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Abstract: Childhood obesity has increased worldwide, and many clinical and public interventions
have attempted to reduce morbidity. We aimed to determine the metabolomic signatures associated
with weight control interventions in children with obesity. Forty children from the “Intervention for
Children and Adolescent Obesity via Activity and Nutrition (ICAAN)” cohort were selected according
to intervention responses. Based on changes in body mass index z-scores, 20 were responders and
the remaining non-responders. Their serum metabolites were quantitatively analyzed using capillary
electrophoresis time-of-flight mass spectrometry at baseline and after 6 and 18 months of intervention.
After 18 months of intervention, the metabolite cluster changes in the responders and non-responders
showed a difference on the heatmap, but significant metabolites were not clear. However, regardless
of the responses, 13 and 49 metabolites were significant in the group of children with obesity
intervention at 6 months and 18 months post-intervention compared to baseline. In addition, the
top five metabolic pathways (D-glutamine and D-glutamate metabolism; arginine biosynthesis;
alanine, aspartate, and glutamate metabolism; TCA cycle (tricarboxylic acid cycle); valine, leucine,
and isoleucine biosynthesis) including several amino acids in the metabolites of obese children after
18 months were significantly changed. Our study showed significantly different metabolomic profiles
based on time post obesity-related intervention. Through this study, we can better understand and
predict childhood obesity through metabolite analysis and monitoring.

Keywords: biomarkers; metabolomics; obesity; pediatric; child; interventions

1. Introduction

The prevalence of childhood obesity has increased worldwide [1]. In some countries,
obesity rates in children and adolescents exceed 30%. According to the Korean Ministry
of Education, the Korean childhood obesity rate in 2018 reached 25%, increasing rapidly
from 8.4% in 2008 [2]. Childhood and adolescent obesity are related to anthropometric and
metabolic changes, such as metabolic syndromes, including dyslipidemia, hypertension,
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and insulin resistance [3]. Adolescent obesity is associated with several cancers and
cardiovascular diseases in adulthood [4,5]. Anthropometric measurements, such as the
body mass index (BMI) or waist–hip ratio, and circulating biomarkers, such as insulin or
adiponectin, are currently used as general “obesity biomarkers” to identify disease risk
due to obesity [6]. Most government authorities worldwide face difficulties in increasing
the budget for obesity control, even though early intervention in childhood obesity is a
well-known method effective for controlling the obesity epidemic. There is an unmet need
to identify the most effective methods to control childhood obesity, monitor treatment
effects before and after intervention, and select responsive candidates for treatment.

Obesity is caused by various complex factors, of which genetic and epigenetic factors
are the major causes. These factors affect the lipidome, metabolome, and proteome, and
various omics studies have investigated the causes of obesity [7]. Knowing the cause and
risk factors of obesity is important not only for understanding the pathogenesis but also
for finding effective personalized treatments. Metabolites are small molecules, substrates,
intermediates, and end-products of cellular regulatory processes that play important roles
in cellular and physiological energetics, structure, and signaling [8]. Metabotyping, in
which individuals with similar metabolite patterns are grouped into clusters, plays a key
role in the development and delivery of personalized nutrition [9]. Therefore, metabotyping
of patients with obesity will play an essential role in developing a new understanding of
and treatment methods for obesity.

As obesity rates increase, metabolic studies that reveal metabolomic signatures of
patients with obesity and study metabolic changes such as inflammation or oxidative
stress associated with obesity are increasing [10]. However, few studies have investigated
childhood obesity, especially those involving weight-loss interventions [11–15]. A study
on prepubertal children with obesity reported that urine trimethylamine N-oxide levels
decreased after lifestyle intervention. Of the 32 identified metabolites, xanthosine, 3-
hydroxyisovalerate, and dimethylglycine were altered following the intervention [16].
After an 8-week exercise program, the urine concentrations of pantothenic acid, glyceric
acid, l-ascorbic acid, xanthine, and adenosine were higher in overweight adolescents than
in the normal weight group [17]. Thus, long-term metabolite changes associated with
weight intervention in obese children are needed to understand and treat obesity.

This study analyzed metabolites at different intervention intervals by selecting re-
sponders and non-responders and identifying metabolites that were significantly different.
We also identified significant metabolite changes associated with long-term childhood
obesity weight intervention. In addition, we checked whether clinical indicators have
significant results with these metabolite changes. The metabolomic information from this
study can be used to identify biomarkers related to childhood obesity and to develop future
personalized treatments.

2. Results
2.1. Selection of Study Population and Their Demographic Characteristics

Of the 242 patients of the ICAAN cohort, we finally included 40 obese patients in this
study. In detail, 163 and 111 were followed up at 6 and 18 months after the weight control
intervention, respectively. A total of 131 participants dropped out during the intervention,
mainly because of busy schedules, no response, lack of willingness, or busy schedule
of parents.

The clinical characteristics of the study population are presented in Table 1 and
Figure S1. No significant differences were found according to sex, age, type of intervention
between the groups, aspartate transaminase (AST), alanine aminotransferase (ALT), triglyc-
eride (TG), high-density lipoprotein cholesterol (HDL cholesterol), low-density lipoprotein
(LDL cholesterol), or triglyceride-to-HDL-cholesterol (TG/HDL) ratio at baseline or at
18 months post-intervention.
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Table 1. Demographic characteristics of the study population.

Responder
(n = 20)

Non-Responder
(n = 20) p-Value 1

Age (years) 2 11.1 ± 2.1 11.0 ± 2.4 0.908

Sex (%)
Male 13 (65) 8 (40)

0.113Female 7 (35) 12 (60)

Intervention
type (%)

Exercise group 7 (35) 8 (40)
0.587Nutrition care group 9 (45) 6 (30)

Usual group 4 (20) 6 (30)

BMI z-score
Baseline 3.04 ± 1.10 2.96 ± 0.92 0.791

M06 2.83 ± 1.29 2.93 ± 0.94 0.781
M18 2.07 ± 1.32 3.33 ± 0.94 0.001

Difference of
BMI z-score

Baseline-M06 −0.21 ± 0.42 −0.03 ± 0.19 0.081
Baseline-M18 −0.97 ± 0.44 0.38 ± 0.32 <0.001

AST
Baseline 27.8 ± 19.49 23.6 ± 7.13 0.371

M18 23.55 ± 13.84 22.60 ± 10.63 0.809

ALT
Baseline 37.05 ± 43.05 22.45 ± 14.80 0.160

M18 26.45 ± 28.53 27.10 ± 24.02 0.938

TG
Baseline 108.35 ± 49.74 88.10 ± 40.14 0.165

M18 104.95 ± 40.59 94.15 ± 44.90 0.430

HDL cholesterol
Baseline 50.15 ± 12.03 52.40 ± 12.30 0.562

M18 52.05 ± 11.51 53.50 ± 15.20 0.736

LDL cholesterol
Baseline 120.65 ± 22.89 108.70 ± 16.26 0.065

M18 114.55 ± 24.75 113.20 ± 22.90 0.859

TG/HDL
Baseline 2.47 ± 1.75 1.84 ± 1.03 0.172

M18 2.23 ± 1.25 2.01 ± 1.32 0.595
1 p-value by chi-square test for categorical variables and t-test for continuous variables. 2 Clinical data was shown
as mean ± standard deviation.

2.2. Profiles of Circulating Metabolites according to Responsiveness and Duration of
Weight-Loss Intervention

A total of 194 plasma metabolites were successfully identified from capillary elec-
trophoresis time-of-flight mass spectrometry (CE-TOFMS) measurement on the basis of
Human Metabolome Technologies (HMT)’s standard library and Known-Unknown peak
library. First, we investigated metabolomic profiles of the study population according
to responsiveness (Figure 1). A scores plot of principal component analysis (Figure 1A)
and volcano plots (Figure S2) showed that no significant differences between responders
and non-responders were found at any timepoints (baseline, 6 months, and 18 months
post-intervention). However, interestingly, distinct metabolic profiles of 18 months post-
intervention compared to baseline or 6 months post-intervention were observed, regardless
of responsiveness to the intervention. These remarkable changes were clearly revealed by hi-
erarchical clusters of metabolites on the heatmap (Figure 1B) and volcano plots (Figure 1C).
Thirteen and forty-nine metabolites were significant (FDR adjusted p-value < 0.05, fold
change > 1.2) at 6 months and 18 months post-intervention compared to baseline, respec-
tively (Figure 1C, pink circles). Among them, 12 metabolites were significant at both time-
points: asparagine, glycerophosphocholine, N-acetyllysine, glutamine, O-acetylcarnitine,
8-hydroxyoctanoic acid, glucosamine, caproic acid, arginine, kyotorphin, N-acetylornithine,
and prostaglandin F2a. A list of significantly changed metabolites by weight-loss interven-
tion is represented in Table S1. These results suggest that long-term weight-loss intervention
itself may induce metabolic changes, independent of effect of intervention (i.e., BMI z-score
changes) in children and adolescents.
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Figure 1. Plasma metabolome profiles of the study population. (A) Principal component analysis and
(B) hierarchical cluster analysis showing time-dependent metabolic changes by weight-loss interven-
tions rather than responsiveness to the intervention. (C) Volcano plots of significant metabolites (FDR
adjusted p-value < 0.05, fold change > 1.2) at 6 months and 18 months post-intervention compared
to baseline.

2.3. Weight-Loss-Intervention-Induced Changes in Metabolite Sets and Metabolic Pathways

To understand which metabolic pathways are altered by long-term intervention, we
performed metabolite set enrichment analysis with the significant metabolites between
baseline and 18 months post-intervention (Figure 2 and Table S2). D-glutamine and D-
glutamate metabolism and arginine biosynthesis were significantly modified (enrichment
ratio > 9.0, FDR adjusted p < 0.05), and other metabolite sets including alanine, aspar-
tate, and glutamate metabolism, tricarboxylic acid (TCA) cycle, and valine, leucine, and
isoleucine biosynthesis were also enriched (enrichment ratio > 4.5, raw p < 0.05). We
also constructed chemical and biochemical networks using these significant metabolites
(Figure 3). Compared to metabolic changes in 6 months post-intervention (Figure 3A),
carnitines and many organic acids including o-acetyl carnitine, octanoylcarnitine, aze-
laic acid, hydroxyoctanoic acid, and alpha-ketooctanoic acid were upregulated whereas
galactaric acid, threonic acid, caproic acid, and alpha-ketoisovaleric acid levels were down-
regulated in the 18 months post-intervention group (Figure 3B). TCA cycle intermediates
such as succinic acid, oxoglutaric acid, isocitric acid, malic acid, and phosphocholines were
also significantly downregulated in the 18 months post-intervention group. In addition,
levels of metabolites related to the methionine–cysteine pathway (cystine, methionine, s-
methylcysteine, and methionine sulfoxide), urea-cycle-related metabolites, and amino acids
(arginine, ornithine, N-acetylornithine, lysine, N-acetyllysine, 5-oxoproline, glutamine,
glutamic acid) were also significantly changed.
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Figure 3. Network mapping showing significantly changed metabolic pathways by weight-loss
intervention after (A) 6 months and (B) 18 months. Node color indicates direction of changes (red,
up; blue, down) or non-significance (gray).

3. Discussion

Previous studies have mainly described metabolites or genomes associated with
childhood obesity or the BMI in comparison to control subjects [10,18–20]. We further
analyzed metabolites showing significant differences according to weight control interven-
tion responses in pediatric patients with severe obesity. However, metabolic differences
by intervention response were not clear. Metabolites showing differences by the time of
intervention were very diverse; however, we identified significant metabolic pathway
changes in weight intervention in childhood obesity, regardless of the intervention type or
response (Figure 4).
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biosynthesis and urea cycle. (Red, metabolites increased in plasma at 18 months post-intervention
compared to at baseline; blue, metabolites decreased in plasma at 18 months post-intervention
compared to at baseline).

The metabolic pathways are included in the urea and TCA cycles and several amino
acid (i.e., glutamine, glutamate, arginine, cysteine, and methionine) metabolic pathways.
Several studies have already shown that glutamate is increased in obese children and
glutamine is decreased in obese patients without weight interventions [12,21]. These
previous results are consistent with our result that plasma glutamine was increased after
weight-loss intervention, whereas glutamate was decreased. In particular, glutamate was
found to be the metabolite with the highest bivariate correlation with body fat and insulin
sensitivity in an American-Indian adolescent with obesity study [22].

Obesity is essentially a change due to an inflammation mechanism, and thus changes
in various immune cells are affected. In obese and diabetic patients, changes in macrophage
polarization can induce decreased α-ketoglutarate production and increased succinate in
the TCA cycle, and glutamine metabolism is essential for the process [23]. Succinate, an
intermediate product of the TCA cycle, is released from adipose tissue in obesity and plays
an important role in inducing inflammation by macrophage activation [24]. Consequently,
macrophage polarization involving glutamine metabolism and the TCA cycle in obese
and diabetic patients might play a key role in obesity pathology. In this respect, our study
showed that levels of TCA intermediates including isocitrate, malate, and oxoglutarate
(α-ketoglutarate) as well as succinate were decreased by the weight-loss intervention,
which implies anti-inflammatory effects of the intervention by minimizing polarization
of macrophages.

Arginine, aspartate, and ornithine are associated with urea cycle metabolism and
play an important role in ammonia detoxification. Our study showed that decreased
urea cycle intermediates including aspartate, ornithine, and arginine in plasma, which
implies downregulated production of ammonia by weight-loss intervention. Aspartate, like
pyruvic acid, is an amino acid associated with the TCA cycle. The metabolic shift in pyruvic
acid decreased after weight control intervention in overweight pre-adolescent and obese
women [17,25]. Zheng et al. [26] reported amino acid profile changes from the POUND
LOST and DIRECT trials, which confirmed metabolite changes after a 2-year diet-induced
weight-loss intervention in adult patients with obesity. In both trials, weight loss was
directly related to the concurrent reduction of branched-chain amino acids (BCAAs; leucine
and isoleucine), aromatic amino acids (tyrosine and phenylalanine), and other amino acids
(alanine, sarcosine, hydroxyproline, and methionine) [26]. Glutamine and glutamate were
positively correlated with a homeostatic model assessment of insulin resistance (HOMA-IR)
in an overweight-to-obese, dyslipidemic adult study, too [27].

Dysregulation of these various metabolic pathways and insulin resistance are associ-
ated with metabolic changes in childhood obesity, which may also be affected by pubertal
development and the gut microbiome. During the pubertal stage, insulin sensitivity de-
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creases by 50% and is associated with increased total body lipolysis and decreased glucose
oxidation [28]. These alterations may have affected metabolic changes in our study popula-
tion; previous studies have shown that metabolomic profiles change owing to increased
adiposity measures in post-pubertal male groups [29]. The microbiota contributes to amino
acid biosynthesis; thus, the same foods may contribute to different caloric and nutrient
bioavailability in different individuals [30]. Gut microbial profiling of individuals with in-
sulin resistance and insulin sensitivity is associated with different host dietary intervention
responses and weight changes. In addition, studies in a mouse model suggest that the gut
microbiome can activate BCAA synthesis pathways in obesity [31]. In our study, we did
not consider these points, and this should be considered together in further research.

Taken together, these metabolic changes by weight-loss intervention might become
phenotypic characteristics of metabolically healthy obesity (MHO). Some obese patients
show a healthier phenotype than other obese patients, which is often observed in young
and physically active patients with good nutritional status [32]. Although many clinical
and behavioral characteristics of MHO such as anthropometric and clinical parameters,
lifestyle factors, and comorbidities have been suggested, no concept of MHO is universally
accepted yet [33]. However, MHO can be an ancillary criterion to redeem a BMI-based
single definition by reflecting characteristics of obesity in various aspects. The metabolic
changes we observed suggested that the weight-loss intervention can ameliorate pediatric
patients toward metabolically healthy status. It also might be supported by individual
clinical changes including AST, ALT, TG, HDL cholesterol, LDL cholesterol, and TG/HDL
ratio. However, they were not statistically significant. One possible explanation is poor
compliance of participants due to long-period intervention.

This study was limited by the availability of subjects for longitudinal studies owing
to many dropouts from the childhood obesity intervention cohort. In addition, there was
a possibility of selection bias in the results. Lower family functioning, exercise group,
lower initial attendance rate, and non-self-referral pathways were significantly associated
with early dropouts, and lower family functioning and lower initial attendance rates were
associated with late dropouts in our cohort study [34]. Thus, it is important to focus on
these factors to reduce the dropout rate in further intervention-based cohort research. In
fact, poor family function was associated with high levels of depressive symptoms in the
childhood obesity cohort [35]. Further research is needed to determine how these factors
affect the intervention outcomes in children. In addition, this study did not analyze the
factors related to adolescent age while observing changes in long-term follow-up during the
intervention. In the heatmap, metabolic changes were most pronounced after 18 months,
but the probability that hormonal changes and other factors affected the metabolites was
not considered. Another limitation is that the patients’ hospital visit time and participation
level were not considered in the study. In addition, factors such as diet could not be
limited to homogeneity, which may have influenced the metabolite results. In particular,
metabolites are affected by sampling time or what is consumed at the time of sampling;
therefore, it is important to control these factors and follow the trend of metabolites.

In conclusion, weight-loss intervention induced serial changes in specific amino acid
metabolites and a metabolic pathway regardless of response to interventions in childhood
obesity. Long-term follow-up results of weight intervention and metabolite changes are
more important than responses to weight-loss interventions, which may inform clear
mechanisms of obesity. This is why it is important to regularly visit a clinic for treatment of
obesity, and tracking changes in metabolites will be helpful in monitoring the individual.
Therefore, this study can be utilized for the development of metabolite biomarkers related
to childhood obesity treatment through a long-term follow-up study. It is also expected to
contribute to large-scale research for the prediction and prevention of personal childhood
obesity using metabolites in the future.
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4. Materials and Methods
4.1. Study Population

We selected 40 obese subjects (BMI > 97th percentile for age and sex) from 242 pa-
tients in the ICAAN study cohort based on intervention responses. This 24-month post-
intervention follow-up study was designed as a multidisciplinary intervention test to
prevent excessive weight gain and to improve several health indices in children and ado-
lescents (aged 6–17 years) with obesity in Korea [36–38]. Patients with obesity-related
hereditary diseases or other underlying diseases were excluded. We observed follow-up
data at baseline, 6 months, and 18 months post-intervention to observe the intervention
effect trends. They were randomly divided into 3 groups and received interventions, in-
cluding the usual care, exercise, and nutrition feedback group. Each group had a similar
portion (usual care group (n = 84, 34.7%; exercise group (n = 74, 30.6%); nutrition feedback
group (n = 84, 34.7%)), and all groups received five category interventions (nutrition, physi-
cal activity, group activity, parental education, and self-monitoring). The exercise group
included the contents of the usual care group and added weekly exercise class and activity
feedback. The nutrition feedback group received additional individual nutrition feedback
including the usual care group contents.

Participants were categorized into two groups based on changes in BMI z-scores after
18 months. Twenty subjects presenting significant intervention effects were assigned to
the target (responder) group and those with minimal weight loss to the non-responder
group (n = 20). In the responder and non-responder groups, the changes in BMI z-scores
were <−0.45 and >−0.1 in the responder and non-responder groups, respectively. Random
sampling was not possible owing to the limited sample size; therefore, the portion and
number of samples in each intervention group were considered. As no patients gained
weight because of the intervention, patients with the least weight change were selected as
the non-responder group based on total responders. A flowchart of the participant selection
is provided in Supplementary Data (Figure S1). Anthropometric and laboratory assessment
data and blood samples were collected at baseline and 6 and 18 months post-intervention
in both groups, resulting in a total of 120 collected samples.

4.2. Sample Preparation and CE-TOFMS Analysis

The 120 plasma samples were transported from Seoul National University (SNU) to
HMT via Young-In Frontier Co., Ltd. The samples were stored in a deep freezer below
−80 ◦C. To each 50 µL of sample, 200 µL of methanol containing internal standards (L-
methionine sulfone and D-camphor-10-sulfonic acid, 20 µM) was added, diluted with
150 µL of distilled water and mixed thoroughly. Each mixture (300 µL) was filtered through
a 5-kDa cut-off filter (Ultrafree-MC-PHCC, HMT, Yamagata, Japan) to remove macro-
molecules. The filtrate was centrifugally concentrated and resuspended in 50 µL of distilled
water immediately before analysis. The compounds were measured in the cation and
anion modes using an Agilent CE-TOFMS system (Agilent Technologies Inc., Santa Clara,
CA, USA) and a fused silica capillary i.d. 50 µm × 80 cm. Cationic metabolites were
analyzed with a fused silica capillary (50 µm i.d. × 80 cm total length), with Cation Buffer
Solution (Human Metabolome Technologies, solution ID: H3301-1001) as the electrolyte.
The sample was injected at a pressure of 50 mbar for 5 s. The applied voltage was set at 30
kV. Electrospray ionization-mass spectrometry (ESI-MS) was conducted in the positive ion
mode, and the capillary voltage was set at 4000 V. The spectrometer was scanned from m/z
50 to 1000. Anionic metabolites were analyzed with a fused silica capillary (50 µm i.d. × 80
cm total length), with Anion Buffer Solution (Human Metabolome Technologies, solution
ID: I3302-1023) as the electrolyte. The sample was injected at a pressure of 50 mbar for 10 s.
The applied voltage was set at 30 kV. ESI-MS was conducted in the negative ion mode, and
the capillary voltage was set at 3500 V. The spectrometer was scanned from m/z 50 to 1000.
To guarantee analytical reproducibility, we monitored the relative standard deviation of
internal standards which are added in the sample (less than 10%).
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4.3. Metabolomic Data Processing

Peaks detected by CE-TOFMS analysis were extracted using an automatic integration
software (MasterHands ver. 2.17.4.19, Keio University; Tokyo, Japan) to obtain peak
information, including m/z values, migration time (MT), and peak area. The peak area was
then converted and normalized to a relative peak area by dividing by sample amount and
internal standard peak area. The peak detection limit was determined based on a signal-
to-noise ratio of 3. Relative peak areas under the peak detection limit were imputed by
K-nearest neighbor method. Putative metabolites were then assigned from HMT’s standard
library and the Known-Unknown peak library based on m/z and MT with tolerances of
±10 ppm and ±0.5 min, respectively. If several peaks were assigned to the same candidate,
the candidate was assigned a branch number.

4.4. Statistical Analysis

We compared clinical characteristics between responder and non-responder groups by
chi-squared test for categorical variables. To explore metabolome distribution by groups,
we performed principal component analysis with Pareto-scaled data using MetaboAn-
alyst 5.0 [39]. Then, metabolic features were hierarchically clustered by Ward method
with Euclidean distance, following autoscale feature standardization. Significant metabo-
lites between responders and non-responders at each timepoint (baseline, 6 months post-
intervention, 18 months post-intervention) were determined by nonparametric Wilcoxon
rank-sum test (false discovery rate adjusted p-value < 0.05, fold change > 1.2). Significant
metabolites between baseline and 6 months post-intervention or baseline and 18 months
post-intervention were determined by paired t-test (false discovery rate adjusted p-value
< 0.05 and fold change > 1.2). With the significant metabolites, we identified enriched
metabolite sets based on KEGG supported by MetaboAnalyst 5.0 and mapped the metabo-
lites according to chemical and biochemical relationships by MetaMapp [40]. Metabolite
networks were visualized with Cytoscape 3.8.2 [41].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo12010027/s1, Figure S1: Individual changes in clinical parameters by weight-loss
intervention (red, non-responders; blue, responders), Figure S2: Volcano plots show that no metabo-
lites between responders and non-responders at baseline (A), 6 months post-intervention (B), and
18 months post-intervention (C) are significant (FDR adjusted p-value < 0.05 by Wilcoxon rank-sum
test, fold change (responder/non-responder) > 1.2), Figure S3: A flowchart of the study population.
Table S1: Significantly changed metabolites by weight-loss intervention (baseline vs. 6 months
post-intervention or baseline vs. 18 months post-intervention, FDR adjusted-p value <0.05, fold
change > 1.2), Table S2: KEGG-based metabolite set enrichment analysis of significantly changed
metabolites by weight-loss intervention after 18 months.
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