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ABSTRACT

Limiting postprandial glycemic response
(PPGR) is an important intervention in reducing
the risk of chronic metabolic diseases and has
been shown to impart significant health bene-
fits in people with elevated levels of blood
sugar. In this study, we collected gut micro-
biome activity data by assessing the metatran-
scriptome, and we measured the glycemic
responses of 550 adults who consumed more
than 30,000 meals, collectively, from omnivore
or vegetarian/gluten-free diets. We demonstrate
that gut microbiome activity, anthropometric
factors, and food macronutrients modulate
individual variation in glycemic response. We
employ two predictive models, including a
mixed-effects linear regression model (R = 0.77)
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and a gradient boosting machine model
(Rtrain = 0~80/R2train = 0.64; Riest = 0-64/R2test =
0.40), which demonstrate variation in PPGR
between individuals when ingesting the same
foods. All features in the final mixed-effects
linear regression model were significant
(p < 0.05) except for two features which were
retained as suggestive: glutamine production
pathways (p=0.08) and the interaction
between tyrosine metabolizers and carbs
(p = 0.06). We introduce molecular functions as
features in these two models, aggregated from
microbial activity data, and show their statisti-
cally significant contributions to glycemic con-
trol. In summary, we demonstrate for the first
time that metatranscriptomic activity of the gut
microbiome is correlated with PPGR among
adults.

PLAIN LANGUAGE SUMMARY

Blood sugar dysregulation is caused by various
underlying conditions, including type 2 dia-
betes, and this may lead to extended periods of
hypoglycemia or hyperglycemia, which can be
harmful or deadly. Clinically, glycemic control
is a primary therapeutic target for dysglycemia,
and food and nutrition are frequent interven-
tions used to reduce postprandial blood glucose
excursions. Primary determinants of
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postprandial glycemic response (PPGR) include
dietary carbohydrates, individual phenotypes,
and individual molecular characteristics which
include the gut microbiome. Typical investiga-
tions of gut microbiomes depend on analysis
methods which have poor taxonomic resolu-
tion, cannot identify certain microorganisms,
and are prone to errors. In this study, each RNA
molecule was identified and counted, allowing
quantitative strain-level taxonomic classifica-
tion and molecular pathway analysis. The pri-
mary goal of the study was to assess the impact
of microbial functional activity on PPGR. The
study was conducted in the USA and involved a
multiethnic population of healthy adults with
HbAlc levels below 6.5. All participants
received 14-day omnivore diets or vegetarian/
gluten-free diets, depending on nutritional
requirements (omnivore diets include meat
while vegetarian/gluten-free diets exclude both
gluten and meat). Over this timeframe, blood
glucose levels were measured in 15-min inter-
vals, 24h per day, capturing postprandial
responses for more than 27,000 meals, includ-
ing more than 18,000 provided meals which
spanned a wide range of foods and macronu-
trient characteristics. Computational modeling
demonstrated the statistical significance of all
features and identified new features which may
be relevant to glycemic control. These results
show, for the first time, that a person’s glycemic
response depends on individual traits, including
both their anthropometrics and their gut
metatranscriptome, representing the activity of
gut microbiomes.

Keywords: Postprandial blood glucose; Gut

microbiome; Metatranscriptome;  Glycemic
response; Machine learning; Artificial
intelligence

Key Summary Points

Why carry out this study?

Controlling postprandial glycemic
response (PPGR) is a crucial part of
mitigating the current epidemic of
metabolic diseases including obesity,
type 2 diabetes, hypertension, as well as
cardiovascular and liver diseases.

Tools facilitating the mass adoption of
dietary choices to maintain normal
glycemic levels would be an important
step towards halting the hyperglycemia
epidemic. Previous studies have
considered metagenomic data, and ours is
the first metatranscriptomic study.

The primary goal of this study was to
determine the impact of microbial gene
expression (at the functional level) on
PPGR.

What was learned from the study?

We demonstrate for the first time that
metatranscriptomic activity of the gut
microbiome is correlated with PPGR
among adults.

Our study identifies new microbial
features, linking molecular pathways to
glycemic control, including the fucose
metabolism pathway and the
indoleacetate production pathways.

INTRODUCTION

From a public health perspective, preventing
elevated levels of blood glucose is a crucial part
of mitigating the current epidemic of metabolic
diseases including obesity, type 2 diabetes,
hypertension, cardiovascular and liver diseases.
Across the US population, 9.4% of people are
diabetic and 26% are prediabetic, and this
points to a large disease burden with associated
healthcare costs [1]. Daily food choices play the
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largest role in determining overall blood glu-
cose levels, and thus risk for various diseases
[2-5]. Other factors affecting food choices, and
thus risk for various diseases like diabetes,
include socioeconomic background and eth-
nicity [6, 7]. Affordable and accessible tools
facilitating the mass adoption of dietary choices
to maintain normal glycemic levels would be an
important step towards halting the hyper-
glycemia epidemic.

Typical dietary recommendations and nutri-
tional information largely focus on food char-
acteristics alone, such as calorie and
carbohydrate content. However, there is
increasing evidence that glycemic response to
the same foods varies significantly between
individuals. Recent studies [8, 9] have shown
that postprandial glycemic response (PPGR) is
driven not only by the glycemic index of food
but also by individual phenotypes and molec-
ular characteristics, including the gut micro-
biome, which may have a role in energy
metabolism and insulin regulation [10]. These
studies aligned with existing research and
demonstrated an ability to predict PPGR
through associations with standardized meal
PPGRs (specifically, KEGG pathways [11] which
represented: chemotaxis and flagellar assembly;
ABC transporters; and typell and type III
secretion systems). They also reported that diets
high in positively charged amino acids were
associated with high PPGR whereas diets high
in negatively charged amino acids were associ-
ated with low PPGR. These studies evaluated
PPGR in the context of specific populations
(Israeli and US Midwestern), they implemented
a small number of standardized meals, and their
conclusions depended on 16S or metagenomic
data from the gut microbiome. Often, gut
microbiome analyses like these depend on 16S
rRNA gene sequencing, but this method pro-
vides poor taxonomic resolution of micro-
biomes which typically contain many strains
with very diverse gene content [12]. In addition,
metagenomic methods are unable to identify
some microorganisms (e.g., RNA viruses) and
can only predict gene expression based on the
gene content, which can be highly erroneous
[13]. Metatranscriptomic methods offer a com-
prehensive lens of the gut microbiome, with a

specific focus on genes that are actively tran-
scribed. However, metatranscriptomics has not
been widely used in clinical studies because of
challenges posed by RNA instability, the need to
remove diverse ribosomal RNAs in stool sam-
ples, and complex bioinformatic analyses.

In this study, we demonstrate that glycemic
response depends on individual differences,
including gut microbiome activity (i.e., meta-
transcriptomics of the gut microbiome) as well
as anthropometrics. We cultivate a multiethnic
study cohort from multiple study sites across
the USA. Our diet design includes 104 unique
pre-designed meals from across two distinct diet
types—omnivore (which includes meat) and
vegetarian/gluten-free (which excludes both
gluten and meat). For our primary goal, we
sought to determine the impact of microbial
gene expression on PPGR, which we report in
terms of functional microbiome features,
including KEGG gene functional orthologs (or
“KOs”) [11] and microbial taxonomy. We
employ metatranscriptomics [14], which
directly measures RNA molecules and provides
the primary sequence and read counts for each
transcript [15-17]. The metatranscriptomics
approach we employ measures the complete set
of gene transcripts (RNA) from a sample, and in
microbiome samples, this technique facilitates
quantitative strain-level classification and
functional pathway analysis of microbes, which
we accomplish through sequence alignments to
publicly available reference databases. We
aggregate collections of these microbial path-
way features into curated scores, capturing
functional characteristics as described in the
literature [18]. Gut microbiome activity is
measured by metatranscriptomics and includes
all curated microbiome features and scores.
With the goal of being directly interpretable, we
provide a concise statistical explanation that
links PPGR to nutrients, phenotypes, and gut
microbiome activity, through a mixed-effects
linear regression model. We also present a gra-
dient boosting machine model, optimized for
predictive accuracy. Finally, we identify signifi-
cant functional microbiome features related to
prediction of PPGR, indicating that microbiome
activity affects the processing of carbohydrates
and contributes to variation in baseline blood
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sugar. To our knowledge, this is the first study
to demonstrate the application of gut meta-
transcriptomics in a population-scale dietary
study.

METHODS

As shown in Fig. 1, we recruited 550 adults (66%
female) from the general public through mul-
tiple study sites across the USA, and we tracked
their food intake, sleep, activity, and glycemic
response for up to 2 weeks. Four hundred par-
ticipants were Caucasian, and of the remaining
150 participants, 37% were Asian, 33% were
Hispanic, and 30% were Black or Other. The
study was designed and carried out in accor-
dance with the ethical principles of the Decla-
ration of Helsinki and its later amendments,
and was approved by a federally accredited
institutional review board (IRB; 00011543). All
samples and metadata were obtained from
human subjects at least 18 years old and resid-
ing in the USA at the time of participation. All
study participants consented to participating in
the study. From each participant, we obtained a
stool sample at participation enrollment, as well
as a comprehensive questionnaire describing
their lifestyle, preferences, and health history.
We collected blood glucose measurements over
14 days, every 15 min for 24 h per day, using a
continuous glucose monitor (CGM) sensor that
measures glucose levels within the range of
40-500 mg/dL [19].

Study Definitions

Participants were able to select from an omni-
vore diet (which includes meat) and a vegetar-
ian/gluten-free diet (which excludes both
gluten and meat). There were multiple phases of
the study, which allowed us to design multiple
meal plans for each of the two diets. For
breakfasts, morning snacks, and lunches, all
participants followed one of these two diets,
and these pre-designed meals are referred to as
“provided meals.” All other food (consumed
more than 2.5 h before or after meals) is referred
to as “free meals,” and this includes any other
snacks, beverages, meals, and desserts which

Fig. 1 Study design and population characteristics. a Thep
study cohort had 550 adult participants (66% female).
Each study participant provided a stool sample, filled out
questionnaires, and made an office visit. Then over
14 days, participants consumed pre-designed meals that
were provided, they monitored their blood glucose
response, and they kept a diary of their meals, sleep, and
activity. At the end of the study, all the data streams were
fused, pre-processed, and analyzed as described in this
paper. The following exclusion criteria were used: age <
18; dietary restrictions that would prevent adherence to
any of the study diets; antibiotic use 1 month prior to or
during study; skin disease (e.g., contact dermatitis) that
precludes proper attachment of the CGM; pregnancy;
active neoplastic disease; active neuropsychiatric disorder;
myocardial infarction or cerebrovascular accident in the
6 months prior; pre-diagnosed type I or type II diabetes
mellitus; HbAlc > 6.5; or unwilling/incapable of follow-
ing instructions. b Age distribution with mean of
43.8 years (SD 12.115). ¢ 28% of the study population
had BMI > 25 and 18% had BMI > 30. d 4% of the
study population were pre-diabetic with HbA1c% > 5.7.
e Waist-to-hip ratio distribution with mean of 0.901 (SD
0.076) for men and 0.832 (SD 0.071) for women

were not part of the provided meals. For each
diet, a 14-day meal plan was designed to
broadly cover diverse macronutrient ratios and
randomize their consumption across the time-
line (Tables1 and 2). Fach meal was typified
with “High” (H) and “Low” (L) categorical bins,
and these were assigned by thresholding the
macronutrient values, based on the proportion
of each macronutrient and the daily recom-
mended allowance of that macronutrient. The
characters in each four-letter meal composition
“type” respectively refer to carbs, fiber, protein,
and fat; for example, a meal with “high carbs,
low fiber, high protein, and low fat” was cate-
gorized as “high, low, high, low” (HLHL). In all,
there were 13 of these meal composition types.

Study Meals

As described in Tables 1 and 2, participants were
provided pre-designed breakfasts, snacks, and
lunches (provided meals) over 14 days (day O to
day 13). After lunch, participants were allowed
to eat whatever they wanted (free meals)
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Table 1 Example meals

Description

Type8 (HLLL) Day 3
Day 6
Day 11

TypeS (HHLL) Day 2

Day S
Day 7

Typell (HHHL) Day 3

Day 10

Day 12

Type4 (HHHH) Day 4

Day 7

Day 10

Glucose drink (40 g of glucose + water)
Banana (1 banana, pecled)

White rice (1/2 cup, cooked)

Black pepper (optional)

Orange (1 orange, peeled)

Banana (1 banana, peeled)

Apple (2 apples)

Oatmeal (1 pkg, warm or cold)
Blueberries (1/2 cup)

Apple (1 apple)

Orange (1 orange, peeled)

White rice (2/3 cup, cooked)

Black beans (3/4 cup, warm or cold)
Garlic (1 clove)

Chicken sausage (4 links, cooked)
White rice (1/2 cup, cooked)

Chickpeas (1 4 1/2 cups, raw or steamed)
Oatmeal (1 pkg, warm or cold)
Sprouted grain bread (3 slices)

Egg (1 egg, poached or hard boiled)
Orange (1 orange, peeled)

Chickpeas (1 + 1/4 cups, raw or steamed)
Chicken sausage (4 links, cooked)
Apple (1 apple)

Tortilla strips (5 strips)

White rice (3/4 cup, cooked)

Turkey (1/4 cup, measure before cooking)
Black beans (1/2 cup, warm or cold)
Sunflower seeds (1/4 cup)

Apple (1 apple)

Black beans (1/3 cup, warm or cold)
Potato (1 potato, baked—no skin)

Beef (1/2 cup, measure before cooking)

In this omnivore diet, example meals are shown for several of the provided macronutrient groups

(carbs—fiber—protein—fat)
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Table 2 Daily breakdown for meal plan
Breakfast Morning snack Lunch

Day 1 Typel (HLHL) Type2 (LLHL) Type3 (HHLH)
Day 2 Type7 (LLLH) Type5 (HHLL) Type9 (LLHH)
Day 3 Type8 (HLLL) Typell (HHHL) Type3 (HHLH)
Day 4 Type4 (HHHH) Typel3 (LHHL) Type9 (LLHH)
Day 5 TypelO (HLLH) Type5 (HHLL) Type6 (LHLH)
Day 6 Type7 (LLLH) Type8 (HLLL) Type9 (LLHH)
Day 7 Type5 (HHLL) Typel3 (LHHL) Type4 (HHHH)
Day 8 Typel (HLHL) Type2 (LLHL) Type3 (HHLH)
Day 9 Typel0 (HLLH) Typel3 (LHHL) Typel2 (HLHH)
Day 10 Type6 (LHLH) Typell (HHHL) Type4 (HHHH)
Day 11 Type7 (LLLH) Type8 (HLLL) Typel2 (HLHH)
Day 12 Typell (HHHL) TypelO (HLLH) Type6 (LHLH)
Day 13 Typel (HLHL) Type2 (LLHL) Typel2 (HLHH)

Each participant consumed 39 provided meals, which included 1 glucose drink, 6 repeat provided meals, and 32 unique

provided meals. Meals with similar composition types were distributed across the meal plan, with days 1 and 8 representing

repeated meal days

without further guidance on the composition,
and day O consisted of only free meals. Provided
meals accounted for 66% of all meals and free
meals accounted for 34% of all meals.

Both provided and free meals were recorded
by all participants during the entire study per-
iod, using a smartphone app (Bitesnap [20]).
Macronutrient and micronutrient information
were provided by the smartphone app platform
for further analysis. Provided meals were pre-
loaded into the app for convenience, while free
meals were loaded by users through selection of
custom dishes, ingredients, and quantities.

Over the course of their 14-day meal plans,
we asked all participants to avoid the following
activities and interventions: (1) intense exercise
within 2.5 h before or 2.5 h after meals; (2)
introduction of new probiotics or prebiotics; (3)
all vitamins and supplements (with a specific
detail to avoid interfering substances as defined
in [19]); (4) over-the-counter medication. We
also asked all participants to inform a study
coordinator if they were prescribed antibiotics
during the study.

In order to test our methodology across a
range of diets and to support a range of partic-
ipant preferences, we provided two diet types—
omnivore and vegetarian/gluten-free—in dif-
ferent phases of the study. In all, we provided
104 unique, pre-designed meals: 71 meals were
part of the omnivore diet and 33 meals were
part of the vegetarian/gluten-free diet. A total of
140 participants signed up for the omnivore
diet and 410 signed up for the vegetarian/glu-
ten-free diet.

In an effort to maximize coverage and
diversity of macronutrient ratios across meals,
we designed the provided meals using a high
(H)/low (L) determination of each of the four
macronutrients—carbs, fiber, protein, and fat—
resulting in 13 compositional types as shown in
Fig. 2a. In this paper, we use the terms carbs and
carbohydrates interchangeably to mean net
carbohydrates (i.e., excluding fiber). “High” and
“Low” categorical bins were assigned from
thresholding of meal composition, based on the
proportion of each macronutrient and its daily
recommended allowance [21]. For example,
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Fig. 2 Study meal design and content. a Percentage of
each meal category within all 18,0004 provided meals.
Categories were defined using proportions of carbs (H/L),
fiber (H/L), proteins (H/L), and fats (H/L). b Macronu-
trient proportions of all 71 unique pre-designed omnivore
meals (top, blue), all 33 unique pre-designed vegetarian/
gluten-free meals (middle, blue), and all free meals
(bottom, red). Provided meals account for 66% of all
meals, and free meals 34%. ¢ Data collected for a single

day 1 breakfast was given a composition type of
“high, low, high, low” (HLHL), respectively, in
carbs, fiber, protein, and fat. All 13 of these meal
composition types were included in every meal
plan.

An example meal plan is shown in Table 1
along with each composition type; over the
14 days, each participant was provided with a
total of 39 meals, including one glucose drink

o7 0730 060 ) 0 0930 1000 103 193 190 1203

20 190 1930 603 100 1900 1590 1600 16 1700 1790 1690 1830 190 1930 W90 2050 2000 W 200 2 [0 B0

participant over 2 days (out of 14). Each row is a single
day. The blue curve is the CGM reading collected every
15 min. Vertical bars are meal events, showing carbs
proportion (blue), fat proportion (yellow), and protein
proportion (pink). The user interface also visualizes a
picture of the meal and the nutrient details. Gray bars
represent light and deep sleep. The red histogram next to
sleep bars is the tracked physical activity

(day O consisted of only free meals). Additional
design strategy went into the meal plans. Days 1
and 8 of each meal plan were designed as
replicate days (Table 2), and meals on these
2 days were completely identical (on day 8§, each
participant consumed the same breakfast,
snack, and lunch meals they were assigned for
day 1). Beyond these six repeat meals and the
one glucose drink, each participant also
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Table 3 Macronutrient breakdown for repeat meals

Description Net Carb (g) Fiber (g) Protein (g) Fat (g)
Bagel, eggs, mango 71 7.9 213 10
Rice, avocado, apple 62.4 18.9 85 29.8
Apple sauce, grapes, banana 52.8 5.8 1.8 0.5
Pea protein, mango, banana 46.8 5.1 26.3 2.6
Quinoa and veggies, lentils 36 16.5 17 2
Tortilla, almond butter 25 S 9 20.5
Grain bread, chicken 24 6 24 8
Celery, hummus 5.4 2.6 2.7 2.7
Pea protein 3 0 24 23

Macronutrient information for the 9 repeat meals which were consumed twice by study participants. Actual servings were
adjusted on the basis of the participant’s basal metabolic rate (BMR). Net carbs represent total meal carbohydrates,
excluding fiber. Values for carbs, fiber, protein, and fat represent the respective macronutrient weights (grams) of each meal,

computed from the manufacturer nutrition fact labels

consumed 32 unique provided meals which
stratified across the 13 meal composition types
(Table 2).

Significant effort was made to incorporate as
many meal composition types and food staples
as possible. The distribution of macronutrients
(Fig. 2b) shows the coverage of the provided
meals across the space of diverse macronutrient
ratios. Implementing two diets (omnivore and
vegetarian/gluten-free) in multiple study phases
also allowed us to further diversify those meals
repeated on days 1 and 8, such that a total of
nine different types of replicate meals were
assigned (Table 3), and each included high
levels of just one or two macronutrients.

Figure 2c is an example that shows all study
data for a single participant over a 2-day period,
fused into a single visualization. This visualiza-
tion helped the study administrators to visually
inspect the data and ensure that data was
properly captured and lined up. On the basis of
this visual inspection, we observed that some of
the CGMs malfunctioned with consistent lack
of signal; or in some cases, the events captured
within the smartphone app were out of sync
with the glucose curves, which indicated that
the participant did not capture the data as

instructed (at the point of meal consumption).
In either of these cases, we discarded the
respective meal data.

Meal data was pre-processed as follows. After
discarding meals that were clearly from mal-
functioning CGMs or from erroneous data cap-
ture, we ended up with 27,630 total meals, with
18,208 provided meals and 9422 free meals. All
provided meals were at least 2.5 h apart (par-
ticipants were instructed). Free meals that were
within 30 min were merged, and those within
90 min of each other discarded. After all of this
pre-processing, the final dataset included
approximately 50 meals from each participant.

Postprandial Glycemic Response

We used incremental area under the curve
(IAUC) to quantify glycemic response, which is
a standard assessment of PPGR [22, 23]. We
define this as the integrated area under the
CGM curve over 120 min, relative to the base-
line CGM measurement at one timepoint before
the meal (i.e., the area above baseline and below
the glycemic response curve). This measure-
ment can be negative as a result of a decline in
blood sugar level below the baseline, especially
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after activity, and due to noise from the CGM
device.

Microbiome Features

Participant stool samples were processed using
our metatranscriptomic method [14] to yield
raw microbiome data features including KOs
[11] and microbial taxonomy. Our cloud-based
bioinformatic pipeline performs both read QC/
trimming and host read filtering, ahead of
alignments and classifications. Following this,
classification occurs at three taxonomic ranks
(strain, species, and genus) through sequence
alignment to a custom database of more than
110,000 genomes. Functional assignments
(KOs) are obtained through alignment to the
IGC [24] and KEGG databases. For the samples
provided by the 550 participants in this study,
6587 unique microbial KOs were detected, with
a mean of 2941.9 per sample (SD 541.9); and
1047 unique species were detected, with a mean
of 122.7 (SD 40.5).

Collections of these raw microbiome molec-
ular pathway features were aggregated into
custom microbiome scores, designed to capture
the functional characteristics as described in the
literature [18]. For example, the microbiome
balance score is an aggregate assessment of
overall ratios for both active beneficial and
active harmful microbes, as well as select
diversity metrics. This score is binary with a
value of “Low” or “Normal”. All microbiome
scores are generated by taking metatranscrip-
tomic data as input, and applying an expert-
designed scoring algorithm developed at Viome
[18] to derive an overall activity level.

Metabolic and signaling pathway activities
are scored using expression levels of genes,
encoding specific microbial molecular pathway
functions (primarily KEGG ortholog mappings),
compared with a reference cohort of samples
supplied by Viome customers. Scores measure
the quantity and expression levels of specific
KEGG KOs, selected owing to their specific
directional enzymatic roles, pathway topology,
or significance in the functional literature. The
score values included in this study are increased

Fig. 3 Overview of postprandial glycemic response data.p
a iAUC values (in mg/dl-h) for all meals, provided and
free (red bar); the 9 repeated meals from Table 3, (blue
bars); and the glucose drink (green bar). Boxplots show the
interquartile range; whiskers cover the middle 95th
percentile. b Marginal effect of macronutrients on glucose
response over time, across all meals, across all participants.
Each timepoint is a linear regression of iAUC on all four
standardized macronutrients. ¢ Inter- and intra-person
variability for 9 repeated provided meals. Inter-person
variability represents differences across multiple people.
Intra-person variability represents differences for a single
person between the two times each meal was consumed. X
axis is the mean absolute difference in iAUC. Points
indicate the mean absolute difference in response between
two consumptions of the meal by one person (green), and
mean absolute difference in response between all pairs of
different people (blue). Bars indicate standard error. Y axis
is in descending order of difference between inter-person
and intra-person variability. d Examples of individual
variation in glycemic response. Participants P1 and P2:
Ingestion of two of the repeated meals (blue and green
lines) result in opposite blood glucose response in two
participants (top). Participants P3 & P4: Ingestion of two
free meals results in opposite blood glucose response in two
participants (bottom). e Relationships between anthropo-
metric characteristics and per-participant average iAUC
across all meals (provided free)

when a greater number of key genes are
expressed, and when their expression increases.

Statistical Analyses

Linear Multilevel Mixed-Effects Model
Development

Fixed-effect predictors included nutrient char-
acteristics of meals, anthropometric predictors,
contextual factors, and microbiome features.
Nutrient characteristics were reported once per
meal in terms of absolute grams of net carbo-
hydrates, fiber, protein, and fat. Anthropomet-
ric factors included BMI and age, as well as the
interactions between each of these and net
carbohydrates of meals. Contextual factors
included sleep and activity levels, as well as the
interactions between each of these and net
carbohydrates of meals. Microbiome features
included expert-designed scores, such as
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abundance of tyrosine- or fructose-metabolizing
taxa, as well as activity for metabolic activity
related to fucose, indoleacetate, or glutamine.
Microbiome features also included interactions
between net carbohydrates of meals and each of
tyrosine metabolizers, fucose metabolism, and
indoleacetate production.

The predictive model was incrementally
developed using the Ime4 package in R [25]. In
several passes, the model was layered with (1)
carbohydrates and anthropometric predictors;
(2) carbohydrate interactions, additional nutri-
ents, and contextual factors; and (3) expert-de-
signed microbiome features. After each round,
likelihood-ratio tests were used to assess whe-
ther contributions of features were significant.
Candidate microbiome features were intro-
duced to the model based on ttest (binary) or
regression (continuous) analyses, depending on
the nature of each feature.

Gradient Boosting Machine Development

The final model was further advanced by
improving feature selection and feature impor-
tance using the python package XGBoost [26].
As part of this process, additional meals, nutri-
ents, and other features were incorporated into
the model. Additions included (1) slope of CGM
readings in 90 min leading up to a meal; (2)
proportions for each macronutrient; (3)
enhanced granularity of carbohydrates (i.e.,
starch and sugar abundance); (4) enhanced
granularity of fats (i.e., monounsaturated fat
and polyunsaturated fat abundance); (5) vita-
min C and calorie abundance; and (6) heavy
physical activity and sleep status up to 6h
before a meal and over the duration of the
PPGR; (7) KOs selected with univariate linear
regression with p value of the coefficient less
than 0.01. Model improvement was judged by
comparing R and R? values after averaging
across five random train/test splits of the data
with nested cross validation.

RESULTS

Meal Effects

The iAUC values for all meals, the repeated
meals from Table 3, and the glucose drink can
be found in Fig. 3a. Figure 3b was constructed
after modeling iAUC with standardized
macronutrient values (i.e., zscores). Linear
regression of iAUC on all four of the standard-
ized macronutrients was performed at each
timepoint after the meal. The plot shows the
learned weights for each standardized
macronutrient at each timepoint, and this
reveals the magnitude and time-course of the
macronutrient effects. Meals with more carbo-
hydrates led to increased postprandial glucose
(PPG), peaking 45 min after the meal, while
meals with more fiber led to a diminished and
delayed PPG. Protein and fat suppressed and
delayed the response.

Figure 3¢ illustrates the intra-person vari-
ability in responses for meals that were repeated
within the provided diet (Table 3). Intra-person
variability is the difference in a participant’s
response to a single meal when eaten on two
occasions.

Predictive Model Development
and Evaluation

In this section we first present a linear multi-
level mixed-effects or hierarchical model [27] of
PPGRs based on the data described above. The
linear model allows us to provide a concise
description of the relationships between nutri-
ents, anthropometrics, microbiome activity,
and PPGR. Additionally, it allows us to derive
significance statistics, testing whether each
predictor is relevant to the determination of the
PPGR.

Importantly, the inclusion of random effects
captures individual variation in PPGR due to
unobserved factors that may affect the outcome
(and these include unknown properties of the
individual, provided meals, free meals, or mea-
surement devices). Inclusion of random effects
is essential for conservative hypothesis testing
of both the relevance and magnitude of our
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fixed effects, especially in a repeated-measures
design where each person and each meal pro-
vides many data points. Our experimental
design calls for a multilevel model because of
this repetition; each PPGR observation is at a
lower level, nested within one person and
within one meal (each is a higher level), in a
crossed or fully factorial experimental design
(see Fig. 4a). For example, without the multi-
level model, we could not conclusively test the
importance of any variable that is constant
across all data taken from one person, such as
microbiome features.

Model development was performed using
the Ime4 package in R [25]. The model was built
incrementally. In the first pass, we determined
appropriate transformations for the nutritional
and anthropometric variables by visualizing the
relationship between each predictor and the
iAUC. The effect of carbohydrates appeared to
be well described by the square root transfor-
mation, while other predictors were left
untransformed. We then fitted a model of these
nutritional and anthropometric predictors as
fixed effects, with random intercepts and slopes,
allowing the nutritional effects to vary between
people and the anthropometric effects to vary
between meals. Likelihood ratio tests showed
no evidence for any random slopes of anthro-
pometrics by meal (i.e., responses to all meals
are similarly influenced by the participant’s age,
BMI, etc.).

The largest effects were associated with carbs.
Thus, in the second pass, we introduced inter-
actions between carbs and all other nutrients as
fixed effects, with random slopes by participant.
On the basis of visual inspection of their rela-
tionship with iAUC, we also introduced two
additional fixed effects for response-level “con-
text” measurements: minutes of activity during
the 2 h following the meal and minutes of sleep
during the 3 h before the meal. We removed
effects that were not significant, as determined
by likelihood ratio test at p < 0.05.

In the third pass, we introduced additional
fixed effects for our microbiome features, which
included a number of expert-designed scores
measuring the activity of crucial metabolic
pathways and functions (see “Discussion” sec-
tion). A candidate set of scores to introduce to

the model were identified by predicting partic-
ipants’ average iAUC from each score using
ttest (binary) or regression (continuous). There
were 15 scores with a significant association
which were tested in the full model. After con-
trolling for all other predictors, six scores
remained significant or marginally significant.

Fixed-effect coefficients from the final model
are displayed in Fig. 4b. Positive coefficients
indicate a greater predicted PPGR. All predictors
were significant by a likelihood-ratio test at
p <0.05, except for glutamine production
pathways (p=0.08) and the interaction
between tyrosine metabolizers and carbs
(p = 0.06) which are kept in this model as sug-
gestive, and these do not substantially affect the
estimation of other coefficients.

Several of the significant predictors were
microbiome scores. One of the scores, named
microbiome balance, is an aggregate assessment
of the microbiome, quantifying overall benefi-
cial and harmful activities (based on the litera-
ture), as well as select diversity metrics. When it
was “Low,” this binary score showed a negative
association with PPGR. Two other scores (fucose
metabolism and indoleacetate production) were
quantified from overall activity levels of a given
set of microbial pathways.

The fucose metabolism score considers the
expression levels of all enzymes (encoded by
transcripts) that contribute to processing and
catabolic conversions of fucose—a glycan that
microbes may obtain from the host’s gut lining
or from food components. This quantitative
score showed a positive association with PPGR.

The indoleacetate production score consid-
ers the expression levels of all the enzymes
(encoded by transcripts) that contribute to
production of indole-acetate (or indole acetic
acid, IAA). When it was “High,” this binary
score showed a negative association with PPGR.

The glutamine score was derived with the
same approach as the indoleacetate score, and it
considers the expression levels of enzymes (en-
coded by transcripts) that contribute to the
production of glutamate (or glutamic acid). The
glutamine production score was marginally
significant, and when it was “Low,” this binary
score implied a higher PPGR.
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Microbial scores for tyrosine and fructose
metabolizers are based on categorical functional
bins of active microbes known to metabolize
tyrosine and fructose, respectively. When
“Low,” the tyrosine metabolizer score was
directly related to elevated PPGR. In contrast,
the fructose metabolizer score showed an
inverse relationship, such that a “Low” score
indicated elevated PPGR.

Figure 4c compares different approaches to
predicting iAUC. The first two plots show single
predictor models (calories or carbs). We also
present predictions from the fixed-effect part of
our model after zeroing out certain compo-
nents. Using all nutrient predictors achieves a
similar outcome as using the square root of
carbs alone (both R =0.41, not pictured).
Including the microbiome features yields a
small, but significant, improvement in fit
(R = 0.42, not pictured), and adding the other
fixed-effect predictors (age, BMI, sleep, activity,
microbiome) improves the fit further (R = 0.45,
Fig. 4c bottom-left). Finally, the full model with
random effects (best linear unbiased predic-
tions) fits the data very well (R = 0.77, Fig. 4c
bottom-right).

Figure 4d (top) shows the influence of age on
the relationship between carbs and glycemic
response. Figure 4d (bottom) illustrates the
extent of individual differences in this rela-
tionship, taking into account all predictors. Red
and blue lines highlight two hypothetical meals
(A and B; similar to repeat meals from Table 3
with carbs approximately 25g and 350g,
respectively). These illustrate that two users can
have the opposite glycemic responses (respec-
tively, iAUC of 14 and 20 vs iAUC of 37 and 27)
due to the crossover of their iAUC response
lines between the two meals—this effect can be
seen in Fig. 3d using raw data for two sets of
meals.

A Model Optimized for Prediction
Accuracy Over Explanation

As described above, mixed-effects linear models
are valuable, because they are easily interpreted
and allow statements about the statistical sig-
nificance of predictors. In this section, we

Fig. 4 Models for predicting PPGR. a Nesting ofp
predictors in our repeated-measures crossed experimental
design. Plates (boxes) indicate repetition: e.g., there is one
measurement of carbs, protein, fiber, fat for each meal.
Arrows indicate the possibility of dependence: here, PPGR
is estimated as a function of all other variables. b Fixed-
effect estimates for all predictors included in the final
model. Continuous predictors are standardized (mean is
zero, units are standard deviations), meaning the expected
response changes by the value of the coefficient when the
predictor changes by one standard deviation. All micro-
biome scores except fucose are binary scores, meaning the
coefficient is the difference in expected response between
the two levels of the score. Error bars show standard error
of the estimate. ¢ Actual glycemic response (iIAUC) against
(a) calories, (b) carbs, (c) predictions from the model
including all fixed effects (standard linear regression), and
(d) the fit of the full mixed-effects model. d (left) Model
predictions as a function of carbs and age, holding all other
predictors at the baseline. (right) Model predictions as a
function of carbs for 10 randomly sampled people, taking
into account all person-level fixed and random effects and
holding all other nutrient and context variables at the
baseline. Two users are highlighted (red and blue) to draw
attention to the flip in their predicted response to the two
example meals A and B annotated in yellow. e Actual vs
predicted iAUC for a gradient boosting machine (GBM)
model. Performance shown is on the best test fold across 5
random splits, with data from 82% of the users used to
train and 18% held out for evaluation

present another model for the same data which
does not offer these benefits, but it achieves
greater predictive accuracy due to its richer
modeling framework. This is a gradient boost-
ing machine [26], and it is built on the same
predictors already discussed, along with a
number of additional features. These features
encompass the microbiome (individual organ-
isms and gene transcript levels), nutrients
(weight of meal; subtypes of carbs and fats;
micronutrients; specific compounds like caf-
feine and alcohol), and context (more detailed
representations of sleep and activity). Following
Zeevi et al. [8], we also add two further predic-
tors which encode prior blood glucose levels:
the CGM reading immediately before the meal,
and the linear slope of CGM readings over the
previous 90 min. After removing predictors that
exhibited low variance, were highly correlated
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Fig. 4 continued

with each other, or were not correlated with the
outcome, a total of 1446 were included in the
model.

Training data was from 82% of users, while
test data was from the remaining 18% of users
who were held-out for evaluation. Hyperpa-
rameters which controlled learning rate, num-
ber of trees, and tree depth were estimated using
cross-validation on the training set. Averaging
across five such random train/test splits of the
data, the model achieves R = 0.80 (R? = 0.64)
with training data, and R = 0.64 (R* = 0.40) on
held-out test data. Performance on training and
test data is shown in Fig. 4e.

DISCUSSION

We set out to study PPGR variation based on
individual differences, focusing on differences
in gut microbiome activity, and we were the
first to accomplish this using the metatran-
scriptome. We made a few key design choices
for the study, including (a) 14 days of moni-
toring, (b) multiple diet types—omnivore and
vegetarian/gluten-free, and (c) a large propor-
tion (66%) of provided (pre-designed) meals.

The number of provided meals (104) is con-
siderably larger in our study as compared to
previous studies (e.g., [8, 9] had only four
standardized meals). This diet design allowed us
to collect more precise readings of consumed
meals rather than entirely depending on the
smartphone diet tracking app. This choice also
allowed us to quantify individual PPGR differ-
ences between people in response to the same
food, reducing the risk that observed differences
reflect nutritional differences between meals.
Secondly, as shown in Fig. 2a, b, our diet design
also provided broad coverage across the space of
diverse macronutrient proportions (carbs, fiber,
protein, fat), with the intention of teasing out
the independent and interacting effects of the
macronutrients. And finally, our diet design
allowed us to retain greater control of the meals,
since we also wanted to study the effect of
multiple diet types: omnivore and vegetarian/
gluten-free (this is ongoing work, not reported
here).

Our data shows that accounting for individ-
ual differences is crucial in providing a full
description of PPGR. This is evident, for exam-
ple, in the data presented for our nine repeat
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meals (Table 3); each of these was a combina-
tion of food staples consumed at least twice by
all participants. While intra-person variability
for a given meal is substantial (Fig. 3¢, green),
this variability is small relative to the inter-per-
son variability for the same meals (blue). We
can conclude that while many factors affect
PPGR, some of these factors are individual dif-
ferences which must be accounted for by dif-
ferences between people and their lifestyles, not
properties of the meal alone. The two meals
where intra-person variability is close to inter-
person variability are meals that contain little to
no carbohydrates.

Relationships Between iAUC
and Phenotype and Food Features

We see the expected relationship between age
and iAUC in Fig. 3e (first panel). The relation-
ship we report between iAUC and BMI/waist-to-
hip ratio (Fig. 3e second and third panels) is the
opposite of previous findings [8]. We hypothe-
size that this may reflect the self-reported good
health and high exercise rate within this study
population, as determined from the question-
naire completed at participation enrollment.
We see the expected increase in average iAUC
with HbAlc in our study population (Fig. 3e,
fourth panel). However, in our analysis there is
no significant effect of HbAlc on iAUC after
controlling for other predictors. This may be
because the study population was selected for
HbAlc in the normal range (< 6.5).

As expected, the bulk of variation in the
PPGR is explained by the amount of carbs
ingested, and by interactions with fat content in
food and other factors that modulate the effect
of carbs. Increased fiber resulted in overall lower
PPGR, and while increased fat had little mar-
ginal effect by itself, it interacted with carbs to
suppress the effect of ingested carbs on the
PPGR. The time-course of this effect (Fig. 3b)
suggests this may happen because fat and pro-
tein flatten and delay the digestion of carbs,
pushing some of the PPGR out of the 2-h win-
dow considered here [28, 29]. Protein has a
numerically negative effect on iAUC, but this
was not significant after controlling for other

predictors, so it was removed from the final
model. Older people generally exhibited a
higher PPGR as well as a higher PPGR per unit of
carbs ingested (Fig.4d). Activity after meal
consumption, as well as sleep immediately
before eating, both resulted in lower PPGR to
carbs, which is consistent with known meta-
bolic effects of circadian rhythms [30].

The fact that PPGR is better predicted by the
square root of carbs than untransformed carbs is
reminiscent of a standard model of gastric
emptying in which the volume of food passing
from the stomach per unit of time is linear in
the square root of its volume [31].

Relationships Between iAUC
and Microbiome Features

Microbiome features that were significantly
related to prediction of PPGR include micro-
biome balance, fucose metabolism pathways,
fructose metabolizers, tyrosine metabolizers
(marginal), indoleacetate production pathways,
and glutamine production pathways (marginal).
Of these, fucose, indoleacetate, and tyrosine
(marginal) scores interact with carbs, indicating
the microbiome or correlated properties that
affect the processing of carbs, and they also lead
to an overall difference in baseline blood sugar.

The microbiome balance score was one of
the significant features in predicting PPGR.
Microbiome balance scores that were “Low”
usually resulted from either an imbalance of
relative activities of beneficial vs. harmful
microbes or from lower quantity and diversity
of microbial organisms. The relationship
between a suboptimal gut microbiome and
higher PPGR is in line with the current litera-
ture [32-34] implicating the role of gut health
in glycemic regulation.

The fucose metabolism pathway score
showed a direct relationship with PPGR. Fucose
is a sugar molecule that various microbial
organisms can use as an energy source [35].
When other carbohydrate sources are not
available, gut microbiota can switch to using
fucose that can be obtained from the host’s gut
mucosal lining. This process is often carried out
by microbes known as mucin degraders, such as
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certain species of Ruminococcus [36]. We there-
fore hypothesize that higher fucose consump-
tion activity, as reflected by the fucose
metabolism pathway score, may be associated
with microbiomes of individuals who are either
more likely to fast or whose body and internal
ecosystem resemble the conditions of fasting or
calorie deprivation. This may explain its asso-
ciation with higher PPGR. More research is
needed to establish relationships between
microbial metabolism of gut sugars and the
host’s tendency to show higher glucose spikes
in the blood after meals.

The indoleacetate production pathways
score incorporates the role and significance of
expressed genes in the context of microbial
indoleacetate production. The algorithm con-
siders all pathway contributions to the produc-
tion of indole acetic acids (IAAs) and scores
them using gene expression as input data. A
“High” indoleacetate score correlates to lower
PPGR. This is consistent with known anti-in-
flammatory properties of IAA [37, 38]. In addi-
tion, both inflammatory activities in the gut
and systemic low-grade inflammation are
implicated in the development of type 2 dia-
betes and other metabolic disorders [39, 40].
Moreover, IAAs have been directly implicated in
PPGR, and some findings suggest a hypo-
glycemic action of indole-3-acetic acid in dia-
betes mellitus [41].

Beneficial products of protein fermentation
include indoles and indoleacetate, though
especially products from tryptophan metabo-
lism [42]. In one study, intraperitoneal admin-
istration of indole-3-propionic acid, indole-3-
butyric acid, and indole-3-acetic acid was asso-
ciated with hypoglycemia in normal and
alloxandiabetic mice, while r-tryptophan and
kynurenic acid had no effect [43].

The interpretation we offer here is depen-
dent on the individual’s microbiome function.
If a given person’s microbiota mainly exhibits
conversion of tryptophan to beneficial indoles
and indole-acetate molecules (those capable of
reducing inflammation and glycemic effects),
then it may benefit such people to consume
tryptophan (in the form of food or supplement).
On the other hand, if the microbiota mainly
exhibits conversion of tryptophan to more of

the pro-inflammatory triggers, then consuming
tryptophan may not be suitable to mitigate
glycemic effects or inflammation in general.

Tyrosine metabolizer and fructose metabo-
lizer scores categorically bin active microbes
into groups, according to functional character-
istics. We have observed that these groups tend
to reflect the host’s habitual diet. Hence, “Low”
tyrosine metabolizers may suggest a diet that is
low on protein sources of tyrosine. We also
hypothesize that the inverse relationship
between the fructose metabolizer score and
PPGR may be due to a diet that is low in fructose
or carbohydrates that serve as fructose precur-
sors. It is not yet clear how a diet that is rich in
fructose or deficient in tyrosine may influence
PPGR, and more studies are needed.

When it was “Low,” the glutamine produc-
tion pathways score showed a direct relation-
ship with higher PPGR. Microbial glutamine
production has not been directly linked to
PPGR in humans. However, glutamine is con-
sidered an important nutrient for gut health
and has been included in various supplements
used by clinical healthcare practitioners to pre-
vent or heal “leaky gut” [44, 45]. More research
is needed to understand the molecular mecha-
nisms that may be responsible for higher PPGR
in individuals with low microbial glutamine
production activity in the gut.

The microbiome features revealed by our
glycemic response model may influence PPGR
directly or indirectly. Although it is challenging
to delineate causal mechanisms, there may be
functional patterns that connect the significant
scores with gut health, intestinal barrier integ-
rity, and inflammation. Inflammation and
stress response may be implicated in elevation
of blood glucose (either due to cortisol pathway
or other mechanisms). Knowing which foods
elicit higher PPGR can offer valuable guidance
in diet selection. However, to affect the root
cause of PPGR, the specific mechanisms con-
necting nutrients to the gut microbiome as well
as to inflammation and PPGR will need to be
taken into account. We seek to confirm and
validate these mechanisms. An understanding
of which microbiome features are significant
will pave the path to precise personalization of
food and supplement recommendations.
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Modeling Methods and Model Evolution

The mixed-effects linear model presented first
in the previous section was deliberately chosen
to better understand the incremental effects of
the significant features, especially the func-
tional gut microbiome activity features. We are
not aware of any prior literature that demon-
strates the statistical significance of the micro-
biome in the context of a predictive model for
PPGR. Prior studies [8] using only ensemble
methods, like gradient boosting machine mod-
els, represent the state of the art in accurate
prediction of PPGR (which we also show in
Fig. 4e). These models suffer from difficulty of
interpretation, including determination of
which features significantly contribute to the
predicted outcome.

We are in the process of increasing the gen-
eralizability of our findings by collecting further
data from wunderrepresented subpopulations
such as people with pre-diabetes, people
reporting poor overall health, and older partic-
ipants. With the goal of continuous improve-
ment, we will rebuild and revalidate our model
on the basis of this new expanded data. The
current paper provides a first snapshot of the
collected data, and we will use the additional
data to consolidate the current model, as well as
potentially surface new relevant predictors.
Future steps include validating the model by
employing an unseen cohort. Finally, we will
also perform a blinded, randomized-controlled
dietary intervention based on this predictive
model, in order to look for improvements in
PPGR as well as alterations to the gut
microbiota.

CONCLUSIONS

Most significantly, this paper makes the fol-
lowing contributions:

e Demonstrates for the first time that meta-
transcriptomic activity of the gut micro-
biome contributes to individual variation in
glycemic response among adults.

e Suggests new microbial features that may
help uncover molecular mechanisms of
glycemic control.

e All features included in our mixed-effects
linear regression model are significant to
individual glycemic response, where fixed
effects represent the measured properties
and random effects are included to account
for further variation.

e Our predictive accuracy of individual glyce-
mic response was improved with a gradient
boosting machine, which allowed us to
incorporate additional raw data and maxi-
mize our accuracy.

e Demonstrates that PPGR is driven by the
properties of an individual in addition to the
food’s macronutrient content, as measured
with 104 unique pre-designed meals within
omnivore and vegetarian/gluten-free diet
types and within a multiethnic population.

e These data will be used in the future to
identify additional specific microbial path-
ways that affect the glycemic response which
could be targeted with therapeutics. Depend-
ing on the observed effects, the therapeutics
could include small molecule inhibitors,
small molecule supplements, phages, vacci-
nes, or probiotics, for example.
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