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Abstract

There is a high co-occurrence of risky substance use among adults with traumatic brain injury
(TBI), although it is unknown if the neurologic sequelae of TBI can promote this behavior. We
propose that to conclude that TBI can cause risky substance use, it must be determined that TBI
precedes risky substance use, that confounders with the potential to increase the likelihood of both
TBI and risky substance use must be ruled out, and that there must be a plausible mechanism

of action. In this review, we address these factors by providing an overview of key clinical and
preclinical studies and list plausible mechanisms by which TBI could increase risky substance use.
Human and animal studies have identified an association between TBI and risky substance use,
although the strength of this association varies. Factors that may limit detection of this relationship
include differential variability due to substance, sex, age of injury, and confounders that may
influence the likelihood of both TBI and risky substance use. We propose possible mechanisms by
which TBI could increase substance use that include damage-associated neuroplasticity, chronic
changes in neuroimmune signaling, and TBI-associated alterations in brain networks.

Given the high co-occurrence of risky substance use and/or substance use disorders (SUDs)
among adults with traumatic brain injury (TBI) (1-3), investigators have asked whether

TBI causes SUD and/or SUD causes TBI. Several reviews have concluded that at-risk
substance use is more likely to cause TBI than TBI is to cause SUD (4-6), while others

have concluded that there is insufficient evidence to make definitive conclusions about the
directionality of causal influences (1,2). There is little doubt that engaging in risky substance
use can cause TBI. Intoxication, whether by alcohol, cannabis, or other drugs, increases the
likelihood of injury, which can include a TBI (7). At least 2 studies have found that among
those treated for an injury in an emergency department, the greater the alcohol intoxication,
the more likely the injury included a TBI (8,9).
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The more nuanced question is whether TBI causes risky substance use. Some authors have
cited the tendency for TBI cohorts to reduce use immediately after injury, especially if the
injury is associated with use (10-12), as evidence that TBI does not cause risky substance
use. However, several studies have shown that most people who used alcohol before TBI
eventually return to pre-injury patterns of use unless a medical condition precludes use
(11-13). The logic of this argument is further undermined by what Corrigan et al. have
called the chicken or the egg problem (14). The difficulty in examining a causal relationship
between TBI and SUD is highly affected by the injury used to anchor the question. Previous
investigators who concluded that SUD causes TBI but TBI does not cause SUD anchored
their analyses in studies that used samples of patients in adult trauma or acute rehabilitation
units. A large percentage of participants in these samples had histories of at-risk substance
use or a diagnosable SUD that preceded their injury. However, these studies did not
determine whether the TBI that led to their inclusion in the cohort was their first TBI, which
ignores whether one or more TBIs earlier in life may have influenced their development of
risky use behaviors. Several studies support the conclusion that childhood TBI could lead to
the development of adolescent or adult at-risk substance use (15-19); thus, the conclusion
that causality is only in the direction of substance use causing TBI appears flawed.

In this review, we will explore this more nuanced direction of causality—can TBI cause

the development of at-risk substance use and/or SUD? To allow a focused consideration of
this question, we will not address whether a TBI can make preexisting substance use worse.
To confidently conclude that TBI is the cause for the development of at-risk substance use
and/or SUD would require establishment of several relationships among these conditions.
First, most obviously, the TBI would need to precede the development of the problematic
substance use. Second, the relationship between TBI and problematic substance use could
not be due to a confounder that precedes both and causes each. Confounders that have

been hypothesized include childhood exposures (e.g., parental attributes, parenting, adverse
childhood experiences, socioeconomic status, community risk factors) and a behavioral
phenotype for risk taking (e.g., a personality trait that could lead to both TBI and
problematic substance use). Finally, and perhaps most challenging, to establish causality,
there would need to be a mechanism of action that provides a plausible explanation for how
TBI could do so. In the following sections, we will explore first human, then preclinical
evidence for the conditions required to conclude causality (summarized in Tables 1 and

2, respectively). Evidence from these two sources of findings is uneven, and surprisingly,
despite the greater control afforded via preclinical studies, unequivocal evidence to inform
this question is not easily derived.

HUMAN STUDIES CONTRIBUTING TO CAUSALITY

Human studies that allow scrutiny of a causal relationship between TBI and problematic
substance use have been limited to examining the temporal onset and presence of
confounders. These studies have used three methods: 1) eliciting lifetime exposure in TBI
cohorts; 2) population surveys examining the association of the two conditions; and 3) birth
cohorts examining both onset and association. TBI cohorts in which lifetime exposure was
studied have included the TBI model systems (20), Transforming Research and Clinical
Knowledge in Traumatic Brain Injury (TRACK-TBI) (21), and Army Study to Assess Risk
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and Resilience in Servicemembers (STARRS) 22). Lifetime TBI identification has been
done with standardized methods of self-report, and substance use is typically self-reported
past-month behavior. Population surveys have used a variety of methods for detecting both
TBI and substance use, with the former varying from single-item elicitation [i.e., New
Haven, Connecticut (23); Southeast Australia (24); Ontario, Canada (25,26)] to protocols
based on standardized methods of retrospective self-report [i.e., Colorado (27), Ohio (28,29),
North Carolina (30)]. Only a small number of birth cohort studies have allowed examination
of the onset and development of TBI and at-risk substance use, including those conducted

in Christchurch, New Zealand (25); Northern Finland (31-33); and Avon, United Kingdom
(34). TBI identification is typically based on medical records; substance use has been both
medically documented or self-reported recent behavior. Each of these methodologies has
strengths and weaknesses for examining the temporal onset and presence of confounders, as
shown in Box S1.

Temporal Onset

Several studies support a relationship between childhood TBI and later adolescent or adult
at-risk substance use (20-22). Studies in TBI cohorts that capture lifetime history of TBI
have found that earlier life injuries are more common among those with alcohol use
problems, although temporal ordering is not possible. Studies in 2 U.S. states did not find
that children injured earlier in life (before age 15 and before age 18 years) than persons
injured after those ages were not more likely to engage in risky alcohol use as adults (28,30).
In contrast, Corrigan et al. found that adults who had experienced a mild TBI with loss of
consciousness before age 20 were more likely to engage in binge drinking than those who
had a first mild TBI with loss of consciousness at an older age (29). This risk was largely
due to a first TBI being incurred both at 10 to 14 and 15 to 19 years. These two groups were
equally likely to engage in adult binge drinking. Indeed, had either 15 or 18 years been used
as the cut point for age at first TBI, as was done in the two other state population studies,

the difference would not have been significant. While any adolescent onset of TBI seems to
increase the likelihood of problem alcohol use in adulthood, unfortunately, it is not definitive
that TBI preceded the problematic use.

The Christchurch birth cohort study found that children hospitalized with a mild TBI before
the age of 6 were more likely to develop alcohol problems in adolescence than children
with no TBI or those with a mild TBI that did not require hospitalization (35). The birth
cohort study in Avon found that TBIs occurring before age 17 were associated with problem
alcohol consumption at age 17 (34). The Northern Finland birth cohort study did not find

a difference in heavy drinking for those with or without childhood TBI; however, those
children who incurred a TBI before age 12 initiated heavy drinking 6 years earlier than
those with a first TBI at 12 to 15 years old (33). Note that the Christchurch results would
appear to un-equivocally support that TBI preceded problematic substance use, but the Avon
cohort is more ambiguous due to the possibility that alcohol consumption could begin in
early adolescence.
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Potential Confounders

Studies using the Northern Finland birth cohort reported multiple risk factors associated
with incurring a TBI, including that if parents misused alcohol, there was a twofold greater
chance of childhood TBI (31), and that a first TBI after age 12 that occurred while drinking
alcohol resulted in a fourfold greater risk of repeat TBI by age 34 (32). Findings noted
above for the Christchurch and Avon birth cohort studies were significant after controlling
for multiple demographic, parental, and developmental characteristics (34,35). The Avon
birth cohort studies also compared those with a TBI to an orthopedic injury control

group intended to represent a behavioral phenotype for risk taking. While the association
with problem alcohol use was significantly higher in the orthopedic injury group than

the uninjured comparison group, the TBI group was still significantly greater than the
orthopedic control group. Their findings were specific to alcohol because the TBI and
orthopedic injury groups did not differ significantly in their likelihood of smoking either
cannabis or nicotine.

These few studies may lend support for the effect of TBI not being due to influences

such as parental attributes, parenting, or socioeconomic status. Influences from adverse
childhood experiences or community characteristics have not been explored. The single
study that investigated a risk-taking behavioral phenotype still found an additional effect of
TBI on drinking at age 17 (34). This finding is perhaps strengthened by risk taking having
equivalent risk for the likelihood of cannabis and tobacco use. Still, it is a single study.

In summary, from human studies, a significant association is frequently found between TBI
and at-risk substance use and/or SUD. These studies have been largely limited to alcohol.
The strength of association observed may be small, thus contributing to variation in findings.
The ability to detect the relationship may be masked by variations in manifestation of the
influence of TBI, for instance, age at injury or context of the injury (e.g., whether it occurs
during a period of stress). The utility of the human literature for establishing a causal
relationship between TBI and risky substance use is specifically limited by uncertainty
about temporal onset during adolescence. Without specificity about the age at injury and
the age at initiation and/or risky use of substances, temporality will be difficult to ascertain.
Finally, the study of confounders is limited by the ability to operationalize constructs such
as adverse childhood experiences or behavioral phenotypes in population-based cohorts.
However, studies that have controlled for characteristics of parents, parenting, and the
home environment seem to consistently suggest that these factors are unlikely sources of
confound.

PRECLINICAL STUDIES CONTRIBUTING TO CAUSALITY

Temporal Onset

An advantage of preclinical research is that temporal ordering of TBI and exposure to

drugs of abuse is controlled. To date, most preclinical research has focused on modeling the
question of whether TBI can increase risky drug use (see Box S2 for commonly used models
of drug reward/reinforcement; see Table 2 for a summary of experimental findings).
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Early studies on the effects of TBI on subsequent drug use focused on alcohol. In mice,
experimental TBI led to reduced alcohol intake within the first 2 weeks following injury
(36,37). In rats, blast TBI resulted in similar alcohol intake during a 7-week course of
two-bottle choice but divergent responses on a final 1-hour session (38). Similar results were
found in mice after repeated blast TBI: the proportion of daily alcohol consumed in the first
2 hours was higher in injured mice (39). Weil and colleagues demonstrated that adolescent
mice had elevated alcohol drinking 1 week after TBI (40). A subsequent study found that
females but not males had higher alcohol consumption and conditioned place preference
(CPP) (41).

Adolescent, but not adult, TBI resulted in elevated cocaine CPP in male mice (42-44), but
female mice showed differential effects based on estrus status. Mice in met- or diestrus at
the time of injury had significantly elevated cocaine CPP, while those in proestrus or estrus
had no change (45). Moderate to severe frontal TBI increased cocaine self-administration
(46), while mild TBI found no difference in self-administration, extinction, or cue- or
cocaine-primed induced reinstatement (47). Repeated blast resulted in similar levels of
oxycodone self-administration, but subsequent drug seeking was elevated in the injured
group (48). Thus, there are several examples of increased susceptibility for substance use in
rodent models, but outcomes differ based on factors such as injury mechanism and severity,
age at the time of injury, the drug studied, and time after injury.

Potential Confounders

Although preclinical studies can be designed to reduce the impact of confounding variables,
these may not always be considered. Unknown individual differences that are present prior
to experiment onset could independently contribute to both TBI recovery and addiction-
related outcomes. Many studies use outbred rats [e.g., (46,48)] or mice [e.g., (40)], and

this genetic variability may explain individual differences in drug reward/reinforcement
following TBI (38,46). Similarly, individual differences in traits such as impulsivity exist

in experimental animals and, similar to humans, can explain differences in addiction-
related behaviors (49-51). Consideration of these differences and testing models of human
confounders [e.g., models of early-life adversity (52,53)] will be important to better
understand human variability in the relationship between TBI and risky substance use.

Plausible Mechanisms of Action

TBI induces myriad neurochemical changes, the nature of which is affected by factors
including injury mechanism and severity, genetics, age, and sex. This section will focus

on biological effects of TBI that are linked with neuroplasticity and describe plausible
mechanisms by which these effects could increase addiction liability (summarized in Table
3). The reader is referred to (54-57) for more comprehensive reviews on the neurochemical
sequelae of TBI. For simplicity, we will discuss these mechanisms in 2 broad timeframes:
acute (within the first few days of injury) and chronic (after the first few days). The acute
stage will be discussed in terms of the initial effects of injury that can set the stage for
enduring neuroplasticity relevant to addiction liability, and the chronic stage will present
evidence that persistent sequelae could influence physiological responses to drugs of abuse
and addiction liability.
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Acute Effects: Damage-Associated Molecular Pattern Mediated Increases in
CaZ*-Permeable AMPA Receptors.—Primary mechanisms of TBI involve impact-
associated forces, which stretch tissue and shear axons (54). At impact, mechanical
deformation and/or mechanoporation leads to ion flux that ultimately leads to profound
membrane depolarization of neurons (54,58,59). This depolarization promotes neuronal
excitotoxicity and necrosis, which releases damage-associated molecular patterns (DAMPS)
(59-61). DAMPs promote activation of astrocytes and microglia (collectively referred to

as gliosis), resulting in release of cytokines and chemokines (54,61). DAMP-associated
TLRA4 (toll-like receptor 4) signaling triggers robust synaptic plasticity, increasing synaptic
levels of Ca2*-permeable AMPA receptors (CP-AMPARS) and increasing Ca2* conductance
through NMDA receptors (62). Both experimental TBI and injury to cultured neurons were
found to elevate synaptic CP-AMPARSs (63,64). In rodents, drugs of abuse also increase
synaptic CP-AMPARSs in areas of the brain involved in drug seeking, including the ventral
tegmental area (VTA), nucleus accumbens, and prefrontal cortex (PFC), and these effects
often persist for weeks or months (65,66). Elevated CP-AMPAR expression is observed

in the VTA after exposure to morphine, cocaine, ethanol, and cannabis (65). CP-AMPARs
are also increased in the nucleus accumbens after cocaine withdrawal, and reversal of this
phenomenon is sufficient to reduce drug seeking (67,68). Thus, the DAMP—TLR4—CP-
AMPAR cascade is one plausible mechanism by which TBI could promote subsequent
substance use.

Acute Effects: Cytokine Regulation of Neuronal Transmission.—Glial and
peripheral cytokines can influence synaptic plasticity and have been linked to addiction
liability. Interleukin 1B (IL-1p) modulates neuronal ion flux via several mechanisms (69,70),
and chronic IL-6 downregulates metabotropic glutamate 2/3 receptors (mGIuR2/3) (71).
Reduction of mGIuR2/3 function in mesocorticolimbic brain regions is also observed
following exposure to nicotine, cocaine, or alcohol, and treatment with mGIluR2/3 agonists
or positive modulators reduces the reinforcing effects and seeking of drugs (72—76). Tumor
necrosis factor a strongly increases the balance of excitatory/inhibitory transmission by
increasing cell surface CP-AMPARs and internalizing GABA (gamma-aminobutyric acid
A) receptors (77). Although cytokine responses occur acutely following injury, there is
extensive evidence for prolonged elevations in excitatory neurotransmission following
immune challenge, including susceptibility to seizures (78-80). Persistent increases in
neuronal excitability and seizure susceptibility are also common following TBI (81,82).
Thus, IL-6-associated reduction of mGluR2/3 and tumor necrosis factor a—associated
elevation of CP-AMPARSs are plausible mechanisms by which TBI-associated cytokine
signaling could promote subsequent substance use.

Chronic Effects.—Postmortem and neuroimaging studies demonstrate gliosis that persists
months or years after injury (55,57), and elevated levels of IL-1p, major histocompatibility
complex class I, and IL-6 have been reported several months after experimental TBI
(55,57). Drug use has been linked to chronic gliosis. Alcohol (83), cocaine (84,85),
methamphetamine (86), and opioids (87,88) engage innate immune signaling, and alcohol
and methamphetamine can also induce gliosis via other mechanisms, such as the generation
of reactive oxygen species (89,90). Methamphetamine users had elevated binding of the
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microglial activation marker (R)-[*1C]-PK11195, which was inversely proportional to
abstinence duration (91). Similarly, upregulation of immune-related genes is a consistent
finding in postmortem tissue from chronic alcohol users (92), and gliosis is prominent in
animal studies of alcohol and opioid self-administration (92-94).

Chronic Effects: Microglial Priming—Implications for Drug Exposure, Craving,
and Relapse.—TBI can lead to microglial priming, where the cells are hyperresponsive
to subsequent immune challenge, even at distal time points (95-97). It is plausible that
TBI-associated priming could also affect immune responses to drugs of abuse. Morphine
and other opioids prolong recovery from nerve injury (98,99), and this has been proposed

to be due to injury-induced priming of spinal microglia (100). Neuroimmune activation

has previously been proposed to create the biology of addiction (101). In the context of
TBI, injury-associated priming may contribute to addiction liability by altering biological
responses to substances and triggers of drug craving: re-exposure to the drug, stress, and
drug-associated cues (102-105).

Prenatal immune activation increased drug-primed reinstatement to methamphetamine
seeking and CPP for amphetamine (106,107), and adult immune activation increased alcohol
drinking (108,109). These data suggest that immune activation primed the response to these
substances of abuse in a manner consistent with greater risk of risky substance use. In

a model of comorbid TBI and cocaine use, cocaine intake was positively correlated with
neuroinflammatory markers in the frontal cortex (46). Drug exposure itself can also prime
neuroimmune responses. A history of cocaine primes the cocaine-induced increase in IL-1p,
nuclear factor-xB, and CD11b messenger RNA in the VTA, and blockade of IL-1 receptors
in the VTA suppresses cocaine-primed reinstatement of drug seeking (110). Similarly, rats
exposed to morphine in adolescence had an exaggerated immune response to morphine-
elevated morphine CPP in adulthood (111). The glial modulator ibudilast given during
adolescent morphine exposure blocked the later increase in morphine CPP, suggesting that
gliosis is a critical mediator of the effect (111). Supporting the notion that a TBI-primed
response to drug can influence subsequent drug seeking, the steroidal anti-inflammatory
drug dexamethasone reduced the TBI-associated elevation in cocaine CPP without affecting
CPP in noninjured animals (43). Similarly, the glial modulator minocycline reduced TBI-
associated increase in voluntary alcohol consumption but had no effect in uninjured animals
(40). Complementing these studies that demonstrate the necessity of neuroimmune signaling
for drug seeking, intra-VTA injection of the TLR4 agonist lipopolysaccharide was found to
be sufficient to reinstate cocaine seeking (110).

Stress is the most-reported trigger of drug craving for several drugs of abuse (112). Stress
triggers a neuroimmune response and has been proposed to act as a potential trigger for
microglial priming (113,114). In mice, early-life stress increased central immune responses
to cocaine (115), suggesting that stress-associated microglial priming is relevant to the
immunologic response to drugs of abuse. Preclinical studies support the notion that stress-
induced immune responses are important in drug seeking and craving: ibudilast blocked
stress-induced reinstatement of methamphetamine seeking (116).
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Exposure to drug cues (e.g., places and things associated with substance use) is also a
powerful trigger of drug craving (117), and there is evidence of conditioned immunologic
effects of drug-associated cues. Exposure to cocaine-associated cues elevated plasma tumor
necrosis factor a (118), and heroin seeking evoked by exposure to the drug environment was
suppressed by the non-opioid TLR4 antagonist (+)-naltrexone (119).

Chronic Effects: Changes in Function of Brain Networks.—Preclinical studies
have identified TBI-associated increased network excitability in the cortex that emerges over
time, and increased excitatory and decreased inhibitory synaptic inputs have been identified
as putative mechanisms of increased excitability of pyramidal neurons (120-122). A rodent
model of comorbid TBI and oxycodone abuse identified interactive effects of TBI and drug
exposure on increasing widespread connectivity (123), a phenomenon associated with worse
TBI outcomes (124,125) and abstinence from prior heroin use (126). The PFC is a region
that is highly vulnerable to injury in TBI (127), and the same study found that structural and
functional outcomes in the PFC correlated with drug seeking (123).

DISCUSSION

The relationship between TBI and risky substance use is difficult to study, and there is
evidence for each to increase the incidence of the other (Figure 1). We have summarized
human and animal studies that reflect on the question, does TBI cause risky substance use or
SUD? However, there is not sufficient evidence to definitively conclude that TBI can cause
such use. In general, preclinical studies outnumber human investigations. Both human and
animal studies have identified an association between TBI and risky substance use, although
the strength of this association varies. This variability may imply a weak signal or may be
due to methodological limitations.

A weak signal also may be due to specific characteristics that modify the presence or
strength of relationship. For instance, the relationship between TBI and substance use may
vary by the substance studied. Human and animal studies have been almost exclusively
about alcohol, although recent studies include other substances. Particularly pertinent

may be the sex of the organism, as well as the developmental stage when injury and/or
substances are introduced. There are both human and animal studies that suggest that TBI
in adolescence shows a greater association to substance use proclivity. It should be noted
that prior substance use itself may alter the ability of TBI to increase subsequent risky drug
use. A plethora of human studies indicate that pre-injury misuse of substances increases the
likelihood of substance misuse after. Similarly, male (but not female) rats with a history of
alcohol drinking were found to increase intake following injury (128-130).

Ruling out confounding effects has been more difficult. Human studies controlling for
parental and household factors suggest that these factors may not be a source of confound. A
human population study using uninjured sibling control subjects to specifically address risky
substance use would be a useful addition to these studies. It has been more difficult to rule
out personality traits that may be sources of confound. Risk taking, conduct disorders, and
childhood traumatization have all been posited. While animal studies could be designed to
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test such factors, we are not aware of any that have examined these factors in relationship to
the effects of TBI on drug reward or seeking.

Finally, there are several plausible mechanisms of action for TBI to cause a predisposition
for risky substance use. Acute and chronic effects of TBI can result in increased CP-
AMPARSs and decreased mGIuR2/3 expression, hallmarks of prior drug exposure. Emerging
evidence suggests that microglial priming is a strong candidate for TBI to alter responses
to substances in a way that promotes future use. Although research on the immunologic
interactions between TBI and drug use is still in its infancy, the therapeutic potential of
neuroimmune modulation for the treatment of risky substance use (independent of brain
injury) is under investigation (131,132). Another plausible mechanism is by altering the
function of brain networks, especially those involving the PFC. The PFC is particularly
vulnerable to TBI, and clinical and preclinical studies identify it as a key node in drug
craving and seeking (133-135).

The question of whether TBI can cause risky substance use is important for human health:
knowledge of prior TBI may be used to guide personalized substance use treatment (136),
and there is evidence that prior TBI may change the therapeutic approach for SUD treatment
in individuals with comorbid TBI [e.g., dexamethasone reduced cocaine CPP only in TBI
animals (43)]. To the extent that childhood TBI may predispose to adult risky substance

use, secondary prevention to reduce the likelihood of that outcome could become a target
for future research, not unlike adverse childhood experience (137). Future research would
benefit from population studies specifically designed to address this question, as well as
preclinical studies to test potential therapeutics for substance use in animals with and
without brain injuries.

Supplementary Material
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