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Abstract: Devices known as electronic noses (ENs), electronic tongues (ETs), and electronic eyes (EEs)
have been developed in recent years in the in situ study of real matrices with little or no manipulation
of the sample at all. The final goal could be the evaluation of overall quality parameters such as
sensory features, indicated by the “smell”, “taste”, and “color” of the sample under investigation
or in the quantitative detection of analytes. The output of these sensing systems can be analyzed
using multivariate data analysis strategies to relate specific patterns in the signals with the required
information. In addition, using suitable data-fusion techniques, the combination of data collected
from ETs, ENs, and EEs can provide more accurate information about the sample than any of the
individual sensing devices. This review’s purpose is to collect recent advances in the development
of combined ET, EN, and EE systems for assessing food quality, paying particular attention to the
different data-fusion strategies applied.
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1. Introduction

The growing interest on the part of producers and consumers in the qualitative
attributes of food has made it necessary to develop increasingly efficient analytical methods
for monitoring the quality of the final product [1].

The overall sensory evaluation of food can be analytically studied using sensory
methods and techniques. Objective methods for quality assessment include instrumental
analysis, but to be of practical use for the food industry, instrumental methods must be
cost-effective and provide rapid and reproducible results. In this context, the use of sensing
systems, such as electronic noses (EN) [2,3], electronic tongues (ET) [4,5], and electronic eyes
(EE) [6,7], can be an advantageous solution for the in situ study of real matrices, allowing to
reduce sample manipulation. The final goal may consist of the estimation of overall quality
parameters, also related to sensory characteristics, given by “smell”, “taste”, and “color” of
the analyzed sample or in the quantitative determination of analytes (Table 1). Concerning
ENs and ETs, gravimetric, optical, and electrochemical sensors can be used for analyzing
volatile compounds or liquid samples [8–11]; however, electrochemical sensors are the
most common sensing systems. Moving to EEs, traditional methods used to objectively
determine food color properties involve the use of colorimeters and spectrophotometers,
while in recent years, the use of computer vision systems based on red–green–blue (RGB)
cameras has rapidly emerged [12].
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Table 1. Biological senses involved in food quality assessment and analytical instruments suitable to
represent the corresponding artificial senses.

Artificial Senses Biological Senses Sensory Properties Analytical Instruments

Electronic tongue Tongue Taste/Flavor
Electrochemical sensors,

optical sensors,
gravimetric sensors

Electronic nose Nose Odor/Aroma
Electrochemical sensors,

optical sensors,
gravimetric sensors

Electronic eye Eye Color
Colorimeter,

spectrophotometer,
RGB camera

When using ENs, ETs, and EEs, the approach followed in the determination of the
parameters of interest is based on “blind analysis” techniques: the measured signals are
analyzed with chemometric methods, which do not require any assumptions about the
species to which a given pattern is ascribed [13–15]. Indeed, using this kind of approach, it
is not necessary to assign the single details of the response in order to obtain coherent and
useful results.

There are several reviews on the subject of ENs and ETs, and a discrete number
on the more recent use of EEs, while the use of combined systems is less frequently re-
ported. In principle, the combination of data acquired by ETs, ENs, and EEs, through
proper data-fusion techniques, can furnish more accurate information about a sample
than any one of the individual sensing devices [16,17] in the same way that the human
brain combines the information resulting from multiple senses in order to gain a more
accurate knowledge about a given object. Data-fusion techniques are categorized in dif-
ferent ways, according to the field of application in which they are involved, and they are
nowadays frequently used in chemometrics when the combination of different analytical
techniques is employed [18–21]. In the field of artificial sensors, they have been frequently
adopted [22–27] in the case of combined ET and EN sensing systems, whereas the use of
combined systems including an EE sensing system is less common [28–30].

Therefore, this review will concentrate on applications of combined EN, ET, and EE
systems exclusively in the food sectors, with a particular focus on the application of the
different data-fusion strategies.

2. Artificial Sensors
2.1. Electronic Nose

An accepted definition of an EN is “an instrument which comprises an array of
electronic chemical sensors with partial specificity and an appropriate pattern recognition
system, capable of recognizing simple or complex odor” [31].

Differently to other analytical instrumentation, ENs allow the identification of simple
or complex volatile aroma mixtures as a whole, without the necessity to identify the
individual chemical species within the sample mixture.

The EN technology is inspired by the sense of smell. The human olfactory system
contains thousands of receptors that bind odor molecules; only in a few cases are there ol-
factory receptors which are specific for individual chemical molecules. Any given molecule
may stimulate a combination of receptors, and some of the receptors can bind more than
one odor molecule, creating a huge number of combinations that send unique signal pat-
terns to the human brain. Most odorants are identified through a synthesis of the global
chemical information from nonspecific interactions. The brain then interprets these signals
and makes a judgment and/or classification to identify the consumed substance based on
previous experiences or neural network pattern recognition.

To mimic the nonspecific recognition, the electronic nose often consists of nonselective
sensors that interact with volatile molecules; upon interaction, a signal is produced which
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constitutes a sort of fingerprint of the odor. The signal is then used by an appropriate
pattern recognition system to identify the odor through comparison with a reference library
of previously obtained measurements of known samples. In this case, the nonselectivity
of the sensors results in many possibilities for unique signal combinations, patterns, or
fingerprints.

An EN is composed of three main components: the sampling system, the sensing sys-
tem, and signal processing system. The sensor array can be considered the most important
component of the EN. The sensors employed should have the highest sensitivity to the
target group of chemical compounds. Moreover, the EN sensors should have relatively low
selectivity to be sensitive to a wide number of different chemical compounds, coupled with
rapid response and recovery times. As ENs are often used in open environments, a low
sensitivity to temperature and humidity is also required.

The basis of gas sensor operation involves interactions between gaseous molecules
and the sensor coating material, which determines selectivity; then, different transduction
principles can be exploited. The most common sensors utilize transduction principles based
on electrical measurements, including changes in current, voltage, and resistance; others
involve mass changes, temperature or heat generation, and others are based on optical
properties.

The most widely used class of gas sensors in ENs technology are metal oxide sensors
(MOSs), and they form the bases of the more successful commercial products. The detection
process involves the change in oxide conductivity in the presence of an oxidizing or
reducing gas due to the reduction/oxidation reactions occurring at the oxide surface.
Recent advances in artificial olfaction devices based on this kind of sensors are reported
in the paper by Jeong et al. [32]. Conducting polymers are the other most used sensors in
ENs. The swelling of polymers due to adsorbed chemical species can change the electrical
properties of conducting polymers. Gravimetric sensors can also be used: the operation
principle relies on the variation of the fundamental oscillation frequency of a thin quartz
crystal as a result of the adsorption of gas analyte on its surface, which changes the
oscillating mass. The surface of these sensors can be modified so that they can vary their
selectivity [33].

Accurate description of the main sensor types used in ENs can be found in recent
reviews [34–36]. Review reporting advances in EN sensors in food applications are also
present in the literature [37–40].

2.2. Electronic Tongue

ETs can be defined as “multisensory systems for liquid analysis based on chemical
sensor arrays and pattern recognition” [41]. Similar to ENs, the basic principle is to combine
signals from nonspecific sensors with pattern recognition system, but at difference with
ENs, the analyzed samples are liquid.

The original aim of ETs was to mimic the functions of human taste receptors: the
recognition of the taste itself, rather than the discrimination of each chemical substance,
is the final goal; for this reason, the device has also been defined as a “taste sensor” or an
“artificial tongue” [42]. In this case, the array of sensors is used to classify a wide range
of matrices into groups that reflect combinations of the five basic gustatory sensations,
i.e., sweetness, sourness, saltiness, bitterness, and “umami”. This is not a trivial task, as
taste can be elicited by compounds with very different structures and chemical properties.
Moreover, the ETs may respond to the aroma compounds, which are dissolved in the liquid.

The same approach, i.e., the use of an array of sensors complemented by an appropriate
pattern recognition system, has been then employed to distinguish between different
liquid mixtures performing tasks such as recognition, classification, process monitoring,
qualitative analysis, and even quantitative analysis. These more general systems are usually
called “electronic tongues”.

The most important part of an ET is the sensor array: it comprises a set of chemi-
cal sensors with only partial selectivity to different compounds, the variety of selectivity
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providing a great deal of complementary information, i.e., high overall information con-
tent. Optimizing the choice of the sensor ensemble leads to the best information and can
minimize the presence of noise and useless information. A number of chemical and bio-
chemical (enzymatic) sensors exploiting various sensing techniques have been employed in
designing ETs: electrochemical (potentiometric, voltammetric, amperometric, impedimet-
ric, conductimetric), which are the most used, optical, and gravimetric [43]. In particular,
electrochemical sensor arrays have proven to be highly efficient in discriminating complex
liquid mixtures [44]. It is possible to obtain sensors with different sensitivity by chemical
modification, reaching significant cross-selectivity.

Potentiometric sensors were used in the first studies on the application of sensor
arrays for multicomponent analysis of liquids [45–47] and they still remain the most widely
used type in the e-tongue systems, especially ion-selective electrodes (ISEs). The main
disadvantage of potentiometric sensors is that they respond only to the charged species
in solutions, which limits the number of potential analytes. The temperature variations
and the adsorption of components present in the solution that can affect the membrane
potential can be minimized by controlling the temperature and washing the electrodes. On
the other hand, the advantages of ISEs are their well-known operation principle, low cost,
simple setup, easy fabrication, and the possibility of obtaining sensors selective to many
various species.

Voltammetric sensors are also widely used in ET systems. These devices are advan-
tageous for multicomponent measurements because of their high selectivity, high signal-
to-noise ratio, low detection limits, and various modes of measurement. Furthermore, the
surface of the electrodes can be modified with various chemosensitive materials, obtaining
sensors of various sensitivity and selectivity towards a variety of species. However, their
applicability is limited to redox-active substances.

Principal applications of ETs in food analyses are reported in the literature [48–51].

2.3. Electronic Eye

The EE is an analytical device designed to mimic human visual perception and to
acquire color- and aspect-related information from a sample, allowing to gain an objective
evaluation of the color properties of an object. Usually, EE sensors are based on colorimetry,
spectrophotometry, or computer vision (Figure 1).

When using an EE to acquire color information from a sample, two complementary
aspects should be considered: the choice of the proper device to measure color, and the
choice of the proper manner to describe color.

Color is described using a color space, which is a mathematical representation able to
associate color coordinates with each perceived color. There are three different types of color
spaces: hardware-oriented color spaces, human-oriented color spaces, and instrumental-
oriented color spaces [7]. Hardware-oriented spaces are used for hardware processing,
such as, e.g., image acquisition or image display on digital screens. The most popular
hardware-oriented space is the RGB space, which is defined by the coordinates on the red
(R), green (G), and blue (B) axes. Human-oriented spaces better reflect color perception by
the human eye, as we are more prone to describe color characteristics of an object using
the concepts of tint, shade, or tone rather than the amount of red, green, and blue. An
example of human-oriented space is the hue (H) –saturation (S) –intensity (I) space, where
the concept of hue is related to the “purity” of a defined color, saturation is related to the
perception of colorfulness of an area in relation to its brightness, and intensity describes the
amount of light present in a color. Instrumental spaces are used by classical instruments
measuring color, such as colorimeters, and they have been standardized by the Commission
Internationale d’Eclairage (CIE) in order to have device-independent color coordinates. In
color measurement of food products, the most used color space is the L*a*b* color space
(also known as CIELAB).
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Considering the analytical devices able to measure color, colorimeters and spectropho-
tometers are the most widespread tools used in the food industry. Colorimeters are com-
posed of a light source, monochromatic filters, and a detector to spectrally emulate the
sensitivity of the human eye, and the results are usually expressed in terms of CIELAB
coordinates. On the other hand, spectrophotometers are able to register the whole spectrum
of a sample in the visible range and then, using mathematical transformations, it is possible
to calculate color coordinates of the sample, including L*a*b* values.

These two instruments allow to measure color properties of the analyzed samples
considering only a limited surface area, resulting as less effective when it is necessary to
evaluate color variability on larger sample areas or to analyze inhomogeneous samples. To
overcome these limitations, computer vision systems are gaining an increasing interest in
the objective evaluation of visual aspects of food products. Computer vision systems are
composed of an illumination system, a digital RGB camera, a sample holder, and hardware
and software for image acquisition and processing [52]. RGB cameras are based on charge-
coupled device (CCD) sensors or on complementary metal-oxide Ssemiconductor (CMOS)
sensors; essentially, both are arrays of minute photosensitive elements able to convert the
intensity of incident light into an electric signal. In both cases, the sensor is covered by
a mosaic of red (at λ ≈ 630 nm), green (at λ ≈ 545 nm), and blue (at λ ≈ 435 nm) filters,
corresponding to the wavebands to which the human eye is sensitive. In the resulting RGB
images, each pixel contains three integer values ranging from 0 to 255, corresponding to the
red, green, and blue channels. Therefore, RGB images are three-dimensional data arrays
with a size {r, c, 3}, where r is the number of pixel rows, c is the number of pixel columns,
and 3 corresponds to the R, G, and B channels.

RGB images are complex data arrays, and it is fundamental to identify proper strate-
gies to extract the useful information from such data [53]. Furthermore, when used in
combination with signals derived from other sensors, it is necessary to compress the in-
formation contained in each three-dimensional RGB image into a one-dimensional signal,
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performing the so-called data-dimensionality reduction [20]. As a very straightforward
method, average values of the three R, G, and B channels, or average values of color descrip-
tors, such as, e.g., H, S, and I values, can be calculated from all the pixels of the image [54]. It
is also possible to convert RGB images in L* a* b* values using proper calibration functions
to relate the sensor response of the camera with CIE color-matching functions [55,56].

In order to preserve information related to spatial variability contained in the images, a
possible strategy for image-data reduction consists of the calculation of histograms derived
from one or more color parameters. Then, the histogram data are used as a color fingerprint
signal of each image of the dataset [57,58].

3. Data Fusion

The sensor technologies mentioned in Section 2 are able to provide information about
different, and usually complementary, aspects of the considered set of samples. Data
deriving from these different information sources can be jointly analyzed in order to gain a
more comprehensive knowledge about the problem at hand. Fusion of data collected on
the same sample set using different analytical sensors can be carried out at three levels:
low-level, mid-level, and high level (Figure 2).
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3.1. Low-Level Data Fusion

Low-level data fusion (or concatenated data fusion) represents the easiest and most
straightforward way to jointly analyze multiple data blocks coming from different analytical
sensors. In low-level data fusion, the variables obtained from the different sensors are
simply merged row-wise, and the resulting data matrix has as many rows as the number
of analyzed samples and as many columns as the sum of the number of variables of each
data block. Then, this merged data matrix can be used to build multivariate calibration or
classification models.

A key aspect of low-level data fusion is preprocessing, which is generally performed in
two subsequent steps: firstly, each data block is separately preprocessed, and then scaling
procedures are necessary for proper concatenation of the different data blocks.

In the first step, each block of signals is separately preprocessed in order to reduce
the effect of noise or uninformative systematic variations. According to the nature of the
acquired signals and of the analyzed samples, different preprocessing methods can be
applied, for example Savitzky–Golay smoothing can be used to correct noisy signals [59],
derivatives allow to correct baseline offsets (vertical shifts) and drifts (slope variations), as
well as to enhance resolution of overlapped peaks [60], while global intensity effects can be
corrected using standard normal variate or multiplicative scatter correction [61,62].
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Considering the second step, adequate scaling or weighting procedures are necessary
to account for the different dimensionality of the data blocks. As a matter of fact, when
the data blocks have a very different number of variables, the outcomes of the analysis are
strongly influenced by the largest block if proper scaling procedures are not carried out. To
solve this issue, the most common preprocessing method applied to low-level merged data
is block scaling, which consists of scaling each data block by its global standard deviation.
In this manner, while preserving the relative weights of the variables within each block, the
subsequent calculation of multivariate models is influenced by the different data blocks
with equal weight [18].

Low-level data fusion has the main advantage of allowing a direct interpretation of
the results in terms of the contribution of the original variables, and the correlation between
variables belonging to different blocks can also be easily investigated. On the other hand,
the noise content of the different data blocks is added.

3.2. Mid-Level DATA Fusion

In mid-level data fusion (or feature level data fusion), the original signals are separately
analyzed to extract or select relevant features, and these features are then concatenated to
obtain the fused dataset.

Two approaches can be adopted to obtain the features of interest from original signals:
variable selection or feature extraction.

Variable selection approach consists of selecting the most relevant variables from
each data block using variable selection algorithms, which automatically identify useful
variables and discard the uninformative ones based on model predictions. Variable selection
methods can be grouped into three main categories: filter methods, wrapper methods,
and embedded methods [63]. In filter methods, a multivariate model is fitted on the input
data and the important variables are selected by introducing a threshold on a measure
of relevancy of the model itself, such as, e.g., the regression coefficients or the variable
importance in projection (VIP) values [64,65]. Wrapper methods extract subsets of the
original variables and evaluate the relevance of each subset by fitting a model to the
extracted variables. The methods iterate between model fitting and variable selection in
order to optimize model performances. Genetic algorithms (GA) [66] and interval-based
methods [67] are examples of wrapper methods for variable selection. Finally, in embedded
methods, variable selection is an integrated part of the modified classification or regression
algorithm. For example, in sparse methods, variable selection is performed by introducing
a penalization term on the objective function of the considered algorithm [68].

On the other hand, mid-level data fusion based on the feature extraction approach
consists of retaining the relevant information contained in each set of signals using few
latent variables accounting for underlying variable correlations and discarding noise. In
this case, the features extracted from each data block consist of score vectors calculated
from unsupervised or supervised methods based on latent variables, such as, e.g., principal
component analysis (PCA), partial least squares (PLS) regression, or partial least squares-
discriminant analysis (PLS-DA).

The extracted or selected features of each block are then concatenated, and the resulting
dataset is analyzed with multivariate statistical methods to provide the final classification
or calibration output.

When using mid-level data fusion based on subsets of the original variables, the
interpretation of the results can be easily conducted as for low-level data fusion. However,
the application of feature extraction methods is usually recommended in order to drasti-
cally reduce the number of variables considered in the merging procedure, and noise is
discarded [18].



Sensors 2022, 22, 577 8 of 17

3.3. High-Level Data Fusion

Conversely to low-level and mid-level strategies, in high-level data fusion, the infor-
mation related to the different sensors is combined at the decision level, and this kind of
approach is mainly used for classification purposes.

More in detail, separate models are independently calculated for each block of signals,
and the predictions obtained from the individual models are joined together to give the
final decision. Different strategies can be employed to combine the predictions resulting
from the single models to obtain the final output, from simple majority voting [69] to more
complex methods based on Bayesian statistics [70] or evidence theory [71].

The main challenge in high-level data fusion consists of the identification of the
optimal classification model for each block so that the combination of the outputs performs
better than individual models [1].

4. Applications
4.1. EN + ET

EN and ET are used to obtain the complete flavor profile of foodstuff, which is the
combined effect of the olfactory and gustatory aspects. In fact, the EN can evaluate volatile
compounds or the aroma of a liquid in the headspace (i.e., evaluating the strength of the
aroma concentration), while the ET can discriminate the concentration in a complex solution
of the active compounds, which can affect the taste properties. Then, the combination of
the two devices can successfully provide a complete characterization of the flavor of a food
sample and, exploiting data-fusion techniques, important targets can be reached, such as
the classification of similar products, the recognition of adulteration processes, and the
definition of the degree of freshness (Table 2).

Table 2. List of publications related to the application of combined ET and EN.

Food Matrix Aim of the Study ET EN Data-Fusion
Method Ref.

Black tea Quality assessment of black tea
5 electrodes made of

5 different noble
metals

5 commercial MOS
sensors

Mid-level of
extracted features

(wavelet)
[22]

Virgin olive oils Characterize virgin olive oils from
different geographical areas

4 electrodes of
different metals

5 commercial MOS
sensors Low-level [23]

Rice wines Evaluating the marked ages of rice
wines

3 types of modified
electrodes with

conducting polymer
12 MOS sensors Low-level [72]

Chinese Robusta
coffees

Characterizationand classification of
Chinese Robusta coffee cultivars Commercial e-tongue Commercial e-nose Low-level [73]

Black tea Classification of different grade of
black tea

5 electrodes made of
5 different noble

metals

5 commercial MOS
sensors

Mid-level of
extracted features

(wavelets)
[74]

Orthosiphon stamineus Classification of Orthosiphon stamineus 7 commercial
ion-selective sensors Commercial e-nose Low-level [75]

Meat
Recognition of organoleptic

characteristics of minced mutton
adulterated with pork

Commercial taste
system Commercial e-nose Low-level fusion and

mid-level fusion [76]

Cherry tomato juices
Authentication of fresh cherry tomato

juices adulterated with overripe
tomato juices

Commercial e-tongue Commercial e-nose

Low-level; mid-level
with selected features

(PCA scores, F
selection, stepwise

selection)

[77]

Edible oil Detection of the blending ratio of old
frying oil and new edible-oil Gold electrode 8 commercial gas

sensors Low-level [78]

Mushroom Detection of submerged fermentation Commercial e-tongue 10 commercial MOS
sensors Low-level [79]

Zhang et al. used a self-developed ET and EN for evaluating the marked ages of rice
wines [72]. The ET consisted of three types of modified electrodes with conducting polymer,
while the EN constituted 12 MOS sensors and it was connected to a smartphone. Six types
of feature datasets (ET dataset, EN dataset, direct-fusion dataset, weighted-fusion dataset,
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optimized direct-fusion dataset, and optimized weighted-fusion dataset) were used for
identifying rice wines with different wine ages; the weighted-fusion data gave best results.

Good classification results were achieved also by Dong et al. in the analysis of seven
Chinese Robusta coffee cultivars with different roasting degrees [73]. A fusion of both
commercial EN and ET data was demonstrated to be an effective and powerful method for
the rapid and nondestructive determination of coffee beans using the low-level data-fusion
strategy. In particular, the combined data from the EN and ET performed much better
than either approach alone in measuring the quality parameters of Chinese Robusta coffee
beans when PLSR regression was used. Banerjee et al. applied ET and EN mid-level
data fusion to classify black tea samples on the basis of their flavor characteristics, first
exploiting a Bayesian approach [22] and then wavelet packet decomposition [74]. ET
consisted of five electrodes made of five different noble metals and EN consisted of five
MOS sensors composed of commercially available gas sensors. From the results, it was
found that combined sensor response could classify black tea samples more accurately
(99.75% classification rate) than individual utilization of EN or ET. Zakaria et al. employed
low-level data-fusion techniques to discriminate different commercial Orthosiphon stamineus
tea product samples, demonstrating that both PCA and linear discriminant analysis (LDA)
results were improved by data fusion [75]. Combining a voltammetric ET with a low-cost
EN, virgin olive oils were classified according to their geographical origins, as reported by
Haddi et al. [23]. A perfect recognition was achieved by PCA, cluster analysis (CA), and
support vector machine (SVM) when an improved low level was developed (low level of
abstraction coupled with ANOVA variable selection).

In order to distinguish the organoleptic characteristics of minced mutton adulterated
with different proportions of pork, low-level and mid-level data-fusion methods were
applied to signals obtained from commercial EN and ET [76]. Hong at al. followed six
approaches (two EN measurements, one ET measurement, and three fusion approaches
using both instruments) for recognition and quantitative analysis of four unadulterated
tomato juices and three adulterated tomato juices with different adulteration levels [77].
The first fusion approach was based on simple concatenation of original EN and ET sensors,
the second fusion approach was based on stepwise selection, and the last one was based
on an ANOVA-selected variable, which presented the best authentication performance.
Men and al. used fusion technology based on the EN and ET to detect the blending ratio
of the old frying oil and the new edible oil [78]. The characteristic vectors of both systems
separately extracted from the two data blocks were used to form high-dimensional data as
the new characteristics of the fusion system.

A low-level data-fusion model to combine EN and ET was developed by Dai et al. to
detect submerged fermentation of Tremella aurantialba (T. aurantialba) [79]. The data were
converted into 2D or 3D coordinates with irrelevant projection vectors, which retained the
most important information from the original data. SVR models were used to establish
the relationship between the data fusion of ET and EN and chemical indicators for the
submerged fermentation values for quantitative prediction, showing high correlation
degree.

4.2. EN + EE

As shown in Table 3, EN and EE are mainly applied for the determination of quality
and safety attributes of food products such as meat, vegetables, or fruits. The combined
use of these two devices allows to monitor, at the same time, the evolution of volatile com-
pounds and color modifications caused by chemical changes of the analyzed matrix. Odor
and color are strongly linked in the evaluation of food freshness, in particular when consid-
ering perishable food products. Indeed, chemical reactions occurring during food spoilage
determine both the formation of peculiar volatile compounds and color modifications.
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Table 3. List of publications related to the application of combined EN and EE.

Food Matrix Aim of the Study EN EE Data-Fusion Method Ref.

Pork meat

Determination of total
volatile basic nitrogen

content for evaluating pork
freshness

11 commercial
MOS sensors CCD camera Mid-level with selected

features [80]

Tilapia fillets Characterization of fresh
and spoiled tilapia fillets

12 commercial
MOS sensors CCD camera Low-level [81]

Longjing tea Quality grading of tea
samples Commercial e-nose CMOS camera

Mid-level with both feature
extraction and feature

selection
High-level data fusion

[82]

Tomatoes Prediction of ripening stage
and quality parameters 10 MOS sensors CCD camera Mid-level, fusion of first PCs

of each block [83]

Strawberries

Evaluation of fungal
contamination on

strawberries during decay
and determination of

quality attributes

Commercial e-nose

Vis-NIR
hyperspectral

imaging system
(400–1000 nm)

Low-level
Mid-level with extracted

features (PCA scores)
[84]

Pork meat
Quantification of

intramuscular fat and
peroxide value

Commercial e-nose

Vis-NIR
hyperspectral

imaging system
(400–1000 nm)

Mid-level with extracted
features (PCA scores after

variable selection)
[85]

Korel at al. demonstrated the possibility of coupling EN and EE to determine the
spoilage level of tilapia fillets treated with different percentages of sodium lactate and
stored at different temperatures [81]. Electronic nose readings and color features of the
analyzed samples were fused at the low level and used to develop a classification model
able to assign the tilapia fillets to the correct spoilage class, obtaining higher classification
rates compared to single sensors.

Considering meat products, total volatile basic nitrogen (TVB-N) content is a reference
index to assess the freshness of pork meat. Huang et al. coupled EN and EE with near-
infrared (NIR) spectroscopy to measure TVB-N content of pork meat samples [80]. The
data analysis workflow followed by the authors can be summarized in three main steps:
(i) extraction of the characteristic variables from each sensor response; (ii) application of
PCA to each data block containing the characteristic variables of the three sensors to reduce
the data dimensionality; (iii) mid-level data fusion of the score vectors of each PCA model
and application of artificial neural networks (ANN) to the fused dataset to predict TVB-N
content.

Liu et al. coupled the information resulting from a commercial portable EN and a
Vis-NIR hyperspectral imaging (HSI) system (400–1000 nm spectral range), acting as an
EE, in order to predict fungal contamination in strawberries [84]. Indeed, EE resulted as
an effective method to monitor changes in exterior appearance and chemical composition
(mainly total soluble solids and titratable acidity) in infected strawberries during storage.
On the other hand, EN allowed capture of characteristic odor/aroma modifications of
strawberries ascribable to fungal metabolism. Given these considerations, the two data
blocks were merged at the mid-level by a preliminary compression of the two sensor
datasets using PCA. Then, a calibration model was developed using mid-level fused data
in order to predict fungal contamination, obtaining satisfactory results.

Color and aroma also characterize the quality and sensory attributes of food matrices,
and combined EN and EE systems were successfully used to quantify quality parameters
in different food matrices, such as quality levels of green tea [82], hardness and ripeness of
tomatoes [83], and intramuscular fat and peroxide values of pork meat [85].

Xu et al. [82] developed a rapid classification method based on a commercial e-nose
and computer vison to discriminate tea samples according to quality grading. To perform
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mid-level data fusion, relevant features were separately extracted from EN and EE data
blocks using PCA. The resulting score matrices were merged together, and SVM algorithm
was used for classification. In addition, high-level data fusion was also tested. In this case,
two separate classification models were calculated for EN and EE data blocks using SVM,
and the predictions obtained from the independent model were combined to obtain the
final classification output.

4.3. ET + EE

Combination of EE and ET systems has been mostly applied to the analysis of liquid
or semiliquid food samples characterized by chromatic characteristics, such as wines and
honey. On the one hand, the ET can give rapid information about the chemical composition
of the complex sample, including information about pH value or sugars, ethanol, and
amino acids content. On the other hand, the EE can give useful information about color
attributes, which can affect the visual sensory characteristics but also provide important
qualitative parameters employed by farmers to estimate the time of the harvest or by the
producers to control the quality of the final product or to modify the production process.

Table 4 lists the main applications of combined EN and EE analytical systems.

Table 4. List of publications related to the application of combined ET and EE.

Food Matrix Aim of the Study ET EE Data-Fusion Method Ref.

Wine
Determination of quality

parameters in red and white
wines

Set of ISFET
sensors

Spectrometer
(200–1100 nm)

Mid-level with
selected features [86]

Wine
Characterization and

quantification of grape
varieties in red wines

Set of ISFET
sensors

Spectrometer
(200–1100 nm)

Mid-level with
selected features [87]

White grape juices
Discrimination of juices

obtained from different grape
varieties

Set of IFSET
sensors

Lab-on-a-chip
spectrophotometer

(200–1100 nm)

Mid-level with
selected features [88]

Soft drinks
fortified with

extracts of green
tea

Characterization of different
formulations and prediction
of sweetness and bitterness

2 screen printed
sensors

UV–Vis
spectrometer

Low-level and
mid-level [89]

Grape must
Quantification of the chemical

parameters used to assess
phenolic ripening in grapes

PEDOT electrode
and

SNGC-electrode
Flatbed scanner

Low-level; mid-level
with selected features

Mid-level with
extracted features (PLS

scores)

[90]

Gutierrez et al. deeply studied the potentialities of a multisensor consisting of a colori-
metric optofluidic system and an array of electrochemical sensors for the characterization
of red and white wines [86–88]. In their most recent work, the ET system comprised poten-
tiometric, amperometric, and conductimetric sensors while the EE device consisted of a
lab-on-a-chip spectrophotometer. Through a mid-level data-fusion method with feature
selection by PCA and soft independent modeling class analogy (SIMCA), good classifi-
cation of the grape varieties and identification of the mixtures were achieved. Moreover,
using the PLS regression, the system has demonstrated a high potential for quantifying the
percentage of each grape variety.

Bulbarello et al. developed a hybrid electronic tongue including optical and electro-
chemical sensors able to evaluate bitterness in beverages fortified with plant extracts of
green tea [89]. Two electrochemical sensors and one optical sensor showing independent
and complementary signals towards epigallocatechin gallate and glucose, two of the most
representative compounds found in fortified beverages and responsible for their final taste,
were selected. Applying low- and mid-level data-fusion approaches, a preliminary PCA
model and PLS regression models have been developed to provide two indices able to
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express the “bitterness” and “sweetness” intensity, the results being consistent with the
declared composition of the soft drinks on the label.

Orlandi et al. applied different data-fusion strategies to merge the information brought
by EE and ET sensing systems for the evaluation of grape ripening [90]. An amperometric
ET was demonstrated to be sensitive to the concentration of the electroactive compounds of
grape must [91], while an EE consisting of a common flatbed scanner was able to describe
the color features of the must samples, which in turn are related to the concentration of
the colored chemical species [92]. Thus, thanks to the synergy of the ET and EE responses,
the application of data-fusion techniques (low level, mid-level with selected features, and
mid-level with extracted features) allowed the Authors to consider the information brought
by both the systems, improving the calibration models for a fast and easy determination of
a significant number of parameters related to grape phenolic ripening.

Finally, Di Rosa et al. applied mid-level fusion methods, combining data from a poten-
tiometric ET and a computer vision system, to classify different Sicilian honey varieties,
achieving a satisfying recognizing percentage [93].

4.4. ET + EN + EE

Some applications of artificial sensors also imply the use of ET, EN, and EE altogether to
acquire information from the samples; the resulting data are then jointly analyzed through
data-fusion techniques (Table 5). In this manner, it is possible to gain a more comprehensive
evaluation of the analyzed food matrix, somehow simulating human sensory perception.
Indeed, the simultaneous use of EE, EN, and ET is often referred to as “electronic panel”,
as this approach is able to mimic the human panel responses for sensory evaluation of the
products [1,94].

Table 5. List of publications related to the application of combined ET, EN, and EE.

Food
Matrix Aim of the Study ET EN EE Data-Fusion

Method Ref.

Extra virgin
olive oils

Characterization of virgin
olive oils from different

varieties of olives and different
degree of bitterness

Carbon paste
Electrodes

modified with
olive oils

13 commercial
MOS sensors

Spectrophotometer
(380–780 nm) Low-level [28]

Rice wines Prediction of human sensory
attributes of rice wine

Commercial
e-tongue Portable e-nose Colorimeter Low-level [29]

Olive oils

Characterization of edible
olive oils and quality decay
assessment of extra virgin

olive oil and olive oil during
shelf-life tests

Commercial
e-tongue

Commercial
e-nose

Spectrophotometer
(380–780 nm)

Mid-level with
extracted

features (PCA
scores)

[30]

Longjing
green tea

Classification of quality grades
and quantification of quality

indices

Commercial
e-tongue

Commercial
e-nose Colorimeter Low-level [95]

Wine
Discrimination of wines with
different oxygen levels and

antioxidant capabilities

Modified
carbon paste

electrodes
15 MOS sensors UV–Vis spec-

trophotometer Low-level [96]

Electronic panels composed of ET, EN, and EE were used to characterize organoleptic
properties of extra virgin olive oils [28] and predict human sensory attributes of rice
wine [29]. Both studies aimed at developing a combined sensor system able to replace,
at least partially, human panel test of food products in order to speed up quality control
of sensory properties. In Apetrei et al., the electronic panel was composed of an EN
constructed using 13 MOS sensors, an ET based on modified carbon paste electrodes (CPE)
sensors, and a spectrophotometer working in the 380–780 nm range acting as an EE [28].
Data obtained from the three devices were fused at the low level and used to develop
classification and regression models to characterize extra virgin olive oil properties.
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A similar approach was carried out by Ouyang et al. to predict sensory attributes of
Chinese rice wines given by a panel test [29]. Trained experts attributed a score to color,
taste, and aroma sensory properties to 75 samples of rice wine. The same samples were
also analyzed using a portable EN system based on 10 MOS sensors, a commercial ET
with seven different liquid cross-selective sensors, and a colorimeter. Data from the three
sensors were combined together and used to develop multivariate calibration models able
to predict the scores of the sensory characteristics of analyzed rice wine samples.

Xu et al. demonstrated that the combined use of EE, ET, and EN, together with proper
data analysis approaches, generally outperforms single-sensor analysis in qualitative and
quantitative evaluation of Longjing tea quality [95]. Longjing tea samples of different-
quality grades were analyzed by means of reference wet chemistry methods in order to
determine amino acids, catechins, polyphenols, and caffeine. Then, EN, ET, and EE signals
of the tea samples were analyzed both separately and jointly in order to classify the samples
according to quality grades and predict the content of the considered chemical components.
Classification and regression models built with fused signals always outperformed those
calculated considering the single sensors independently.

Prieto et al. highlighted an important advantage of using a combined electronic
panel: EE, ET, and EN sensors are able to account for different aspects of the analyzed
samples, and this information can be jointly used for a comprehensive characterization of
the system under investigation [96]. In their study, the electronic panel was used to evaluate
organoleptic properties of red wines prepared using different extraction techniques and
micro-oxygenation methods and bottled using closures of different oxygen transmission
rates. The results showed that EE and EN signals are able to describe the variability due to
the oxygen transmission rate of the closure, while ET is more sensitive to the organoleptic
properties related to polyphenol content and oxidation induced by micro-oxygenation. The
combined use of the three sensing devices significantly improved the discrimination ability
of the system to classify the samples according to the different vinification conditions.

The signals obtained from the three e-sensors are generally analyzed considering a
low-level data-fusion approach, but some applications also involve mid-level data fusion.
Buratti et al. used a mid-level data-fusion approach to combine EN, ET, and EE data in
order to characterize edible olive oils, assessing their freshness in accelerated shelf-life
tests [30]. PCA was used to extract relevant features of the three data blocks, and the
resulting scores were merged together to obtain the e-senses fused-data matrix. This matrix
was then analyzed by means of PCA to gain a comprehensive characterization of the
analyzed oil samples based on the combined use of EE, ET, and EN. To improve model
interpretability, the loading obtained from the PCA model of mid-level fused data were
transformed back to the domain of original variables. In addition, mid-level fused data
was also used to successfully classify the samples according to freshness.

5. Conclusions

Artificial sensing systems such as ENs, ETs, and EEs are gaining increasing relevance
as analytical tools in the food industry for food quality assessment. Indeed, artificial sensors
can provide information related to both sensory and chemical properties of the analyzed
food matrix, allowing to minimize the need of sensory evaluations performed by panels of
trained human experts or chemical determinations using sophisticated analytical devices.
Furthermore, compared to traditional methods, artificial sensors have many advantages,
including the possibility of analyzing a large number of samples in a short time and with
limited reagent amounts, resulting in relevant economic savings.

The artificial sensors considered in this review account for different aspects of the
analyzed matrix: ENs measure the presence and quantity of volatile compounds, ETs
determine the concentration of chemical markers of interest in liquid samples, and EEs
objectively evaluate color-related properties. All these aspects contribute to determine the
quality of food products, and they are usually interconnected to each other.
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Given these considerations, the possibility of coupling the signals obtained from differ-
ent artificial sensors through data-fusion techniques has the great advantage of providing
information about the different aspects of interest of the analyzed matrix, which in turn
allows a more comprehensive characterization of the samples. Indeed, all the studies report
a relevant increase in model performances when the signals resulting from the considered
devices are jointly analyzed using data fusion compared to the results obtained with single
artificial sensors.

Data fusion can be performed at different levels, i.e., low level, mid-level, and high
level, and it is necessary to identify the proper data-fusion strategy for the problem at hand.
The majority of the applications involve low-level and mid-level approaches, while the use
of high-level data fusion is still very limited; indeed, only one application resulted from our
survey. Generally, low-level data fusion is preferred as it is the easiest strategy, requiring
minimal manipulation of each single block and a more straightforward interpretation of
the results. On the other hand, mid-level data fusion usually performs better than low-level
data fusion when the signals collected from the different devices contain many variables,
because it allows one to retain the useful information of each data block in few descriptors,
removing the noise at the same time.

The great advantages of fusing data collected from ENs, ETs, and EEs have also paved
the way to the development of combined devices consisting of a single analytical instrument
equipped with different types of artificial sensors whose signals are combined to provide
one or more outputs of interest.
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