total of 281 bacterial strains were selected from a previous study of 585
Xp strains isolated from tomato tissue across Florida and southern Georgia
production fields during the fall 2017 growing season [28]. For this study,
we selected all strains collected from the five tomato cultivars that had the
highest number of associated strains and fields. Supplementary Table S1
contains a list with metadata regarding the plant from which each strain
was isolated. Bacterial strains stored at —80°C in nutrient broth (BBL;
Becton Dickinson and Co, Franklin Lakes, NJ, USA) with 30% glycerol were
removed and streaked on nutrient agar, then incubated at 28 °C for 3-4
days to confirm appearance of pure cultures. For DNA extraction, cells were
removed from nutrient agar plates and grown overnight in nutrient broth
at 28 °C with shaking.

DNA extraction and sequencing

Overnight nutrient broth cultures were subjected to DNA extraction using
the Gram-negative bacterial DNA extraction protocol from the Wizard
genomic DNA purification kit (Promega, Madison, WI). DNA extractions
were submitted to the Microbial Genome Sequencing Center (MIGS;
Pittsburgh, PA, USA) for library construction and sequencing. MIGS
constructed libraries using methods described by Baym et al. [37], utilizing
the lllumina Nextera kit (Illumina Inc., San Diego, CA, USA). Genomes were
sequenced using the lllumina NextSeq 550 platform, providing 151-bp
paired-end reads.

Computational analyses

Unless specified otherwise, all genomic data processing was completed via
shell scripts run on the University of Florida HiPerGator supercomputer.
One reference strain from each of the three previously reported
phylogenetic groups of Florida-isolated Xp was included in all analyses:
1: 91-118 (GCA_000192045.3), 2: Xp2010 (SAMN16406455), 3: Xp17-12
(SAMN16406456) [30, 35, 38, 39].

Genome assembly

Draft genomes were assembled de novo using modified pipelines
described in Timilsina et al. [30]. Adapters were removed from raw FASTQ
reads and reads were paired using Trim Galore! (v. 0.6.3) with default
parameters. Paired reads were assembled into contigs with SPAdes (v.
3.10.1) [40]. K-mers 21, 33, 55, 77, 99, and 127 were run and contigs that
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were smaller than 500-bp in length with a k-mer coverage of less than 2.0
were removed. Validated reads were aligned against the filtered contigs
and output as a SAM-formatted alignment with default parameters of
Bowtie 2 (v. 2.3.3) [41]. SAM files were converted to BAM files with
SAMtools (v. 1.9) [42]. Draft assemblies were polished with default
parameters of Pilon (v. 1.22) [43]. Genome assemblies were assessed for
completeness and contamination with CheckM (v. 1.1.2) [44], using the
Xanthomonas genus-level taxonomic marker set.

Data availability of genomes and corresponding annotations
Assembled whole genome sequences and raw read data were deposited in
the NCBI GenBank database under BioProject number PRINA668343.
Assembled genomes were annotated using the Department of Energy
Joint Genome Institute’s Integrated Microbial Genomes (IMG) and
Microbiomes annotation pipeline (v. 5.0.3) [45]. Specific accession numbers
and genome identifiers for IMG and NCBI are provided in Supplementary
Table S2.

Core gene identification, alignment, and cluster analyses
Assembled genomes were annotated using default parameters for bacteria
with Prokka (v. 1.10) [46]. Annotated genomes were analyzed with Roary (v.
3.12.0), specifying Roary to designate core genes as those with a 75%
minimum percentage identity for BLASTp and present in all genomes, and
using MAFFT [47] for performing the nucleotide alignment. The resulting
nucleotide alignment file was converted to FASTA format for downstream
programs using the seqret tool from EMBOSS [48]. ModelTest-NG [49] was
used with default parameters to determine the appropriate substitution
model for phylogenetic analyses. Based on both the Bayesian information
criterion and the corrected Akaike information criterion, the general time-
reversible substitution model with optimization of substitution rates across
sites and estimation of invariable site proportions (GTR + |+ G) had the
best fit out of 88 DNA models tested. Phylogenetic analyses were
performed with RAXxML (v. 8.2.10) [50] using the pre-determined
substitution model (GTRGAMMALI'), specifying 1000 rapid bootstraps [51].
The best-scoring multilocus tree was corrected to account for recombina-
tion with ClonalFrameML (v. 1.0) [52] using 1000 pseudo-bootstrap
replicates. The core gene single nucleotide polymorphisms (SNPs) that
were used to create the ClonalFrameML multilocus tree were analyzed
with Rhierbaps (v. 1.1.3) [53, 54] with one level of clustering to assign
strains to core gene clusters. iTOL (v. 5.6.3) [55] was used to visualize the
multilocus trees generated with RAXML and ClonalFrameML, overlaid with
colors indicating Rhierbaps cluster assignments.

Network visualization

We evaluated how core gene clusters were partitioned across production
system variables transplant facility, farm, and field. A related analysis,
focusing on geographic location, was implemented for the network across
the hierarchy of region, county, farm, and field variables. The R package
igraph [56] and customized R [57] scripts were used to visualize the core
gene cluster partitioning in relation to the plant history variables for all
281 strains. Links between hierarchical variable categories were con-
structed based on the observed production system paths for distribution
of plant materials.

Identification of SNPs

SNPs across genomes within clusters 2, 3, 4, and 5, as defined by the core
gene clustering analysis, were identified based upon the protocol
described by Abrahamian et al. [35], with modifications. SNP analyses
were not performed for clusters 1 and 6, as they contained 10 strains each,
which was too few to conduct population differentiation analyses. lllumina
raw reads were paired with Geneious Prime (v. 2020.1.2; https://www.
geneious.com) then trimmed using Trim Galore! (v. 0.6.3) with default
parameters. Before alignment, the completed chromosome of each
reference sequence was indexed using default parameters for the
Burrows-Wheeler Aligner (BWA; v. 0.7.17) [58]. Plasmid sequences, as
annotated in the reference strains, were excluded, because plasmids may
be transmitted in local fields and not reflect production system variables
[59]. Reads for each strain were aligned against the respective core gene
cluster reference strain or closest relative (Xp2010 for cluster 2, Xp17-12 for
cluster 3, and 91-118 for clusters 4 and 5) with the BWA-MEM algorithm
[60], using default parameters. The SAM file outputs were converted to
BAM files and sorted and indexed using SAMtools (v. 1.9) [42].
MarkDuplicates, within Picard [61], was used to remove duplicate raw
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reads caused by library construction artifacts from BAM files. SNPs were
assigned using Freebayes (v. 1.3.1) [62], specifying a haploid genome, a
requirement of at least eight supporting observations to consider the
nucleotide a variant, and removing all insertions or deletions (indels),
multi-nucleotide polymorphisms (MNPs), and complex allele observations
(composite insertion and substitution events) from input. The VCF file
output from Freebayes was filtered with the “VCFfilter” tool, part of the
VCFlib [63] module, to remove all SNPs with a Phred score less than 50
(99.999% accuracy). VCF files for all strains within each core gene cluster
were compressed with “bgzip”, indexed with Tabix [64], then merged with
“VCF-merge” from VCFtools [65]. Strains JK3-3, JK22-5, JK37-1, JK38-1, JK45-
2, JK46-3, JK52-4, and JK56-1 represented singletons, in that each strain
was the only representative of its designated core gene cluster for a given
production variable (e.g., for a particular farm or transplant facility). These
singletons could not be used in statistical analyses, and thus were not
included in the SNP analysis and were removed prior to VCF merging. The
uncompressed merged VCF file was filtered with “VCFfilter” to remove all
SNP positions with more than one alternate allele so that all variant
positions were biallelic for downstream analyses. Three SNP positions
within cluster 2 and two SNP positions within cluster 3 were removed; all
SNPs within cluster 4 and 5 were biallelic. SNPs were annotated with SnpEff
(v. 5.0) [66] using each core gene cluster’s corresponding reference strain
sequence as the reference database. In total, 128 strains for cluster 2,
58 strains for cluster 3, 39 strains for cluster 4, and 28 strains for cluster 5,
were included in the SNP analyses.

Population structure

The merged VCF files for core gene clusters 2, 3, 4, and 5 were processed
separately with the following protocol. Each VCF file was imported into R
(v. 3.6.2) [67], within RStudio (v. 1.1.419) [68], using the vcfR package (v.
1.10.0) [69]. The periods, denoting nucleotides identical to the reference
sequence within the VCF object, were each replaced with a zero, as
required by the adegenet package [70]. The VCF object was converted into
a genlight object with the adegenet package (v. 2.1.2) [70]. The Poppr
package (v. 2.8.3) [71] was used to define population within each
stratification (‘transplant facility’, ‘grower operation’, ‘region’, ‘county’,
‘farm’, ‘seed producer, ‘cultivar) for each strain. To determine the
appropriate number of principal components (PCs) for discriminant
analysis of principal components (DAPC), the “xvalDapc” command from
the adegenet package was used. Once a range of PCs with the highest
proportions of successful outcome prediction was determined, this was
narrowed to a single PC value by running the same command for each
whole number with 1000 replicates each, then selecting the PC with the
highest mean proportions of successful outcome prediction (2: 26 PCs, 3:
12 PCs, 4: 6 PCs, 5: 2 PCs), as advised by Griinwald et al. [72]. Using Poppr
[71], the population stratification was set prior to each DAPC run. DAPC
was run using the adegenet package [70] in the genlight object, with the
appropriate number of PCs and predefined population, then visualized
with scatter plots. Population membership probability for each of the
predetermined populations, which was inherently calculated as part of the
DAPC object, was visualized with a composite stacked bar plot using
ggplot2 (v. 3.3.2) [73], as advised by Tabima et al. [74]. To further quantify
population structure, analysis of molecular variance (AMOVA) was
performed using Poppr [71]. The population stratification was set prior
to each AMOVA test. Significance tests using the ade4 package [75] were
performed to determine if values were significantly different via 1000
random permutations of the sample matrices, as advised by Kamvar et al.
[76].

Genomic diversity analyses of SNPs

Nucleotide diversity within populations (m) and nucleotide substitutions
per site among populations (D,,) were determined for each population by
each stratification. The merged VCF file for each cluster, along with the
corresponding population assignments, were imported into DnaSP (v. 6)
[77] as a “multi-MSA data file analysis”. ModelTest-NG [49] was used with
default parameters to determine the proper distance model to calculate
Fst. To convert the merged VCF files into a compatible file type for
ModelTest-NG to read, variants within each VCF file were concatenated
with the appropriate reference sequence in Geneious Prime (v. 2020.1.2)
and exported in FASTA format. PGDSpider (v. 2.1.1.5) [78] was used to
convert the FASTA-formatted SNP files into Arlequin file format for each
cluster and population stratification combination. Variance in allele
frequencies among populations (Fsy) was determined with Arlequin (v.
3.5) [79], using the Tamura distance model to calculate genetic distances
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between haplotypes, and significance of Fsy values (alpha =0.05) was
determined using 10,000 permutations of pairwise differences. Results of
SNP genomic diversity analyses were manually combined into matrix
format within Microsoft Excel.

RESULTS

Strain collection and genome sequencing

In total, whole genomes of 281 strains, each collected from a
different plant, from 35 fields on fifteen farms were sequenced.
The plants represented 8 transplant facilities, 5 cultivars, 4 seed
producers, 11 grower operations, and 8 counties. Supplementary
Table S2 summarizes genome size, contig number, N50, coverage,
GC content, completeness, contamination, and NCBI and IMG
online database accessions for all sequenced strains. De novo
assembled genomes averaged 51 contigs (range: 30-103) with an
average coverage depth of 749X (range: 26.3X to 264.2X). GC
content varied from 64.4 to 64.7%. Genome sizes ranged from 5.10
to 5.45Mb. CheckM identified an average of 99.9% genome
completeness, with the lowest value at 98.5%, and an average
contamination of 0.84%, with the highest value at 1.78%.

Phylogenetic analyses and cluster identification with the core
genome

Roary identified 3735 core genes across all sampled and three
reference genomes, out of 6561 total genes annotated by Prokka. Of
the 2826 accessory genes, 192 were present in at least 95% of strains
but fewer than 100%, 957 were present in at least 15% of strains but
fewer than 95%, and 1677 were present in at least one strain but
fewer than 15%. Phylogenetic analyses of core gene SNPs grouped
strains into several clades with greater than 99% bootstrap support
(Supplementary Fig. S1). These clades remained after correcting for
recombination with ClonalFrameML (Fig. 1). The mean relative rate of
recombination (R/6), estimated by ClonalFrameML, was 0.827, the
average length of recombined fragments (8) was 472 bp, and the
average divergence between donor and recipient (v) was 0.0193.
Rhierbaps identified six distinct clusters present in the population
(Fig. 1 and Supplementary Table S2). Of the 281 strains, 10 strains
belonged to cluster 1, 129 to cluster 2, 61 to cluster 3, 40 to cluster 4,
31 to cluster 5, and 10 to cluster 6. Cluster 1 was polyphyletic and
contained reference strain 91-118, although this strain was distinct
from other cluster 1 strains. Strain 91-118 was also the reference
strain closest to clusters 4 and 5. Cluster 2 contained reference strain
Xp2010. Cluster 6 was most closely related to cluster 3, which
contained reference strain Xp17-12. Addition of tomato production
system variables to the core gene phylogenetic tree revealed that a
diversity of farms, transplant facilities, and regions were represented
within each cluster of strains (Fig. 1).

Tomato production system network

The fresh-market tomato industry is complex, as demonstrated in
hierarchical networks that show relationships of plants and
sampled fields to the other tomato production system variables
(farm, transplant facility: Fig. 2; farm, county, region: Supplemen-
tary Fig. S2; Supplementary Table S3). For example, we sampled
plants on five farms that were seeded by transplant facility 'ZZ’
(Fig. 2).

Placement of core gene clusters on the networks showed that
clusters were distributed across plant sources. In one case, all
strains associated with transplant facility ‘XX’ represented a single
core gene cluster, and two farms contained only a single cluster
(‘aa” and ‘uu’), but these were the exceptions (Fig. 2). Overall, 40%
of farms and 62.5% of transplant facilities (Fig. 2), as well as all
cultivars sampled (Supplementary Table S3), were associated with
four or more clusters. Geographically, all strains represented a
single core gene cluster in only one county (‘f, 6 strains from 1
field), strains from five or six clusters were found in each of three
counties (‘a’, 45 strains from 5 fields; ‘c’, 49 strains from 5 fields; ‘'g’,
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Fig. 1 Phylogenetic tree of Xanthomonas perforans based on genetic distance of core gene SNPs, corrected for recombination. Clades are
highlighted by their respective core gene cluster, as determined by Rhierbaps (A). Core gene cluster identity is denoted by highlights overlaid
on clades. Association with the tomato production system variables farm, transplant facility, and region, for the plant each strain was isolated
from, are indicated by different colored blocks within each respective ring surrounding the phylogenetic tree. Reference genomes from three
previously reported Florida X. perforans strains are denoted with bold text and black arrows. The number of categories within each variable

was summed for each of the six clusters (B).

113 strains from 15 fields), and at a larger scale, strains from three
or more clusters were isolated from all four commercial tomato
production regions (Supplementary Fig. S2). Despite collecting
only 3-12 strains per field, three or more clusters were identified
in 51.4% of the 35 fields sampled.

SPRINGER NATURE

SNP statistics based on the respective cluster reference strain
To examine population structure associated with tomato
production system variables, given the genetic divergence
among clusters, chromosomal SNPs were determined sepa-
rately for core gene clusters 2, 3, 4, and 5 using the closest
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Fig.2 Network showing the distribution of core gene clusters across the tomato production system for variables transplant facility, farm,
and field. Nodes (in rows) represent categories for each variable and links indicate hierarchical associations. All 281 strains from the collection
are represented for each variable. Node size is proportional to the number of strains evaluated for a category, and the pie chart indicates the
proportion of each core gene cluster. Black versus blue links from farms to fields distinguish fields that are in the top and bottom row,

respectively.

Table 1. SNP annotation summaries based upon comparisons with reference strains Xp2010, Xp17-12, and 91-118 for core gene clusters 2, 3, and 4
and 5, respectively.
Nonsynonymous

Cluster Number of strains Total Intragenic Synonymous Missense Nonsense Nonstop

2 128 Average 95 56 55 27 0 0
Minimum 14 12 3 7 0 0
Maximum 674 182 488 119 2 0

3 58 Average 127 126 86 26 1 0
Minimum %4 93 61 18 0 0
Maximum 359 358 266 59 3 0

4 39 Average 1486 1439 543 676 19 2
Minimum 1400 1353 524 635 18 1
Maximum 1526 1482 554 697 21 2

5 28 Average 1291 1248 508 580 20 6
Minimum 1166 1128 457 521 18 6
Maximum 1339 1296 524 602 22 6

reference strain based on the core gene phylogenetic tree. In
total, 1655 variant sites were identified across cluster 2 strains,
761 across cluster 3, 1823 across cluster 4, and 1624 across
cluster 5 when compared to the reference strains. Clusters 4 and
5 had relatively more variant sites than clusters 2 and 3 (Table 1
and Supplementary Tables S4-7), which was expected as
the reference strain, 91-118, used for clusters 4 and 5 was
assigned to a different core gene cluster. When invariant sites
within our sample were removed, there remained 1652, 691,
558, and 585 SNPs among strains within clusters 2, 3, 4, and 5,
respectively.

The ISME Journal (2022) 16:591 - 601

Population differentiation across tomato production system
variables

Analyses of population structure within core gene clusters revealed
significant genetic variation among farms and transplant facilities
(Figs. 3 and 4). We also found genetically differentiated populations
among regions, cultivars, counties, seed producers, and grower
operations (Supplementary Figs. S3-7; presented by core gene cluster
in Supplementary Figs. S8-11). In general, analysis of molecular
variance indicated that populations defined by different farm and
transplant facility categories were associated with more genetic
variation in cluster 3 than cluster 2, and the least differentiated in
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clusters 4 and 5 (Figs. 3E and 4E). Nested analysis of molecular diversity statistics for categories within each variable showed that
variance for the hierarchical variables farm, county, and region approximately half of the pairwise comparisons among populations
revealed most of the genetic variation was found within and between defined by the variable categories were significantly differentiated as
farms, except for cluster 5 which showed more variation among measured by Fsr (Figs. 3F, 4F, Supplementary Figs. S3F, S4F, S5F, S6F,
counties than farm (Supplementary Table S8). Pairwise genetic S7F, and Supplementary Tables S9-15). SNP variation within clusters 4
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Fig. 3 Population differentiation of Xanthomonas perforans across tomato production farms. Differentiation was based on chromosomal
SNPs compared to the respective reference genome (Xp2010 for cluster 2, Xp17-12 for cluster 3, and 91-118 for clusters 4 and 5). Subfigures
A-D depict subdivision of all farms according to discriminant analyses of principal components (DAPC) and associated population
membership probabilities across clusters 2-5, with 26, 12, 6, and 2 principal components, respectively. Points and bars on DAPC plots and
corresponding population membership probability plots, respectively, represent individual strains. DAPC plot points are surrounded by 95%
inertia ellipses, and colors and shapes denote farm origin. Analysis of molecular variants (AMOVA) was calculated for samples within each
DAPC plot (E). Variance in allele frequencies among populations (i.e., Fs7) was calculated using the Tamura distance model. Matrix colors depict
the frequency of a significant Fst value (alpha = 0.05) across all specific farm pairwise occurrences for core gene clusters 2, 3, 4, and 5 (F).
Supplementary Figs. S8, S9, S10, and S11 depict the same population differentiation graphics but are presented by core gene cluster.

and 5 could be explained with only six and two principal components,
respectively, and thus were generally not as informative for
population differentiation compared to the other two analyzed
clusters.

Xp populations associated with some farms and transplant
facilities were clearly genetically distinct from other Florida strains
as indicated by assignment of all strains within a given category
(farm or transplant facility) to a distinct population using
discriminant analysis of principal components (Figs. 3A-D and
4A-D). For example, cluster 3 strains collected from farm ‘ff'’ were
distinct from all other strains in cluster 3 (Fig. 3B and
Supplementary Table S4). Strains from farms ‘i’ and ‘jj’, which
were associated with the same grower operation, transplant
facility, region, and cultivar, both contained strains from only
clusters 2 and 3, and strains from these farms were clustered in
the core gene phylogenetic tree and DAPC analysis (Figs. 1 and 3).
Meanwhile, the strains from these farms were genetically distinct
from other cluster 3 strains and many of the cluster 2 strains
(Fig. 3), which may be explained by both farms receiving plants
from transplant facility ‘UU’. Farms ‘i’ and ‘jj’ and transplant facility
‘UU’ were within a single grower operation that produced its own
transplants. Cluster 3 strains associated with transplant facility ‘UU’
were especially genetically distinct from other strains within
cluster 3 (Fig. 4).

Genetically similar strains were also collected from different
farms, suggesting common sources. Farms ‘cc’ and ‘dd’ contained
genetically similar strains in clusters 2 and 3 (Figs. 1A and 3A) and
both farms obtained plants from transplant facility ‘ZZ’ (Fig. 2) but
were located in different counties (Supplementary Fig. S2). In
contrast, farms ‘ff'’ and ‘tt’ contained genetically similar cluster 4
and 5 strains (Figs. 1A and 3C, D) and obtained plants from
different transplant facilities, but were located within the same
county. Farms ‘I’ and ‘nn’ were in the same grower operation but
located in different regions. They produced strains from six and
three clusters respectively, and cluster 2 and 3 strains that were
similar to strains from other farms (Fig. 3). Notably these farms
were associated with multiple transplant facilities and cultivars.
Within cluster 2, strains associated with transplant facility ‘SS’ were
genetically differentiated from strains from other facilities;
however, the only farm sampled that received plants from ‘SS’
was ‘nn’, which also received plants from ‘ZZ' (Fig. 2). In Fig. 1,
cluster 2 strains associated with ‘'SS” were genetically similar to
each other whereas the strains from ‘nn’ that were isolated from
plants originating from ‘ZZ' were more dispersed throughout
cluster 2.

DISCUSSION

The ability to rapidly sequence whole genomes has recently
enabled plant bacteriologists to link environmental factors and
agricultural production practices with pathogen genetics to better
understand pathogen emergence and dissemination [13-16, 35].
Typically, such studies have focused efforts on bacterial strains
collected over time and over larger geographic scales. In this
study, we examined 281 strains collected in a specific geographic
region over a single production cycle to provide insight into the
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genetic diversity and pathogen dissemination that occurs at local
scales. Consequently, we uncovered previously unknown genetic
variation in Xp in Florida tomato production. Through our in-depth
analysis of Xp within a complex agricultural production system, we
identified genetically distinct populations among farms and
grower operations, but also genetically similar strains among
farms that received plants from the same transplant facilities.
These results suggest that strain movement is largely occurring
within farms and via transplants. We note that all strains were
isolated from tomato production fields and we used the known
history of the tomato plant from which each strain was isolated to
evaluate associations across the production system.

We identified Xp population structure across each variable of
the tomato production system, including farm, transplant facility,
cultivar, county, region, seed producer, and grower operation.
These results suggest that each of these variables contributes, on
their own or via correlation with other variables, to the genetic
composition of the pathogen in tomato fields. In many cases,
pairwise population differentiation between categories of system
variables was consistent across core gene clusters, suggesting
shared mechanisms governing strain movement and dispersal.
However, we also observed varying levels of differentiation across
variable categories among core gene clusters, and genetic
differentiation among farms or transplant facilities that was not
consistent between clusters. Our results suggest strains in
different core gene clusters may move differentially throughout
the tomato production system. This finding is similar to that from
large-scale epidemiological studies of bacterial pathogens asso-
ciated with human health which have suggested differential
dispersal across genetic clusters for various species [6, 8, 11]. For
example, some Xp clusters may be present in the local
environment and disperse among fields, whereas others may be
introduced to fields only via transplants, thus their population
structure is influenced by their existing distribution and perhaps
their fitness in the environment. We observed cluster 3 strains
were genetically distinct across categories for most variables. We
speculate that cluster 3, which is a more recently identified lineage
of Xp in Florida, has had less time to move throughout the Florida
tomato production system than clusters that emerged earlier.

Strains associated with some farms and transplant facilities
represented a distinct Xp population, while many farms and
transplant facilities were not associated with a distinct population
of strains. As illustrated in Fig. 2 and even more so in our larger
survey [28], many transplant facilities simultaneously grow plants
for different farms. Likewise, commercial farms grow a variety of
cultivars from different seed lots, which may have originated from
multiple transplant facilities. At any given time, a single transplant
facility or farm can contain hundreds of thousands of plants from a
variety of seed producers and/or seed lots [36]. Xp may spread
within or between farms or transplant facilities via workers,
equipment, wind, rain, irrigation, weeds, or plant debris. Abraha-
mian et al. [36] demonstrated Xp moves rapidly, and often
asymptomatically, within transplant facilities via aerosols pro-
duced from overhead irrigation. When plants are produced within
a transplant facility or on a farm that contains a limited number of
seed lots or cultivars at one time, and movement of potentially
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Fig. 4 Population differentiation of Xanthomonas perforans across associated transplant facilities. Differentiation was based on
chromosomal SNPs compared to the respective reference genome (Xp2010 for cluster 2, Xp17-12 for cluster 3, and 91-118 for clusters 4 and 5).
Subfigures A-D depict subdivision of all transplant facilities according to discriminant analyses of principal components (DAPC) and
associated population membership probabilities across clusters 2-5, with 26, 12, 6, and 2 principal components, respectively. Points and bars
on DAPC plots and corresponding population membership probability plots, respectively, represent individual strains. DAPC plot points are
surrounded by 95% inertia ellipses, and colors and shapes denote transplant facility association. Analysis of molecular variants (AMOVA) was
calculated for each core gene cluster (E). Variance in allele frequencies among populations (i.e., Fst) was calculated using the Tamura distance
model. Matrix colors depict the frequency of a significant Fst value (alpha = 0.05) across all specific transplant facility pairwise occurrences for
core gene clusters 2, 3, 4, and 5 (F). Supplementary Figs. S8, S9, S10, and S11 depict the same population differentiation graphics but are
presented by core gene cluster.

contaminated people or equipment between transplant facilities
or fields is restricted, this could reduce the number of pathogen
genotypes introduced to a given set of plants. The use of this
production strategy by some growers may explain why some
farms and transplant facilities were associated with less genetically

diverse populations. Abrahamian et al. [35] studied strains from
two growers who produced their own tomato transplants and
found that strains isolated from transplant facilities and fields were
more similar within a given grower operation than between
operations. However, the study was conducted on a limited scale
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with grower operations that produce their own transplants,
whereas many growers do not produce their own transplants,
so it was unknown whether this finding was consistent across the
tomato production system. Indeed, we found a similar pattern of
strain clustering within farms and particularly within grower
operations that produce their own transplants. Many Florida
growers opt to instead outsource to transplant producers who
grow transplants for multiple growers. We found that farms that
outsourced their transplant production tended to produce diverse
populations of strains that resembled populations from other
farms. Previous studies in the 1980s and 1990s with X
euvesicatoria showed that volunteer tomato plants and crop
residue [33] or seeds [34] were the primary inoculum source, but
similar studies have not been conducted with X. perforans.

Some closely related strains came from plants that did not have
common variable categories across any of the examined tomato
production system variables. For example, strains within the
monophyletic cluster 6 were associated with three distinct plant
histories that did not share any common production system
categories, nor were they isolated from the same production region.
This finding is similar to that of whole genome-based studies of
Salmonella Typhimurium by Mather et al. [10] and Mellor et al. [12],
where authors were unable to associate diverse genotypes with
variables that were previously thought to be critical for pathogen
transmission. During our study, Hurricane Irma moved northward
throughout the length of the Florida peninsula and caused some
producers to preemptively move transplants out of the hurricane’s
path, which may have facilitated long-distance pathogen movement
and mixing of plants from different transplant facilities [28]. As a
newly described genotype, we expect that future studies will
illuminate the origins and dissemination of cluster 6 strains.

Sequencing whole genomes of a much larger number of strains
than in previous studies allowed us to detect novel lineages. We
identified six Xp core gene clusters in the population, whereas
only three clusters have been identified in previous Florida-based
genomic studies [30, 35, 39]. In our original study of 585 strains
from this collection using MLSA of two loci, Xp strains that
grouped within clusters 4 and 5 were lumped with cluster
1 strains, and cluster 6 strains were identified as cluster 3 strains
[28]. Newberry et al. [80] also identified two novel Xp genetic
clusters associated with tomatoes and peppers in Alabama via
sequencing of only eight strains. Identification of two new clusters
within a small sample size was proposed to be indicative of
greater diversity within the Alabama population. Our study also
reveals changing genetic diversity and low frequency variants in
Florida Xp populations. In recent studies, genetic diversity in Xp
has been associated with variation in Type Ill secreted effectors
and other genes important in the plant-pathogen interaction
[30, 80, 81], suggesting that strains in different clusters could have
different relative fitness on plants or even in different production
environments (e.g., seeds, transplant facilities, and open fields).
MLSA has traditionally been used to assess population structure
and variation, and to monitor populations for introductions of new
genotypes. Based on our findings of an expanding number of
genetically distinct groups of strains in Florida tomato production,
and our knowledge that Xp readily evolves via recombination
[30, 80, 81], genome sequencing will be important for continued
monitoring of ecologically and epidemiologically relevant varia-
tion in Xp.

While our robust collection allowed us to examine the
connectedness across many variables within the tomato produc-
tion system involving plant material movement and field location,
our ability to infer the point of strain introduction into the
production system was limited by the complexity of the system
and our decision to take samples from field plants at a single time
point per field. Thus, further studies focused on pathogen spread
are needed to understand strain-specific movement within and
among production system variables. Overall, this work shows that
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the genetic variation of a bacterial plant pathogen is shaped by
the structure of the plant production system. Further, our study
shows that modifying plant production systems could limit the
extent of pathogen diversity on plants in production fields.

REFERENCES

1. Strange RN, Scott PR. Plant disease: a threat to global food security. Annu Rev
Phytopathol. 2005;43:83-116.

2. Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. The
global burden of pathogens and pests on major food crops. Nat Ecol Evol.
2019;3:430-9.

3. Savary S, Bregaglio S, Willocquet L, Gustafson D, Mason D'Croz D, Sparks A, et al.
Crop health and its global impacts on the components of food security. Food
Secur. 2017;9:311-27.

4. Garrett KA, Alcala-Briseno Rl, Andersen KF, Buddenhagen CE, Choudhury RA,
Fulton JC, et al. Network analysis: a systems framework to address grand chal-
lenges in plant pathology. Annu Rev Phytopathol. 2018;56:559-80.

5. Pautasso M, Xu X, Jeger MJ, Harwood TD, Moslonka-Lefebvre M, Pellis L. Disease
spread in small-size directed trade networks: the role of hierarchical categories. J
App! Ecol. 2010;47:1300-9.

6. Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall |, Brown KP, Moreno P, et al.
Emergence and spread of a human-transmissible multidrug-resistant non-
tuberculous mycobacterium. Science. 2016;354:751-7.

7. Yang C, Zhang X, Fan H, Li Y, Hu Q, Yang R, et al. Genetic diversity, virulence
factors and farm-to-table spread pattern of Vibrio parahaemolyticus food-
associated isolates. Food Microbiol. 2019;84:103270.

8. Dallman TJ, Byrne L, Ashton PM, Cowley LA, Perry NT, Adak G, et al. Whole-
genome sequencing for national surveillance of Shiga toxin-producing Escher-
ichia coli 0157. Clin Infect Dis. 2015;61:305-12.

9. Kwong JC, Mercoulia K, Tomita T, Easton M, Li HY, Bulach DM, et al. Prospective
whole-genome sequencing enhances national surveillance of Listeria mono-
cytogenes. J Clin Microbiol. 2016;54:333-42.

10. Mather AE, Reid SW, Maskell DJ, Parkhill J, Fookes MC, Harris SR, et al. Distin-
guishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in
different hosts. Science. 2013;341:1514-7.

11. Richards VP, Velsko IM, Alam T, Zadoks RN, Manning SD, Pavinski Bitar PD, et al.
Population gene introgression and high genome plasticity for the zoonotic
pathogen Streptococcus agalactiae. Mol Biol Evol. 2019;36:2572-90.

12. Mellor KC, Petrovska L, Thomson NR, Harris K, Reid SWJ, Mather AE. Antimicrobial
resistance diversity suggestive of distinct Salmonella Typhimurium sources or
selective pressures in food-production animals. Front Microbiol. 2019;10:708.

13. Monteil CL, Yahara K, Studholme DJ, Mageiros L, Méric G, Swingle B, et al.
Population-genomic insights into emergence, crop adaptation and dissemination
of Pseudomonas syringae pathogens. Micro Genom. 2016;2:e000089.

14. Perez-Quintero AL, Ortiz-Castro M, Lang JM, Rieux A, Wu G, Liu S, et al. Genomic
acquisitions in emerging populations of Xanthomonas vasicola pv. vasculorum
infecting corn in the United States and Argentina. Phytopathology. 2020;110:1161-73.

15. McCann HC, Li L, Liu Y, Li D, Pan H, Zhong G, et al. Origin and evolution of the
kiwifruit canker pandemic. Genome Biol Evol. 2017;9:932-44.

16. Quibod IL, Atieza-Grande G, Oreiro EG, Palmos D, Nguyen MH, Coronejo ST, et al.
The Green Revolution shaped the population structure of the rice pathogen
Xanthomonas oryzae pv. oryzae. ISME J. 2020;14:492-505.

17. Straub C, Colombi E, McCann H. Population genomics of bacterial plant patho-
gens. Phytopathology. 2021. https://doi.org/10.1094/PHYTO-09-20-0412-RVW.

18. Vinatzer BA, Monteil CL, Clarke CR. Harnessing population genomics to under-
stand how bacterial pathogens emerge, adapt to crop hosts, and disseminate.
Ann Rev Phytopathol. 2014;52:19-43.

19. Weisberg AJ, Davis EW, Tabima JF, Belcher MS, Miller M, Kuo C, et al. Unexpected
conservation and global transmission of agrobacterial virulence plasmids. Sci-
ence. 2020;368:eaba5256.

20. Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW. Reclassification of the xan-
thomonads associated with bacterial spot disease of tomato and pepper. Syst
Appl Microbiol. 2004;27:755-62.

21. Potnis N, Timilsina S, Strayer A, Shantharaj D, Barak JD, Paret ML, et al. Bacterial
spot of tomato and pepper: diverse Xanthomonas species with a wide variety of
virulence factors posing a worldwide challenge. Mol Plant Pathol.
2015;16:907-20.

22. VanSickle J, Weldon R. The economic impact of bacterial leaf spot on the tomato
industry. Tomato Inst Proc. 2009:30-31 https:/plantpath.ifas.ufl.edu/rsol/
RalstoniaPublications_PDF/Tomato_Institute_Proceedings_09.pdf.

23. Horvath DM, Stall RE, Jones JB, Pauly MH, Vallad GE, Dahlbeck D, et al. Transgenic
resistance confers effective field level control of bacterial spot disease in tomato.
PLOS One. 2012;7:e42036.

SPRINGER NATURE

599


https://doi.org/10.1094/PHYTO-09-20-0412-RVW
https://plantpath.ifas.ufl.edu/rsol/RalstoniaPublications_PDF/Tomato_Institute_Proceedings_09.pdf
https://plantpath.ifas.ufl.edu/rsol/RalstoniaPublications_PDF/Tomato_Institute_Proceedings_09.pdf

J.M. Klein-Gordon et al.

600

24,

25.

26.

27.

28.

29.

30.

31.

32

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Kunwar S, Iriarte F, Fan Q, Evaristo da Silva E, Ritchie L, Nguyen NS, et al.
Transgenic expression of EFR and Bs2 genes for field management of bacterial
wilt and bacterial spot of tomato. Phytopathology. 2018;108:1402-11.

Jones JB, Bouzar H, Somodi GC, Stall RE, Pernezny K, EI-Morsy G, et al. Evidence
for the preemptive nature of tomato race 3 of Xanthomonas campestris pv.
vesicatoria in Florida. Phytopathology. 1998;88:33-38.

Timilsina S, Jibrin MO, Potnis N, Minsavage GV, Kebede M, Schwartz A, et al.
Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato
and pepper plants reveals strains generated by recombination among species
and recent global spread of Xanthomonas gardneri. Appl Environ Microbiol.
2015;81:1520-9.

United States Department of Agriculture. National Agricultural Statistics Service.
Washington, DC: United States Department of Agriculture; 2019.

Klein-Gordon JM, Xing Y, Garrett KA, Abrahamian P, Paret ML, Minsavage GV,
et al. Assessing changes and associations in the Xanthomonas perforans popu-
lation across Florida commercial tomato fields via a state-wide survey. Phyto-
pathology. 2021;111:1029-1041.

Vallad GE, Timilsina S, Adkison H, Potnis N, Minsavage G, Jones J, et al. A recent
survey of xanthomonads causing bacterial spot of tomato in Florida provides
insights into management strategies. Tomato Inst Proc. 2013:25-27 https:/
swfrec.ifas.ufl.edu/docs/pdf/veghort/tomato-institute/proceedings/
ti13_proceedings.pdf.

Timilsina S, Pereira-Martin JA, Minsavage GV, Iruegas-Bocardo F, Abrahamian P,
Potnis N, et al. Multiple recombination events drive the current genetic structure
of Xanthomonas perforans in Florida. Front Microbiol. 2019;10:448.

Burlakoti R, Hsu C, Chen J, Wang J. Population dynamics of Xanthomonads
associated with bacterial spot of tomato and pepper during twenty-seven years
across Taiwan. Plant Dis. 2018;102:1348-56.

Araujo ER, Costa JR, Ferreira MASV, Quezada-Duval AM. Widespread distribution
of Xanthomonas perforans and limited presence of X. gardneri in Brazil. Plant
Pathol. 2017;66:159-68.

Jones JB, Pohronezny KL, Stall RE, Jones JP. Survival of Xanthomonas campestris
pv. vesicatoria in Florida on tomato crop residue, weeds, seeds, and volunteer
tomato plants. Phytopathology. 1986;76:430-4.

Sijam K, Chang CJ, Gitaitis RD. An agar medium for the isolation and identification
of Xanthomonas campestris pv. vesicatoria from seed. Phytopathology.
1991;81:831-4.

Abrahamian P, Timilsina S, Minsavage GV, Potnis N, Jones JB, Goss EM, et al.
Molecular epidemiology of Xanthomonas perforans outbreaks in tomato plants
from transplant to field as determined by single-nucleotide polymorphism ana-
lysis. Appl Environ Microbiol. 2019;85:e01220-01219.

Abrahamian P, Sharma A, Jones J, Vallad GE. Dynamics and spread of bacterial
spot epidemics in tomato transplants grown for field production. Plant Dis.
2021 in press.

Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM, Kishony R. Inex-
pensive multiplexed library preparation for megabase-sized genomes. PLOS One.
2015;10:¢0128036.

Tudor-Nelson SM, Minsavage GV, Stall RE, Jones JB. Bacteriocin-like substances
from tomato race 3 strains of Xanthomonas campestris pv. vesicatoria. Bacteriol-
ogy. 2003;93:1415-21.

Schwartz A, Potnis N, Timilsina S, Wilson M, Patane J, Martins J, et al. Phyloge-
nomics of Xanthomonas field strains infecting pepper and tomato reveals
diversity in effector repertoires and identifies determinants of host specificity.
Front Microbiol. 2015;6:535.

Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, et al.
Assembling single-cell genomes and mini-metagenomes from chimeric MDA
products. J Comput Biol. 2013;20:714-37.

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat
Methods. 2012;9:357-9.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence
alignment/map format and SAMtools. Bioinform. 2009;25:2078-9.

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an
integrated tool for comprehensive microbial variant detection and genome
assembly improvement. PLOS One. 2014;9:e112963.

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing
the quality of microbial genomes recovered from isolates, single cells, and
metagenomes. Genome Res. 2015;25:1043-55.

Chen IA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v.5.0: an
integrated data management and comparative analysis system for microbial
genomes and microbiomes. Nucleic Acids Res. 2019;47:D666-d677. D1
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics.
2014;30:2068-9.

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
improvements in performance and usability. Mol Biol Evol. 2013;30:772-80.

SPRINGER NATURE

48.

49.

50.

52.

53.

54.

55.

56.

57.

59.

60.

61.
62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

Rice P, Longden |, Bleasby A. EMBOSS: the European molecular biology open
software suite. Trends Genet. 2000;16:276-7.

Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: a
new and scalable tool for the selection of DNA and protein evolutionary models.
Mol Biol Evol. 2019;37:291-4.

Stamatakis A. RAXML version 8: a tool for phylogenetic analysis and post-analysis
of large phylogenies. Bioinformatics. 2014;30:1312-3.

. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAXML

web servers. Syst Biol. 2008;57:758-71.

Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in
whole bacterial genomes. PLOS Comput Biol. 2015;11:1004041.

Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. RhierBAPS: an R
implementation of the population clustering algorithm hierBAPS. Wellcome
Open Res. 2018;3:93.

Cheng L, Connor TR, Sirén J, Aanensen DM, Corander J. Hierarchical and spatially
explicit clustering of DNA sequences with BAPS software. Mol Biol Evol.
2013;30:1224-8.

Letunic |, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic
tree display and annotation. Bioinformatics. 2007;23:127-8.

Csardi G, Nepusz T. The igraph software package for complex network research.
2006; InterJ., Complex Systems:1695.

R Core Team. R: a language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing; 2020.

. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler

transform. Bioinformatics. 2009;25:1754-60.

Canteros Bl, Minsavage GV, Jones JB, Stall RE. Diversity of plasmids in Xantho-
monas campestris pv. vesicatoria. Phytopathology. 1995;85:1482-6.

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. arXiv. 2013. https://arxiv.org/abs/1303.3997.

Broad Institute: Picard. http://broadinstitute.github.io/picard/ 2019.

Garrison E, Marth G. Haplotype-based variant detection from short-read
sequencing. arXiv. 2012. https://arxiv.org/abs/1207.3907.

Garrison, E, Kronenberg, ZN, Dawson, ET, Pedersen, BS, Prins, P. Vcflib and tools
for processing the VCF variant call format. BioRxiv. 2021.

Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files.
Bioinformatics. 2011;27:718-9.

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The
variant call format and VCFtools. Bioinformatics. 2011;27:2156-8.

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for
annotating and predicting the effects of single nucleotide polymorphisms,
SnpEff. Fly. 2012;6:80-92.

R Core Team. A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing; 2019.

RStudio Team. RStudio: Integrated Development for R. Boston, MA: RStudio Inc.;
2016.

Knaus B, Grinwald NJ. vcfR: a package to manipulate and visualize variant call
format data in R. Mol Ecol Res. 2017;17:44-53.

Jombart T. adegenet: a R package for the multivariate analysis of genetic markers.
Bioinform. 2008;24:1403-5.

Kamvar ZN, Tabima JF, Griinwald NJ. Poppr: an R package for genetic analysis of
populations with clonal, partially clonal, and/or sexual reproduction. Peer).
2014;2:e281.

Griinwald NJ, Kamvar ZN, Everhart SE. Population genetics and genomics in R:
Discriminant analysis of principal components (DAPC). 2020. https://grunwaldlab.
github.io/Population_Genetics_in_R/DAPC.html.

Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-
Verlag; 2016.

Tabima JF, Knaus B, Griinwald NJ. Population genetics and genomics in R: GBS
analysis. 2020. https://grunwaldlab.github.io/Population_Genetics_in_R/
gbs_analysis.html.

Dray S, Dufour A. The ade4 package: implementing the duality diagram for
ecologists. J Stat Softw. 2007;22:1-20.

Kamvar ZN, Everhart SE, Griinwald NJ. Population genetics and genomics in R:
AMOVA. 2020. https://grunwaldlab.github.io/Population_Genetics_in_R/AMOVA.
html.

Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-
Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data
sets. Mol Biol Evol. 2017;34:3299-302.

Lischer HE, Excoffier L. PGDSpider: an automated data conversion tool for con-
necting population genetics and genomics programs. Bioinformatics.
2012;28:298-9.

Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to
perform population genetics analyses under Linux and Windows. Mol Ecol
Resour. 2010;10:564-7.

The ISME Journal (2022) 16:591-601


https://swfrec.ifas.ufl.edu/docs/pdf/veghort/tomato-institute/proceedings/ti13_proceedings.pdf
https://swfrec.ifas.ufl.edu/docs/pdf/veghort/tomato-institute/proceedings/ti13_proceedings.pdf
https://swfrec.ifas.ufl.edu/docs/pdf/veghort/tomato-institute/proceedings/ti13_proceedings.pdf
https://arxiv.org/abs/1303.3997
http://broadinstitute.github.io/picard/
https://arxiv.org/abs/1207.3907
https://grunwaldlab.github.io/Population_Genetics_in_R/DAPC.html
https://grunwaldlab.github.io/Population_Genetics_in_R/DAPC.html
https://grunwaldlab.github.io/Population_Genetics_in_R/gbs_analysis.html
https://grunwaldlab.github.io/Population_Genetics_in_R/gbs_analysis.html
https://grunwaldlab.github.io/Population_Genetics_in_R/AMOVA.html
https://grunwaldlab.github.io/Population_Genetics_in_R/AMOVA.html

80. Newberry EA, Bhandari R, Minsavage GV, Timilsina S, Jibrin MO, Kemble J, et al.
Independent evolution with the gene flux originating from multiple Xanthomo-
nas species explains genomic heterogeneity in Xanthomonas perforans. Appl
Environ Microbiol. 2019;85:¢00885-19.

81. Jibrin MO, Potnis N, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, et al.
Genomic inference of recombination-mediated evolution in Xanthomonas euve-
sicatoria and X. perforans. Appl Environ Microbiol. 2018; 84:e00136-18.

ACKNOWLEDGEMENTS

This research was supported by the National Science Foundation Graduate Research
Fellowship Grant Number: DGE-1842473, the Florida Tomato Committee Grants
Program (2018-2019), and the United States Department of Agriculture (USDA)
National Institute of Food and Agriculture (NIFA) Specialty Crop Research Initiative
Grants Program Grant Number: 2015-51181-24312. The authors thank Gerald V.
Minsavage, Jr. and Eaden R. Murphy for technical assistance.

AUTHOR CONTRIBUTIONS

JMK, JBJ, GEV, and EMG conceptualized project and acquired funding for project; JIMK
performed investigations; JMK led the formal analysis and interpretation of data, with
input and scripts from JMK, ST, PA, JBJ, GEV, and EMG; JMK, ST, and PA developed
software for data analyses; YX and KAG performed network analysis of data; JMK, YX,
KAG, JBJ, GEV, and EMG prepared the manuscript for submission. All authors
provided feedback on the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

The ISME Journal (2022) 16:591 - 601

J.M. Klein-Gordon et al.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/541396-021-01104-8.

Correspondence and requests for materials should be addressed to Gary E. Vallad or
Erica M. Goss.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

SPRINGER NATURE

601


https://doi.org/10.1038/s41396-021-01104-8
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Whole genome sequences reveal the Xanthomonas perforans population is shaped by the tomato production system
	Introduction
	Materials and methods
	Bacterial strains and growth conditions
	DNA extraction and sequencing
	Computational analyses
	Genome assembly
	Data availability of genomes and corresponding annotations
	Core gene identification, alignment, and cluster analyses
	Network visualization
	Identification of SNPs
	Population structure
	Genomic diversity analyses of SNPs

	Results
	Strain collection and genome sequencing
	Phylogenetic analyses and cluster identification with the core genome
	Tomato production system network
	SNP statistics based on the respective cluster reference strain
	Population differentiation across tomato production system variables

	Discussion
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




