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Disease in the marine environment is predicted to increase with anthropogenic stressors and already affects major habitat-formers,
such as corals and seaweeds. Solutions to address this issue are urgently needed. The seaweed Delisea pulchra is prone to a
bleaching disease, which is caused by opportunistic pathogens and involves bacterial dysbiosis. Bacteria that can inhibit these
pathogens and/or counteract dysbiosis are therefore hypothesised to reduce disease. This study aimed to identify such disease-
protective bacteria and investigate their protective action. One strain, Phaeobacter sp. BS52, isolated from healthy D. pulchra, was
antagonistic towards bleaching pathogens and significantly increased the proportion of healthy individuals when applied before
the pathogen challenge (pathogen-only vs. BS52 + pathogen: 41-80%), and to a level similar to the control. However, no significant
negative correlations between the relative abundances of pathogens and BS52 on D. pulchra were detected. Instead, inoculation of
BS52 mitigated pathogen-induced changes in the epibacterial community. These observations suggest that the protective activity
of BS52 was due to its ability to prevent dysbiosis, rather than direct pathogen inhibition. This study demonstrates the feasibility of
manipulating bacterial communities in seaweeds to reduce disease and that mitigation of dysbiosis can have positive health

outcomes.
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INTRODUCTION

Global climate change and elevated anthropogenic pressures
have been correlated with an increase in diseases in marine
systems, which are likely to become more frequent or severe in
the future [1-3]. Seaweeds (macroalgae) are critical and dominant
habitat formers in temperate coastal ecosystems, where they
provide food and shelter for other marine organisms including
invertebrates and fish [4, 5]. Disease outbreaks in habitat-forming
seaweeds have caused massive declines in their population [3]
and threatened species that rely on them [6, 7]. Recent reports
have linked disease in marine hosts, including seaweeds, to
opportunistic microbial pathogens [8, 9], and in some instances
the causative agent(s) have been identified and virulence traits
described [10-14]. However, up to now no effective strategies are
available for disease control. Given that opportunistic pathogens
may originate from the host-associated microbiota and/or the
surrounding environment [15], effective disease management
requires a holistic view considering the interplay between
members of the host microbiota and the environment.

Delisea pulchra is one of the best-studied models for the
interactions that occur between macroalgae, bacteria and the
environment in the context of disease [16, 17]. This red
macroalga suffers from a thallus bleaching disease, which is
more prevalent in summer months due to an increase in
seawater temperatures and a reduction of the seaweed’s natural

chemical defense, which is based on brominated furanones
[18, 19]. Inoculation with specific bacteria (e.g. Phaeobacter
italicus (formally, Nautella italica) R11 [18, 19], Phaeobacter
gallaeciensis LSS9 [20], Aquimarina sp. AD1 and BL5, Agarivorans
sp. BL7 and Alteromonas sp. BL110 [12]) can reproduce the
disease phenotypes in chemically undefended individuals in the
laboratory [12, 19, 20] or in the field [18]. Interestingly, chemically
undefended seaweed individuals are frequently observed to be
healthy in populations that generally suffer from bleaching
disease [12], indicating that factors other than direct chemical
defense can mediate disease resistance. A recent study following
the succession of D. pulchra’'s microbiome after a deliberate
disturbance demonstrated that epiphytic microbial communities
could recover to a pre-disturbed state within a relatively short
time frame. However, preventing the establishment of specific
bacterial colonists during the early succession compromised
disease resistance of the host in situ [21]. These findings show
that the composition or structure of the microbiota is an
important factor in disease resistance and indicate that any
imbalance, or dysbiosis, can contribute to disease development.
In fact, microbial communities of bleached D. pulchra have been
found multiple times to be distinct from those of healthy
individuals in the field [18, 22-24] and in vitro inoculation with
specific pathogens appear to cause a destabilisation of the
seaweed’s bacterial community structure [12].
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Controlled microbiota manipulation is increasingly recognised
as a tangible practice to improve host health and performance, in
particular in the area of human gut probiotics [25, 26] and in
terrestrial crop production, e.g. plant growth-promoting micro-
organisms [27, 28]. The use of probiotics has also been extended
to marine animals, like shrimp [29, 30], fish [31, 32] and more
recently corals [33, 34]. Despite previous studies showing the
disease-protective potential of bacteria associated with red
seaweeds Gracilaria conferta [35] and Agarophyton vermiculophyl-
lum [13], probiotics or microbiota manipulation is still under-
studied for the control of macroalgal diseases and mechanistic
aspects are unknown.

Here, we hypothesise that manipulation of bacterial epibionts
will result in the prevention or mitigation of the bacterial-induced
bleaching disease of D. pulchra. To test this hypothesis, we
determined the antagonistic activities against known D. pulchra
pathogens for over 400 strains of epiphytic bacteria. Antagonistic
bacteria were then assessed for their ability to prevent disease
in vivo. We further compared the bacterial communities
associated with D. pulchra that were inoculated with either a
pathogen, a protective bacterium, a non-protective bacterium, or
combinations thereof, to analyse the community shifts under-
pinning disease protection.

MATERIALS AND METHODS

Collection and screening for pathogen-antagonistic bacteria
Healthy D. pulchra individuals were collected in February 2018 off the coast
of Cronulla Beach (34°03/23"S, 151°09'26"E), Sydney, from a depth of 3-4 m
(permit: P13/0007-2.0 & OUT18/2054; New South Wales Department of
Primary Industries). Samples were transported to the laboratory and rinsed
individually in 0.22 ym filtered and autoclaved bromide-deficient artificial
seawater (Br-ASW) [36] to remove loosely attached epiphytic bacteria. Br-
ASW was used in all experiments to reduce the seaweed's bromide-
furanone dependent chemical defense [36]. The thalli were swabbed using
sterile cotton swabs, which were then transferred to Br-ASW and vortexed
vigorously. Each suspension was serially diluted and spread onto Difco
Marine Broth 2216 agar (MA) plates. After 6 days of incubation at 25°C,
bacterial colonies were isolated. Bacterial isolates were stored at —80 °C in
30% glycerol.

A diffusion-based agar plate bioassay [37] was used to assess the
antagonistic activity of the bacteria isolated from healthy D. pulchra and
bacteria previously isolated from marine surfaces (Table S1), against six
known bleaching pathogens: Phaeobacter italicus R11 [19], Phaeobacter
gallaeciensis LSS9 [20], Aquimarina sp. AD1 and BL5, Agarivorans sp. BL7
and Alteromonas sp. BL110 [12]. All bacteria were obtained from the
culture collection of the Centre for Marine Science and Innovation (CMSI,
UNSW Sydney). Stationary phase cultures of the pathogen were spread
onto MA plates and air-dried for 1min at room temperature. Discs
containing 12 pL of test strains (grown overnight at 25°C and 180 rpm)
were placed onto the plate, incubated at 25°C for 48h and zones of
growth inhibition were measured (an antagonistic effect was indicated by
the zone of growth inhibition with a diameter = 7 mm). For each test strain
vs. pathogen pair, six discs (containing independent cultures of the test
strain) were put on six different MA plates (spread with the pathogen) to
estimate the variation associated with this method.

16S rRNA gene sequencing and analysis

PCR amplification of the 16S rRNA gene of pathogen-antagonistic bacteria
were performed using primers 27 F/1492 R as described previously [38].
The PCR products were sequenced at the Ramaciotti Centre for Genomics,
UNSW, Australia (for detailed procedure see Supplementary information).
Forward and reverse reads were assembled for each bacterium and
compared against the National Centre for Biotechnology Information
(NCBI) NT database (July 2018) through the BLAST search [39]. The closest
relatives were acquired, and all sequences were subject to phylogenetic
analyses following the protocol of Hall, (2013) [40]. Briefly, sequences were
aligned using the MUSCLE algorithm [41] in the integrated program
Molecular Evolutionary Genetics Analysis (MEGA) X [42]. A phylogenetic
tree was constructed using the Maximum Likelihood method [43] with
1000 bootstraps.
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D. pulchra infection assay
Bacteria were tested in vivo for their ability to mitigate the bleaching
disease using a previously developed method [12]. Briefly, healthy D.
pulchra juveniles (ca. 6 cm in length, having dark-red thallus without any
signs of disease or fouling) were collected from Bare Island (33°59/54"S,
151°14/59"E), Sydney, at 3-4 m depths, from April 2018 to September 2019,
transported to the laboratory and cleaned following the procedure
described above. The cleaned thalli were transferred individually into
sterile 25 cm? Coring cell flasks (Merck, Germany) with vented caps. Each
flask was filled with 50 mL of Br-ASW. Flasks were routinely maintained at
25°C (60 rpm) and illuminated in a 14:10 h light-dark regime. Samples were
maintained overnight under these conditions to acclimatise, and any dead,
fading samples were excluded for the following inoculation experiments.
Bacteria that were from antibiotics producing taxa and exhibited in vitro
antagonistic effects against multiple pathogens were chosen as represen-
tatives to screen for in vivo protective effects. For in vivo experiments,
Aquimarina sp. AD1 was chosen as the model pathogen based on prior
studies that indicate it is the most virulent [12, 44]. On day 1 healthy
juveniles were randomly assigned to one of four groups: (i) no bacterial
inoculation (control), (i) inoculation with the pathogen Aquimarina sp.
AD1, (iii) inoculation with a test bacterium, either Phaeobacter sp. BS52,
Phaeobacter sp. BS23, Phaeobacter sp. BS34, Vibrio sp. BL95 or Pseudoalter-
omonas sp. PB2-1; and (iv) co-inoculation with each test bacterium and
Aquimarina sp. AD1. Bacteria used in infection assay were cultured in
Marine Broth 2216 (Difco) at 25 °C to reach log-phase growth. One millilitre
of bacteria cells (concentration: 107 cfumL™") suspended in Br-ASW were
prepared following the procedures described in [12] to inoculate D.
pulchra. Test bacteria were inoculated at the start of the experiment with
pathogen challenges occurring on day 2 and 4. The seawater was replaced
with fresh Br-ASW before inoculations. On day 5, the juveniles were visually
inspected for bleaching or discoloration of algal thalli. For each test
bacterium a total of three independent experiments were conducted with
at least three biological replicates per treatment (see Table S2 for details).
To determine the effect of treatment on disease incidence, the data
were fitted to a Generalised Linear Mixed-effect Model (GLMM) assuming a
binomial distribution using the gimer function in the Ime4 R package [45].
‘Experiment’ was included as a random effect in the model. The glht
function in the multcomp R package was used to further assess the
difference between treatments [46].

Post-infection analysis of D. pulchra bacterial community
Post-infection D. pulchra samples were rinsed with 15mL 1 X PBS
(Phosphate-Buffered Saline) buffer twice to remove the loosely attached
bacteria from their surfaces. Total bacterial community DNA was extracted
from algal samples using the DNeasy Powersoil Kit (Qiagen Australia,
Chadstone, VIC, Australia) following the manufacturer’s instructions. The
primers with lllumina overhang adapter sequences, 341 F: 5/-tcgtcggcagc
gtcagatgtgtataagagacagCCTACGGGNGGCWGCAG-3' and 785 R: 5/-gtctcgtg
ggctcggagatgtgtataagagacagGACTACHVGGGTATCTAATCC-3/ were used to
amplify the V3-V4 regions of the 16S rRNA gene [47]. The reaction mixture
(50 pL total volume per sample) consisted of Econo Taq PLUS GREEN 2x
Master Mix (Astral Scientificc, Gymea, NSW, Australia) (25 pL), Ambion
nuclease-free water (Thermo Fisher Scientific, Australia) (15 pL), the primer
pair 341 F and 785R (2.5 pL of each; 10 uM) and DNA template (5 uL). The
PCR program consisted of an initial denaturation at 94 °C (2 min), followed
by 30 cycles of denaturation at 94 °C (30s), annealing at 55°C (30s) and
extension at 72°C (40s), and a final extension of 72°C (7 min). PCR
products were then quantified using gel electrophoresis. Addition of
multiplexing indices and lllumina sequencing adapters, library preparation
and paired-end sequencing (2 x 300 bp) of the resulting 16S rRNA gene
amplicons was performed at the Ramaciotti Centre for Genomics, UNSW
on a MiSeq platform (lllumina) as per the MiSeq System User Guide
(lumina 2013).

Raw sequencing reads were processed using TRIMMOMATIC version 0.36
[48] and USEARCH version 11.0.667 [49] following the procedure described in
[50]. Briefly, sequences shorter than 100 bp were removed and the ends with
a quality below 20 in a sliding window of 4 bp were trimmed. Contigs were
made and the sequences with ambiguous or error bases, or with a length
below 250 bp or exceeding 550 bp were removed. Filtered sequences were
denoised and clustered into zero-radius operational taxonomic units (zOTUs)
[51] using the UNOISE algorithm implemented in USEARCH. Chimeric
sequences were removed with UCHIME [52] de novo during zOTU clustering
and subsequently with a reference-based comparison against the GTDB v89
database  (https://gtdb.ecogenomic.org/). zOTUs were taxonomically
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classified using a Bayesian Last Common Ancestor algorithm (BLCA) [53]
against the GTDB v89 database. All non-bacterial zOTUs and singletons were
removed. Finally, the processed sequences were mapped onto zOTU
sequences to calculate the count distribution of each zOTU in every sample.
Only zOTUs occurring in more than two samples were considered for further
statistical analyses. The sequencing depth was visualised with rarefaction
curves and the sampling efficiency was estimated with Good's coverage
indices using the R package vegan [54]. To account for the uneven
sequencing depth, count data were subsampled to the lowest reads
observed among samples (48 304) using USEARCH [49], and all further
analyses were based on the subsampled data.

To investigate the presence of the inoculated bacteria (i.e. Aquimarina
sp. AD1, Phaeobacter sp. BS52 and Phaeobacter sp. BS23) in our samples,
the 16S rRNA gene sequences of the bacterial inocula were searched
against the representative sequences of zOTUs using BLAST 2.2.30+ [39].
zOTU sequences with 100% identity (across the full V3-V4 region of the
16S rRNA gene that was sequenced) were considered as being derived
from the inoculum. The relative abundances of each zOTU in samples
treated or not treated with its corresponding inoculum were compared
using a Generalised Linear Model (GLM) assuming a negative-binomial
distribution, where ‘Experiment’ was included first in the model to account
for potential variation among experimental trials, and the p values were
calculated via 1000 parametric bootstraps [55].

Spearman’s rank correlation tests were performed to assess the potential
effect of Phaeobacter sp. BS52 and Phaeobacter sp. BS23 on the relative
abundance of Aquimarina sp. AD1. Subsequent bacterial community
analyses were performed after removal of sequences corresponding to the
inocula. Alpha diversity indices, i.e. Shannon_e (the Shannon index logs to
base e) for zOTU diversity and Chao1 for richness, were determined using
USEARCH version 11.0.667 [49]. Analysis of variance (ANOVA) was
performed to test the significance of the effect of ‘treatment’ on diversity
indices. ‘Experiment’ was included as a factor first in the model to account
for potential variation among experimental trials.

The R package vegan [54] was used for distance-based community analyses.
To analyse the community structure, Bray-Curtis dissimilarity coefficients were
calculated for the square-root transformed relative abundance data. The effects
of ‘treatment’ on the community structure were tested by permutational
multivariate analysis of variance (PERMANOVA) and pairwise comparisons with
9999 random permutations within each experiment (strata), using the R
package pairwise.adonis2 [56]. The assumption of homogeneity of multivariate
dispersion was tested using the betadisper function in the R package vegan. To
identify bacterial taxa that contributed to the community differences, zOTUs
were aggregated to different taxonomic levels (i.e. phylum to species). The
relative abundances of different taxa (with mean relative abundance: >1%)
were compared among treatments and experiments using a multivariate
Generalised Linear Model (mGLM) assuming a negative-binomial distributio-
nand p values calculated via 1000 parametric bootstraps [55]. ‘Experiment’ was
included first in the model to account for potential variation among
experimental trials. Where significant treatment effects were detected, the
argument ‘pairwise.comp’ in the function anova of R package stats was used to
assess the difference between treatments. Significance was determined with
alpha = 0.05. All analyses and statistics were performed in R version 3.6.3 [57].

RESULTS

Identification of bacteria with antagonistic activities against
pathogens

A total of 260 bacterial strains isolated from healthy D. pulchra and
174 strains obtained from an in-house bacterial culture collection
(Table S1), were tested for antagonistic activities towards known
bleaching pathogens. Of these 7.1% (31 different strains) inhibited the
growth of the pathogens Phaeobacter gallaeciensis LSS9, Aquimarina
sp. AD1 and/or BL5, Agarivorans sp. BL7 and/or Alteromonas sp. BL110
(Fig. 1).

In total 139 of the 434 tested bacteria have been classified (to a
genus or lower taxonomic level, according to previous records in
Table S1 and the 16S rRNA gene sequencing conducted in this
study), and these 139 strains represented 27 genera (Table S3).
The antagonistic bacteria belonged to seven genera, including 19
Vibrio, six Phaeobacter, two Microbulbifer, one Bacillus, one
Photobacterium, one Pseudoalteromonas and one Pseudomonas
(Fig. 2, Tables S1 and S4). Six Vibrio and four Phaeobacter bacterial
strains displayed growth inhibition towards three of the
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pathogens (the two Aquimarina spp. and Phaeobacter gallaeciensis
LSS9 or Agarivorans sp. BL7, see Fig. 1). None of the tested bacteria
inhibited all six pathogens.

Identification of bacteria that protect D. pulchra from
bleaching disease

Five bacterial strains (namely, Phaeobacter spp. BS23; BS34 and
BS52, Vibrio sp. BL95 and Pseudoalteromonas sp. PB2-1) with
potential to antagonise multiple opportunistic pathogens (as
determined by both in vitro tests and their affiliations to
antibiotics producing taxa) were selected for further in vivo
testing of their ability to protect D. pulchra from disease. To assess
if the inoculation of D. pulchra with any of the single strains (i.e.
Aquimarina sp. AD1, Phaeobacter spp. BS23; BS34 and BS52, Vibrio
sp. BL95 and Pseudoalteromonas sp. PB2-1) had an impact on the
likelihood of disease, the proportions of healthy individuals after
the experiment were compared to an uninoculated control. As
expected, treatment with the pathogen Aquimarina sp. AD1 alone
significantly reduced the proportion of healthy individuals (post-
hoc tests on binomial GLMM, Df = 114, p,gjustea < 0.001) compared
to the uninoculated controls. However, there was no statistical
support for a beneficial or detrimental effect of the candidate
protective bacteria on D. pulchra health in the absence of
pathogen challenge (Fig. 3, Table S5).

Next, to determine whether any of the candidate protective
bacteria could reduce the pathogen-induced bleaching, we compared
the test strain+pathogen treatments with the pathogen challenge
treatment (Aquimarina sp. AD1-only). Co-inoculations with Phaeobac-
ter sp. BS52 or Pseudoalteromonas sp. PB2-1 significantly increased the
proportion of healthy D. pulchra samples compared to the AD1-only
treatment (post-hoc tests on binomial GLMM, Df =76, Pagjusted =
0.0486; Df = 81, pagjusted = 0.0047, respectively; Fig. 3, Table S5). There
was no support for a statistically significant impact on disease
protection for the other strains tested (i.e. BS23, BS34 and BL95).

Treatment with disease-protective bacteria mitigates
pathogen-induced microbiome shifts in D. pulchra

We used a 16S rRNA gene-based community analysis to determine
the relative abundance of selected disease-protective bacteria and
to assess the effect of these strains on the overall bacterial
community associated with D. pulchra. We chose to focus this
analysis on the protective strain Phaeobacter sp. BS52, and a
closely related strain Phaeobacter sp. BS23 (Fig. 2), for which there
was no evidence of protection (Fig. 3). After quality filtering, a total
of 5,681,299 sequences were generated for 52 seaweed samples
(Table S6), which clustered into 1 488 zOTUs. Rarefaction curve
and Good's coverage (>99.8%) indicated that the majority of the
bacterial communities was recovered by the surveying effort
(Table S7, Fig. S1).

The sequences of three zOTUs (namely, zOTU258, zOTU2 and
zOTU5) matched perfectly and uniquely to the 16S rRNA gene of
the inoculated bacteria (AD1, BS52 and BS23, respectively) and
hence were assigned to these strains. This is further supported by
the observation that a significant increase in the relative
abundance of zOTU258, zOTU2 or zOTU5 occurred in samples
treated with AD1, BS52 or BS23, respectively, compared to
untreated samples (negative-binomial GLM; Deviance =4.7, p =
0.034; Deviance =155.8, p=0.001; Deviance =132.1, p=0.001,
respectively; Fig. S2).

To test the hypothesis that there would be antagonistic
interaction in vivo between the disease protective bacterium
and the pathogen, we performed Spearman’s rank correlation
analyses of their relative abundances. We did not find statistical
support for a negative correlation between the relative abundance
of Aquimarina sp. AD1 and Phaeobacter sp. BS52 (Spearman’s rank
correlation; rho = 0.08, p > 0.05).

We next tested the hypothesis that the addition of a protective
bacterium influenced the microbiota associated with D. pulchra,
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Zone of growth inhibition (mm)

Antagonistic activities of disease-protective candidates against known Delisea pulchra bleaching pathogens, Phaeobacter italicus

R11, Phaeobacter gallaeciensis LSS9, Aquimarina sp. AD1 and BL5, Agarivorans sp. BL7 and Alteromonas sp. BL110. The x-axis shows the
zone of growth inhibition (mean diameter + standard error in mm, based on n =6 biological replicates). The y axis shows the taxonomic
affiliation and identification number (ID) of test bacteria. An example plate viewed under natural light shows typical growth inhibition (inset

plot at the bottom-right corner).

which in turn may prevent the bleaching disease. While there was not
statistical support for difference in the alpha diversity of the bacterial
communities associated with D. pulchra between the treatments
(Table S8), an overall effect of treatments (PERMANOVA, pseudo-Fs 44
=1487, p=0.002, Table S9) was observed on the bacterial
community structure based on Bray-Curtis dissimilarities (square-root
transformed data). While pairwise comparisons showed no statistical
support that the bacterial communities of D. pulchra co-inoculated
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with the protective Phaeobacter sp. BS52 and Aquimarina sp. AD1
differed from the control (i.e. no bacterial inoculation) (pPagjusted =
0.089), they were significantly different from those treated with AD1
alone (Padjustea = 0.001) (Table S9). In contrast, we did not find
statistical support for differences between the bacterial communities
of D. pulchra co-inoculated with the non-protective Phaeobacter sp.
BS23 and Aquimarina sp. AD1 and the AD1-alone treatment (Table
S9). To further identify bacterial taxa that contributed to the
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classes and phyla are shown on the right.

community differences, zOTUs were aggregated to different taxo- detected only for the relative abundances of two species (i.e. with
nomic levels (ie. phylum to species). Bacteria associated with D. mean relative read abundance >1%), Alteromonas alba [58] (GTDB
pulchra belonged to 18 classes, dominated by Gamma-proteobacteria identifier Alteromonas_A sp002993365 and representing 56 zOTUs,
(mean relative read abundance: 39.7%), Alpha-proteobacteria (37.1%) Table S10; negative-binomial GLM, Deviance =14.069, p =0.028,
and Bacteroidia (22.4%). At the genus level, Alteromonas (13.1%), Table S11) and Cobetia marina [59] (representing three zOTUs, Table
Robiginitomaculum (12.3%) and Nonlabens (11.8%) were the dominant S10; negative-binomial GLM, Deviance = 18.839, p = 0.016, Table S11)
taxa (Fig. S3). Further, the bacteria could be classified to 389 species, (Fig. 4). Further pairwise comparisons indicated that co-inoculation of
with only 19 species having a relative read abundance of >1% but BS52 4+ AD1, but not BS23 + AD1 significantly increased the relative
accounting for >75% of the relative read abundance in the D. pulchra abundance of the A. alba compared to the ADT-only treatment
microbiome (Fig. S4). A significant effect of the treatment was (Padjusted = 0.040), with the relative abundance of this strain in the
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diseased (lower panel) D. pulchra in the infection assays. The disease was characterised by the localised loss of pigment around the mid-thallus

(shown with the arrow).

BS52 + AD1 treatment being similar to that of the control (Table S11,
Fig. 4). In addition, we found the AD1-alone treatment significantly
increased the relative abundance of C. marina compared to controls
(Padjusted = 0.046). The co-inoculation of BS52+ AD1 had a lower
relative abundance of this strain compared to AD1-only, but this trend
was not significant (Pagjustea = 0.145, Table S11, Fig. 4).

DISCUSSION

Seaweed health, development and growth is influenced by the
diverse bacterial communities they host [17, 60, 61]. However,
despite bacterial symbionts being broadly recognised as impor-
tant for host defense against pathogens [62], few studies have
investigated the disease protective potential of seaweed-
associated bacteria [13, 35]. Moreover, nothing is known about
the underlying mechanisms or interactions that contribute to
disease protection. To identify strains with potential disease-
protective functions, we screened a collection of epiphytic
bacteria for antagonistic activity towards known pathogens of D.
pulchra. While antagonistic bacteria were identified from a range
of taxa, bacteria affiliated with the genera Phaeobacter, Vibrio and
Pseudoalteromonas showed the highest level of antibacterial
activities and were sometimes even antagonistic against multiple
pathogens from different taxa. This result is in line with an earlier
study showing that seaweed-associated bacteria from these
genera are potent antagonists for a range of gram-positive and/
or gram-negative opportunistic pathogens of humans and animals
[38]. Similarly, bacteria isolated from healthy coral mucus
belonging to these taxa were reported to inhibit a broad range

The ISME Journal (2022) 16:378 - 387

of other coral-associated bacteria including the pathogens Vibrio
coralliilyticus and Thallassomonas loyana [63, 64], and a decline of
antimicrobial Vibrio spp. and Pseudoalteromonas spp. within coral
mucus during an ocean warming event coincided with increased
coral bleaching [65]. Together these results further support the
concept that the healthy microbiota of marine hosts possess
pathogen suppressing strains that might mitigate disease in situ.

Inoculation with Pseudoalteromonas sp. PB2-1 and Phaeobacter
sp. BS52 resulted in reduced levels of bleaching disease in D.
pulchra upon pathogen challenge. There are several reports of the
use of Pseudoalteromonas strains as potential probiotics in the
aquaculture industry [66-68], including recent evidence suggest-
ing Pseudoalteromonas species protect the red alga Agarophyton
vermiculophyllum from tip bleaching [13]. Phaeobacter spp. are
frequently isolated from marine aquaculture facilities, with studies
demonstrating reduced pathogen loads and improved survival of
pathogen challenged hosts, such as molluscs and fish larvae
through the addition of selected Phaeobacter spp. to aquaculture
tanks [69-74].

The ability to establish itself within a host microbiota is an
important quality of a successful probiotic [75, 76]. Microbiome
analysis of D. pulchra individuals after inoculation showed a significant
increase in the relative abundances of Phaeobacter sp. BS52,
demonstrating a successful bacterial delivery. It is noteworthy that
sequences identical to Phaeobacter sp. BS52 were also detected
(albeit in lower abundances) in uninoculated samples. This observa-
tion not only provides further support that Phaeobacter sp. BS52 is a
naturally occurring member of D. pulchra’s microbiota, but also
explains the successful establishment of this strain in the algal-
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Fig. 4 Two bacterial species that had significantly different
relative abundances in their bacterial communities (based on
sequencing the 16S rRNA gene V3-4 regions) associated with
Delisea pulchra of different treatments. The x-axes show the
relative abundance of species: a Alteromonas alba (Family: Alter-
omonadaceae) and b Cobetia marina (Family: Halomonadaceae). The
y-axes show the treatments: D. pulchra samples are treated with
either AD1 (n=9), BS52 + AD1 (n=10), BS23 + AD1 (n=9), BS52
(n=10), BS23 (n =8) or the Br-ASW as Control (n=6) from three
independent replicate experiments (see Table S6 for detailed
replication information). The cross represents the mean value. A
vertical reference line is drawn to indicate the zero relative
abundance (i.e. absence). The statistical differences (p <0.05)
between single strain treatments (pathogen or test strain only)
and the control are shown by a lowercase letter ‘a; while difference
between the test strain+pathogen and the pathogen only
treatments is denoted by an uppercase ‘A’ (for details see Table S11).

associated microbial community. These results are consistent with
observations based on other marine systems, e.g. in turbot larvae,
microalgae and copepod nauplii [77], diatoms [78], and coccolitho-
phores [79], where Phaeobacter spp. were strong natural niche
competitors and could rapidly reach high relative abundances during
artificial manipulation of the host microbiota.

However probiotic establishment is not always successful in
marine systems. For example, despite being recognised as native
to the host, increased relative abundances were not observed
after the delivery of strains of Pseudoalteromonas sp., Halomonas
taeanensis [34], Acinetobacter sp. [33], or Halobacteriovorax sp. [80]

SPRINGER NATURE

for corals. The fact that members of genus Phaeobacter have been
repeatedly identified as potent antagonists and that they can be
stably maintained within the host microbiota, suggests that they
function as natural probiotics in marine systems. However, two
strains phylogenetically closely related to Phaeobacter sp. BS52,
namely Phaeobacter sp. BS23 and BS34, displayed no or only
moderate protection (Fig. 3). Moreover, the Phaeobacter gallae-
ciensis LSS9 has been previously characterised as an opportunistic
pathogen of D. pulchra [20]. These observations demonstrate that
disease protective effects observed for the genus Phaeobacter very
much depend on the species or even the specific strain.
Differences in protective properties were also found in Phaeo-
bacter strains when investigated for their potential as a probiotic
for cod larvae. Specifically, D'Alvise et al. [81] challenged cod
larvae with the pathogen Vibrio anguillarum and found that
Phaeobacter gallaeciensis BS107 and Phaeobacter sp. M23-3.1
could reduce larval mortality, whereas a related strain Phaeobacter
sp. 27-4 could not. Production of tropodithietic acid (TDA), which
is known for its wide spectrum of inhibitory activity towards
common marine pathogens [69, 73, 82], has previously been
suggested as a contributing factor to strain difference in the
protective traits of Phaeobacter species [83-86].

However, production of this antibiotic alone is unlikely to be
the sole contributor to disease protection in D. pulchra, as both
the protective (BS52) and the non-protective (BS23) Phaeobacter
strains are capable of TDA synthesis (Supplementary informa-
tion). Moreover, while Phaeobacter sp. BS52 directly inhibited
the growth of Aquimarina sp. AD1 in an in vitro bioassay, we did
not find evidence for a negative correlation in their relative
abundances in vivo infection experiments, as would have been
expected if direct antagonism occurred. One possible explana-
tion for such observations could be that rather than destroying
the pathogens, the protective strains might inhibit the activity
or virulence of the pathogens—as has been suggested as one of
the common modes of action for probiotics [87]. For example,
Zhao et al. [88] reported that the oyster probiotics Phaeobacter
inhibens S4Sm released secondary metabolites that hijack the
ability of Vibrio coralliilyticus to communicate via quorum
sensing, thereby downregulating transcription of genes
involved in virulence.

A second possibility of disease protection is that the presence
of Phaeobacter sp. BS52 influences other members of the
macroalgal microbiota to the extent that it mitigates the
dysbiotic effect of a pathogen. We found that the microbiota
associated with D. pulchra individuals inoculated with Phaeo-
bacter sp. BS52 and the pathogen Aquimarina sp. AD1 closely
resembled those of the uninoculated samples and both were
distinct from those exposed only to the pathogen. Specifically,
co-inoculation with Phaeobacter sp. BS52 and the pathogen AD1
(BS52 + AD1) resulted in a significant increase in the relative
abundances of multiple OTUs corresponding to Alteromonas
alba [58] compared to the pathogen (AD1) only treatment,
reaching levels similar to that of the uninoculated controls.
Members of the genus Alteromonas have been reported as
potential probiotics for several mariculture hosts and corals, as
they have antibacterial and quorum quenching activities [89],
including activity against pathogens like Vibrio anguillarum,
V. harveyi and Aeromonas hydrophilla [90-92]. It is possible that
A. alba plays a similar beneficial role for D. pulchra, and that the
treatment with Phaeobacter sp. BS52 enhances its growth and
thus indirectly reduces the pathogenic effects of Aquimarina sp.
AD1. Conversely, compared to the pathogen-only treatment, a
decrease in the relative abundance of three OTUs corresponding
to Cobetia marina was observed when Phaeobacter sp. BS52 was
inoculated in the presence of the pathogen (BS52 -+ AD1).
Strains of C. marina have been reported to be associated with
disease of the red alga Porphyra spp. [93]. C. marina strains are
also dominant members of the microbial community associated
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with the degradation of the brown alga Fucus evanescens [94],
and while they appear not to directly hydrolyse this alga’s
polysaccharides, they benefit from mono- and disaccharides
released after the initial degradation [94, 95]. Given these
previous observations, C. marina might have a role in accelerat-
ing disease progression by opportunistically scavenging on
sugars or nutrients released from D. pulchra that has
been impacted by the infection with Aquimarina sp. AD1, which
is in line with the higher relative abundance of C. marina in the
presence of AD1 compared to the control.

While it is possible that changes in the relative abundances of A.
alba and C. marina are directly related to the action of the pathogen
Aquimarina sp. AD1, our results show that the addition of
Phaeobacter sp. BS52 can mitigate the microbiota shifts associated
with AD1. Given previous work has suggested that disease of D.
pulchra is partly a result of bacterial dysbiosis [9, 12], we propose
that through maintaining Alteromonas alba, and through preventing
the proliferation of the saprophyte C. marina, Phaeobacter sp. BS52
contributes (directly or indirectly) to the stability of the D. pulchra
microbiota thus protecting it from the bleaching disease (Fig. 5).
Such a role of probiotics on the homeostasis of host microbiota,
through directly or indirectly reducing the negative effect of biotic/
abiotic stress have also been reported in terrestrial plants [96] and
humans [97] and the work here further expands these concepts to
the marine environment.
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