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Abstract
In order to maintain a functional mitochondrial network, cells have developed a quality control mechanism, namely 
mitophagy. This process can be induced through different pathways. The most studied is the so-called PINK1/Parkin 
pathway, which is associated with ubiquitylation of several mitochondrial proteins that were initially found to be related 
to Parkinson’s disease. Another type of mitophagy is known as receptor-mediated mitophagy, which includes proteins, 
such as BNIP3 and BNIP3L, also known as Nix. Through these two mechanisms, mitophagy fulfills its functions and main-
tains cellular homeostasis. Here, we summarize the current knowledge about the mechanisms of mitophagy regulation 
and their interplay with cancer progression as well as anticancer treatment.
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1  Introduction

Mitochondria are “the powerhouse of the cell” responsible for ATP synthesis via oxidative phosphorylation. Apart from 
energy production, mitochondria are involved in various intracellular processes, including ROS production, regulation of 
ion homeostasis, adaptation to stresses, initiation of cell death, etc. Dysfunctional mitochondria have a reduced capacity 
to carry out oxidative phosphorylation (OXPHOS); moreover, they produce more reactive oxygen species (ROS), which 
can cause cell damage [1]. Uncontrolled mitochondrial oxidative stress may contribute to different pathological states 
and diseases, including cancer [2].

Therefore, in order to maintain a functional mitochondrial network, cells have developed a quality control mechanism, 
namely mitophagy [3]. Dysregulation of mitophagy is frequently associated with different pathological situations includ-
ing cancer. Here, we try to summarize the current knowledge about the main mechanisms of mitophagy regulation and 
their interplay with cancer progression. Furthermore, we highlight novel approaches for cancer treatment associated 
with mitophagy.

2 � Molecular mechanisms of mitophagy

Macroautophagy (hereafter referred to as autophagy) is a highly conserved pathway that captures and degrades proteins, 
as well as cellular organelles, in order to sustain cell survival during starvation and other stress situations [4]. Autophagy 
is initiated by the formation of double-membrane structures, called “autophagosomes”, that enclose cellular cytoplasmic 
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constituents and, subsequently, fuse with lysosomes to form autophagolysosomal structures to degrade the content by 
lysosomal hydrolysis [4].

Mitophagy is a selective form of autophagy allowing for the degradation of damaged or dysfunctional mitochondria. 
Dysfunctional mitochondria are unable to carry out OXPHOS properly due to mitochondrial membrane depolarization 
and further accumulation of ROS, resulting in a significant increase in overall cellular oxidative stress [5]. Since mitochon-
dria form a highly dynamic network, the dysfunctional mitochondrion needs to be isolated from the healthy network; this 
process requires the precise coordination of mitochondrial dynamics [6]. Mitochondrial dynamics i.e., fission (fragmen-
tation) and fusion (elongation), defines mitochondrial shape, quality and quantity and regulates different cellular func-
tions including proliferation, migration and metabolism [3, 7, 8]. Mechanistically, fission and fusion are tightly regulated 
by guanosine triphosphatases (GTPases) [9]. Mitochondrial fission is driven by dynamin-related protein 1 (Drp1) [10], a 
GTP-binding protein that can be recruited to the mitochondrial membrane and, with the assistance of adaptor proteins 
like Fis1, MFF, MID49 and MID51, forms a ring structure around the mitochondrion, thereby inducing the division of the 
mitochondrial membrane [10–12]. The fission of mitochondria is regulated by the phosphorylation status of Drp1 [13]. 
Thus, the phosphorylation of Drp1 at Ser585 by CDK 1/Cyclin B activates mitochondrial fission in mitotic cells, whereas 
phosphorylation of Drp1 at Ser637 leads to the inhibition of fission [14]. Mitochondrial fusion is regulated by mitofusins 
1 and 2 (Mfn1, 2) at the outer mitochondrial membrane (OMM), whereas inner mitochondrial membrane (IMM) fusion is 
induced by the cristae-shaping protein Opa1 [10]. Mitochondrial fission can produce impaired daughter mitochondria 
that will be utilized by mitophagy [15].

Mitophagy can be induced through different pathways. The most studied is the so-called PINK1/Parkin pathway 
(Fig. 1A) [3]. It is associated with the ubiquitynation of several mitochondrial proteins that were initially found to be 
related to Parkinson’s disease [16]. PINK1 is a serine/threonine kinase that contains a mitochondrial targeting sequence 
at its N-terminus [17, 18]. Under physiological conditions, PINK1 is transferred into the IMM by translocase of the outer 
membrane (TOM) and translocase of the inner membrane (TIM) complexes, where it is cleaved by the mitochondrial 
protease PARL (presenilin-associated rhomboid-like), and further degraded by the proteasome. PINK1 transport into 
mitochondria is driven by the mitochondrial membrane potential. In depolarized mitochondria, PINK1 stays associated 
with the OMM, where it is activated through autophosphorylation and phosphorylates ubiquitin chains [19, 20]. In 
turn, phosphorylated ubiquitin chains facilitate the recruitment of Parkin, an E3 ubiquitin ligase, and amplification of 
mitophagy signal [3, 21], triggering the sequestration of impaired mitochondria [6].

Another type of mitophagy is known as receptor-mediated mitophagy (Fig. 1B–D). Different types of receptors have 
been reported to contribute to the elimination of mitochondria under physiological and pathological conditions, includ-
ing BNIP3 and BNIP3L (also known as NIX), FUNDC1 and BCL2L13 [22–26]. BCL2/adenovirus E1B 19 kDa protein-interacting 
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Fig. 1   Schematic representation of PINK1/Parkin- and receptor-mediated mitophagy (see the text for the details). A PINK1/Parkin-mediated 
mitophagy, B–D BNIP3- FUNDC1- FKBP8-mediated mitophagy, respectively
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protein 3 (BNIP3) and BNIP3-like (BNIP3L/NIX) are important mediators of hypoxia-induced mitophagy [27, 28]. Indeed, 
both BNIP3 and NIX are transcriptional targets of HIF1 (hypoxia-inducible factor 1 alpha) (Fig. 1) [6, 29]. However, BNIP3 
and NIX can also be regulated by other transcription factors like FOXOa3 or NF-κB, implying their involvement in signal-
ing pathways beyond hypoxia [30, 31]. BNIP3 and Nix contain LIR (LC3-interacting region) domains, which provide direct 
binding to microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) to induce mitophagy [29]. The interac-
tion of BNIP3 with MAP1LC3B requires phosphorylation of its serine residues Ser17 and Ser24 [6]. Both BNIP3 and NIX 
belong to the pro-apoptotic Bcl-2 family of proteins. Expression of both has been linked to non-apoptotic cell death in 
response to various stresses, and both proteins are categorized as BH3-only proteins [2, 27]. However, further studies 
have demonstrated that the BH3 domain in BNIP3 and NIX is atypical, leading to the reduced pro-apoptotic function of 
both proteins [32, 33].

Mitophagy induced by BNIP3 is associated with mitochondrial fragmentation and perinuclear clustering [2, 34, 35]. 
Thus, BNIP3 overexpression activates mitochondrial fragmentation through inhibition of the fusion protein Opa1, leading 
to cristae remodeling [36, 37]. Additionally, BNIP3-induced mitophagy stimulates the translocation of the fission protein 
Drp1 to mitochondria, whereas the overexpression of either Mfn1 or dominant negative Drp1 inhibits BNIP3-dependent 
mitophagy [38]. Apparently, there is an interplay between BNIP3 and regulators of mitochondrial dynamics [2].

Another mitophagy receptor activated by hypoxia is FUNDC1 (FUN14 domain-containing protein 1) [39, 40]. In 
response to hypoxia, FUNDC1 binds to MAP1LC3B via its LIR motif and facilitates mitophagy through autophagosome 
formation [39]. Phosphorylation of FUNDC1 at a tyrosine residue in the LIR motif by SCR1 kinase inhibits mitophagy [39]. 
On the other hand, the phosphorylation of serine 17 by ULK-1 facilitates the FUNDC1-MAP1LC3B interaction, thereby 
accelerating mitophagy [39]. Thus, the FUNDC1 phosphorylation state determines its affinity for MAP1LC3B and activates 
mitophagy. The PGC-1α-NRF1 pathway is a crucial regulator of mitochondrial biogenesis. PGC-1α and NRF1, involved in 
the regulation of mitochondrial biogenesis, has been shown to upregulate the expression of FUNDC1, thereby stimulat-
ing mitophagy and promoting mitochondrial turnover [41].

Autophagy regulator Ambra1 was shown to induce mitochondrial depolarization and subsequent mitophagy activa-
tion via a Parkin-independent pathway. Ambra1 interacts with the E3 ubiquitin ligase HUWE1, which induces mitophagy 
through ubiquitylation and further degradation of mitofusin 2 (Mfn2) [42]. After mitophagy induction, Ambra1 binds 
to MAP1LC3B, leading to autophagosome formation [42]. In addition, Ambra1 may accelerate mitophagy through the 
PINK1/Parkin pathway [43].

FKBP prolyl isomerase 8 (FKBP8/FKBP38), another mitophagy receptor, belongs to the immunophilin family [44]. 
FKBP8 is normally localized to the OMM and recruits MAP1LC3A by its LIR motif [44]. Overexpression of FKBP8 stimulates 
mitochondrial fission, followed by mitophagy induction [44]. Unlike other mitophagy receptors, FKBP8 avoids degrada-
tion in the autophagosome during mitophagy and translocates to the endoplasmic reticulum, where it binds to Bcl-2 
[44]. Thus, through these two mechanisms, mitophagy plays an important role in the mitochondrial stress response, also 
providing mitochondrial quality control and the maintenance of homeostasis.

3 � The role of mitophagy in tumorigenesis

Although the role of mitophagy in tumorigenesis remains incompletely understood, recent evidence demonstrates that 
the dysregulation of mitophagy is frequently associated with cancer [17]. Like autophagy, mitophagy plays a dual role in 
cancer and may either promote or suppress tumorigenesis, depending on the tumor type and molecular context [45]. 
Thus, the loss of function of several mitophagy-related genes results in the inhibition of mitophagy and further accumu-
lation of dysfunctional mitochondria, thereby contributing to tumorigenesis. On the other hand, mitophagy may act as 
a tumor-promoting mechanism and thus contribute to cancer cell survival under stress conditions [3].

As mentioned above, the PINK1/Parkin pathway is one of the main pathways of mitophagy [46]. The loss of function 
of Parkin can suppress mitophagy and contribute to carcinogenesis [3]. For instance, Parkin/PARK2 gene mutations have 
been detected in lung and breast cancers as well as in glioma [47–49]. In these tumors, loss or partial deletion of PARK2 
leads to the acceleration of tumor progression, demonstrating that PARK2 mutations may function as a driver mutation 
[50]. Additionally, amplification of PARK2 contributes to the inhibition of hepatocellular carcinoma and colon cancer cell 
growth [51]. PINK1 and Parkin have been shown to suppress HIF1α stabilization [52–54]; Parkin interacts directly with 
HIF-1α, promoting its ubiquitination at K477 and further degradation, which in turn suppresses breast cancer metastasis 
[54].
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Parkin has also been reported to be a p53 target gene involved in the regulation of glucose metabolism [55]. Parkin 
downregulation results in a switch to aerobic glycolysis (Warburg effect), whereas restoration of Parkin expression in 
cancer cells reverses the Warburg effect [50]. These observations provide the evidence that Parkin acts as a tumor sup-
pressor and its downregulation contributes to the progression of different types of tumors. However, Parkin knockout 
in a mouse model of melanoma suppressed tumor growth and metastatic dissemination through the downregulation 
of Parkin-related ubiquitination of Mfn2 [56, 57]. Furthermore, in vitro studies have confirmed that Parkin knockout 
significantly inhibits the growth and migration of melanoma cells, suggesting that Parkin may also contribute to tumor 
progression [56, 57].

The mitophagy adaptors BNIP3 and NIX, induced by hypoxia, have also been found to play important roles in tumo-
rigenesis [58]. BNIP and NIX have been shown to act as tumor suppressors in different cancers [59]. For instance, in a 
mouse model of mammary tumors, BNIP3 deletion stimulated tumor growth linked with mitochondrial dysfunction, 
activation of HIF and elevated ROS production [59]. Furthermore, BNIP3 loss in this type of tumor was associated with 
increased angiogenesis, glycolytic shift, and metastatic dissemination [59].

Likewise, knockout of the NIX gene accelerates tumor growth, whereas upregulation of NIX expression induced by 
p53 contributes to tumor cell apoptosis [60]. Interestingly, in pancreatic cancer, BNIP3 downregulation contributes to 
chemotherapy resistance and is associated with poor patient prognosis, implying a tumor-suppressing role of BNIP3 
[61]. However, NIX has been shown to promote pancreatic carcinogenesis, whereas loss of NIX results in the restoration 
of mitochondrial function and delays cancer progression [62]. The different roles of BNIP3 and NIX in pancreatic cancer 
require further investigation. Other reports have shown that increased expression of BNIP3 detected in hypoxic regions 
of lung and prostate cancers, glioblastoma multiforme, cervical tumors, endometrial cancer, breast carcinomas and 
gastric adenocarcinomas correlates with an aggressive tumor phenotype and a poor prognosis [58, 63–65]. Nix is also 
highly expressed in hypoxic tumor cells, and Nix-mediated mitophagy promotes cancer cell survival in glioblastoma 
and pancreatic cancers, associated with poor patient prognosis [66]. In addition, BNIP3-induced mitophagy promotes 
cell migration and metastasis, thereby contributing to different stages of the metastatic cascade, including cytoskeleton 
remodeling and invasion [67, 68]. Thus, the controversial roles of BNIP3 and NIX in cancer progression can be explained 
by different types of tumors and molecular contexts.

FUNDC1 is also involved in the regulation of cancer initiation and progression [69]. In cervical cancer, the expression 
of FUNDC1 is significantly upregulated in tumors as compared to normal tissues [70]. The overexpression of FUNDC1 is 
associated with tumor progression and poor patient prognosis, indicating a tumor-promoting role of FUNDC1 in cervi-
cal cancer [70]. FUNDC1 has also been reported to inhibit hepatocellular carcinoma (HCC) progression by suppressing 
activation of the inflammasome in mice [71]. The inflammasome is a molecular platform that promotes inflammatory 
cell death through the activation of caspase-1 and interleukin synthesis [72]. FUNDC1 depletion in hepatocytes results 
in the accumulation of damaged mitochondria and increases the inflammatory response, including caspase-1 activation 
and stimulation of JAK/STAT and NF-κB signaling, leading to the progression of HCC [71]. In this context, mitophagy plays 
important role in the regulation of inflammasome activation by preventing the accumulation of damaged mitochondria 
and tumor progression.

Altogether, these studies provide evidence that the role of mitophagy in cancer progression is more complex than 
was suggested by previous studies demonstrating both tumor promoting and tumor suppressing activities depending 
on tumor type, stage, or metabolic activity. The modulation of mitophagy may represent new attractive approach for 
cancer treatment.

4 � Why should mitochondria be deleted?

As stated above, mitophagy is an important quality control mechanism involved in the regulation of homeostasis and 
the maintenance of a healthy mitochondrial network [73]. Thus, when mitophagy is impaired, the accumulation of dys-
functional mitochondria occurs, which might affect cell homeostasis and lead to the occurrence of related diseases. For 
instance, mitochondrial dysfunction may contribute to the progression of various diseases, including cancer, through 
different mechanisms including increased ROS generation, metabolic reprogramming, and production of oncometabo-
lites [45]. At the physiological level, the production of ROS is tightly regulated by antioxidant systems, whereas under 
pathological conditions, the ROS level is increased, leading to the oxidative stress and damage to mitochondrial proteins, 
lipids and DNA [74]. For instance, oxidative damage to lipids may cause lipid peroxidation and oxysterol formation, lead-
ing to the loss of membrane properties. Oxidative damage to proteins may endow proteins with oxidative modifications 
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such as the oxidation of sulfur in methionine or cysteine, further leading to protein dysfunction [75]. ROS overproduction 
significantly contributes to carcinogenesis through the accumulation of DNA mutations [76]. Furthermore, ROS have 
been reported to activate different signaling pathways associated with cancer, including the PI3K pathway. Moreover, 
ROS promote the inactivation of the tumor suppressor PTEN (phosphatase and tensin homolog), the main target of the 
PI3K pathway, by oxidizing active-site cysteine residues [76, 77].

Dysregulation of mitophagy also affects the energy metabolism of the cell. Indeed, cancer cells frequently show a shift 
towards aerobic glycolysis for energy production, even under normoxic conditions, by reducing oxidative phosphoryla-
tion [2]. This shift could be explained by altered expression of key metabolic enzymes including pyruvate kinase M2 
(PKM2), succinate dehydrogenase, phosphoglycerate dehydrogenase and isocitrate dehydrogenase in cancer cells. Parkin 
has been reported to suppress glycolysis through interactions with PKM2, promoting its ubiquitination and leading to 
the inhibition of its enzymatic activity [78]. Parkin has also been shown to mediate the ubiquitination and degradation 
of HIF1α, thereby preventing the activation of its transcriptional targets, including proteins involved in glycolysis [78]. 
Likewise, PINK depletion results in the Warburg effect through the stabilization of HIF1α and reduced activity of PKM2 [52]. 
Furthermore, BNIP3-dependent mitochondrial clearance has been reported to suppress the glycolytic shift in wild-type 
p53 radioresistant cells, whereas defects in mitophagy are associated with the accumulation of dysfunctional mitochon-
dria, which contribute to the glycolytic phenotype in radioresistant cells of head and neck squamous cell carcinoma [17].

Mitophagy has also been reported to be involved in inflammasome activation [71]. Mitophagy plays an important role 
in suppressing inflammasome activation, thereby preventing mitochondrial damage and tumorigenesis. For instance, 
FUNDC1-activated mitophagy suppresses HCC development through the limitation of inflammasome activation in a 
mouse model. FUNDC1 knockdown in hepatocytes led to the accumulation of damaged mitochondria, elevated release 
of pro-inflammatory cytokines and inflammasome activation, contributing to carcinogenesis [71].

Thus, mitophagy dysfunction and the consequent accumulation of damaged mitochondria could contribute to car-
cinogenesis through different mechanisms, including increased ROS generation, inflammation, and cellular bioenergetics.

5 � Mitophagy and treatment of cancer

As we previously discussed, mitophagy plays a dual role in cancer progression, depending on the molecular context and 
cancer type (Fig. 2) (reviewed in [79]).

Chemotherapeutic agents usually induce mitochondrial dysfunction, accompanied by increased ROS generation and 
mitophagy in order to exacerbate cytotoxic effects on cancer cells [80]. Excessive mitophagy induction may result in 
the loss of functional mitochondria, leading to cell death. For instance, dihydroergotamine tartrate (DHE) is a drug for 
migraine treatment derived from ergot alkaloids (Table 1).

It has been demonstrated that DHE induces lung cancer cell death via mitophagy and apoptosis [17]. Specifically, 
DHE has been shown to induce mitochondrial dysfunction, leading to PINK1/PARKIN-dependent mitophagy activa-
tion associated with increased ROS production and further apoptosis in lung cancer cells [17]. In another study, it was 
shown that the antifungal drug ketoconazole induces apoptosis by triggering PINK1/Parkin-mediated mitophagy and by 
downregulating COX-2 in HCC [81]. Likewise, the multi-kinase inhibitor sorafenib stimulates apoptosis in renal and liver 
cancer cells through PINK1/Parkin-mediated mitophagy [82]. Sorafenib has been reported to inhibit complexes II and 
III of the electron transport chain by stabilizing PINK1 on the OMM and Parkin recruitment to damaged mitochondria, 
thereby initiating mitophagy [85]. Mitophagy-related cell death can be activated by the induction of ceramide stress 
in different cancers [83]. Thus, ceramide CerS1 overproduction causes mitophagy and caspase-independent cell death 
[84]. Additionally, a novel BH3-mimetic AT101 and sodium selenite induced excessive mitophagic cell death in glioma 
cells [85, 86]. On the other hand, several drugs have been shown to provide antitumor effects by inhibiting mitophagy. 
For instance, the novel inhibitor of autophagy and mitophagy liensinine increases the sensitivity of breast cancer cells 
to chemotherapeutic agents that induce mitochondrial fission [87].

The inhibition of mitophagy may also contribute to drug resistance modulation in cancer cells [88]. In cervical cancer, 
treatment with melatonin, an endogenous indoleamine and antioxidant, has been shown to suppress resistance to 
cisplatin, thereby restoring the efficacy of chemotherapy [88]. In this study, melatonin was found to hinder mitophagy 
by downregulating c-Jun N-terminal kinase (JNK) and Parkin, leading to cervical cancer cell apoptosis [88]. Similarly, 
in hepatic carcinoma, treatment with the inhibitor of Drp1-mediated mitophagy Mdivi-1 or the lysosome inhibitor 
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Bafilomycin A enhanced the efficacy of chemotherapeutic drugs such as cisplatin [89]. Therefore, targeting mitophagy 
may significantly increase the efficacy of various chemotherapeutic agents.

Mitophagy may contribute to cancer cell survival by adapting to stress conditions, but it may also lead to cell death 
via excessive mitochondrial clearance (Fig. 2). Therefore, the modulation of mitophagy may represent a novel promising 
approach for anti-cancer therapies.

6 � Conclusion

Mitophagy plays important role in maintaining cell and tissue homeostasis by preventing the accumulation of dys-
functional mitochondria that lead to increased ROS production and cell damage. Recent evidence has demonstrated 
that mitophagy is involved in the regulation of tumorigenesis and tumor progression. Mitophagy modulation seems 
to be a promising approach for cancer treatment. However, in tumors mitophagy appeared to play dual role in cancer 
progression. On the one hand, mitophagy inhibits tumor progression by limiting ROS production, while on the other 
hand, mitophagy may promote tumor growth providing adaptation of tumor cells to the changing microenvironment. 
Excessive mitophagy in cancer cells may lead to the mitophagic cell death, and at the same time in several tumors 
the inhibition of mitophagy resulted in suppression of tumor growth. Despite recent advances in understanding of 
mitophagy mechanisms the role of mitophagy in tumorigenesis appears to be very complex, depending on the type 
and stage of the tumor. Here we highlighted the most important knowledge regarding mitophagy mechanisms and 
their role in cancer progression and therapy. However, there are still many questions to be answered. Therefore, further 
studies are required for better understand the molecular mechanism and function of mitophagy for the development 
of novel approaches to cancer treatment.

Fig. 2   Mitophagy modulates 
anticancer therapy (see the 
text for the details)
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