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Abstract: Particles of many paramyxoviruses include small amounts of proteins with a molecular
weight of about 20 kDa. These proteins, termed “C”, are basic, have low amino acid homology and
some secondary structure conservation. C proteins are encoded in alternative reading frames of the
phosphoprotein gene. Some viruses express nested sets of C proteins that exert their functions in
different locations: In the nucleus, they interfere with cellular transcription factors that elicit innate
immune responses; in the cytoplasm, they associate with viral ribonucleocapsids and control poly-
merase processivity and orderly replication, thereby minimizing the activation of innate immunity.
In addition, certain C proteins can directly bind to, and interfere with the function of, several cyto-
plasmic proteins required for interferon induction, interferon signaling and inflammation. Some C
proteins are also required for efficient virus particle assembly and budding. C-deficient viruses can
be grown in certain transformed cell lines but are not pathogenic in natural hosts. C proteins affect
the same host functions as other phosphoprotein gene-encoded proteins named V but use different
strategies for this purpose. Multiple independent systems to counteract host defenses may ensure
efficient immune evasion and facilitate virus adaptation to new hosts and tissue environments.

Keywords: Paramyxoviridae; Orthoparamyxovirinae; replication; nucleocapsid; processivity; defective-
interfering RNA; immune evasion; inflammasome; budding; ESCRT

1. Introduction

About 50 years ago, when the proteins from purified particles of different paramyx-
oviruses were first analyzed, several polypeptides were identified and their biological roles
tentatively attributed [1–5]. Three proteins (nucleocapsid, polymerase and phosphoprotein)
are now known to constitute the replicative complex, and three others (attachment, fusion
and matrix proteins) constitute the membrane fusion apparatus [6]. Another particle-
associated protein with a molecular weight (MW) of about 42.000, labeled A, turned out to
be cellular actin [7].

When the synthesis of virus-specific proteins was analyzed in infected cells, two
proteins not found in particles, and thus deemed nonstructural, were identified [7]. These
proteins had MWs of about 36,000 and 20,000, respectively, and were labeled with the
letters B and C. Alternatively, the MW 36,000 protein was labeled with the Roman numeral
V (five) that was sometimes pronounced as the letter V.

When these two proteins, currently named V and C, were shown to be minor virus
particle components, the nonstructural nomenclature was dropped. When reverse genetics
showed that V and C are not essential for virus replication, they were reclassified as
“accessory” [8–11]. However, even this classification is misleading, because both V and
C are required for the productive infection of natural hosts [12–15]. We review here the
multiple functions of the paramyxovirus C proteins in the control of virus replication and
of the host innate immune response and propose that C should stand for “control”.
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2. C Proteins Are Expressed from Alternative Open Reading Frames in the P/V/C Genes

Paramyxoviruses (Figure 1A) have non-segmented RNA genomes of negative polarity
that are 15–20 kilobases in length. Most mRNAs transcribed from these templates code
for a single protein product, but early analyses of Sendai virus (SeV) phosphoprotein (P)
mRNA suggested it might encode the C protein in addition to the P protein [16]. Indeed,
the SeV P mRNA nucleotide sequence revealed two overlapping reading frames. The first
encodes the 588-amino acid P protein; the second starts at an AUG located 10 nucleotides
downstream of the P AUG and codes for the 204-amino acid C protein [17] (Figure 1B,
top center).

Figure 1. C protein expression among viruses of the Paramyxoviridae family. (A) Phylogenetic tree
indicating subfamilies and genera. The tree is based on full genome alignment of available reference
genomes in GenBank using CLUSTALW [18] and was generated with iTOL [19]. Viruses of genera
in red express C proteins. (B) Organization of the overlapping open reading frames in the mRNAs
derived from the P/V/C genes of MeV (left), SeV (center) and NiV (right). SeV expresses four C
proteins from alternative start codons named C’, C, Y1 and Y2. (C) Secondary structure predictions for
P and C proteins, as well as the V protein-specific carboxy-terminus (VCT). Alpha-helices are depicted
in blue, beta strands in orange and unstructured (coiled) regions are shown in grey. Underlined
regions in P and V proteins correspond to their unique carboxy-termini (PCT and VCT). N0BD:
binding domain interacting with free nucleoprotein; TMD: tetramerization domain of P; XD: domain
of P interacting with Ntail of the nucleocapsid; ZnBD: Zn-binding domain of V protein that interacts
with several host innate immunity factors. Figure generated with BioRender.com.
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Successive analyses of the measles virus (MeV) P gene revealed a similar gene or-
ganization: the MeV C AUG is located 22 nucleotides downstream of the P AUG [20]
(Figure 1B, top left). Initially, no sequence homology was detected between the SeV and
MeV C proteins. A third type of C proteins was discovered when the P gene of the newly
emerged Nipah virus (NiV) was sequenced [21] (Figure 1B, top right). The NiV C AUG
is located 23 nucleotides downstream of the P AUG, putting it in the “+2” reading frame,
while both the SeV and MeV C reading frames are “+1”, as compared to the respective P
reading frames.

C proteins, or candidate C protein reading frames, are common but not ubiquitous in
paramyxoviruses; they have been characterized in 26 of the 63 genomic reference sequences
currently available in GenBank (Figure 1A; paramyxovirus genera expressing C proteins are
shown in red and Table 1). On the other hand, almost every paramyxovirus P gene encodes
a third product, the V protein. V proteins consist of the amino-terminal half of P fused to
a carboxyl-terminal domain highly conserved in the Paramyxoviridae that includes seven
invariant cysteines [22,23] (Figure 1C, center). In different paramyxoviruses, V proteins are
either produced by a frame shift introduced by RNA editing or from unedited RNA, while
the P expression depends on editing [6]. Even if the V and C proteins have completely
different sequences and structures, they can accomplish similar tasks by operating through
different mechanisms [24]. V proteins are particularly important for virus genera that
lack C proteins, while genera that express both proteins have the option to counteract
host defenses through alternative strategies in different cells and tissues. Our review will
focus on the functions of C proteins. The different functions of V proteins have been
comprehensively reviewed elsewhere [24–28].

Table 1. Overview of C protein-expressing paramyxoviruses.

Genus Species Abbreviation
Genome
Sequence C Protein Sequence

Reference

(GenBank) (GenBank) (UniProt/UniParc)

Aquapara-
myxovirus

Oncorhynchus
aquaparamyxovirus PSPV MH900516.1 AYN62575.1 I1TLL1 [29]

Salmo
aquaparamyxovirus ASPV NC_025360.1 YP_009094145.1 B2BX73 [30]

Henipavirus

Cedar henipavirus CeV NC_025351.1 YP_009094083.1 J7H4I1 [31]

Hendra henipavirus HeV NC_001906.3 NP_047109.1 O55779 [32]

Nipah henipavirus NiV NC_002728.1 NP_112024.1 Q997F1 [33]

Jeilongvirus
Beilong jeilongvirus BeV NC_007803.1 YP_512248.1 Q287X7 [34]

Jun jeilongvirus J-V NC_007454.1 YP_338079.1 Q49HN8 [35]

Morbillivirus

Canine morbillivirus CDV NC_001921.1 NP_047203.1 P06941 [36]

Cetacean morbillivirus CeMV NC_005283.1 NP_945026.1 Q709E7 [37]

Feline morbillivirus FeMV NC_039196.1 YP_009512960.1 UPI000259F006 [38]

Measles morbillivirus MeV NC_001498.1 NP_056920.1 Q9YZN9 [39]

Phocine morbillivirus PMV NC_028249.1 YP_009177600.1 P35940 [40]

Rinderpest
morbillivirus RPV NC_006296.2 YP_087122.1 P35948 [41]

Small ruminant
morbillivirus PPRV NC_006383.2 YP_133824.1 Q5ZER5 [42]
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Table 1. Cont.

Genus Species Abbreviation
Genome
Sequence C Protein Sequence

Reference

(GenBank) (GenBank) (UniProt/UniParc)

Narmovirus

Mossman narmovirus MoV NC_005339.1 NP_958051.1 Q6WGM3 [43]

Myodes narmovirus BaVV NC_055167.1 YP_010085011.1 N/A [44]

Nariva narmovirus NarV NC_017937.1 YP_006347585.1 B8XH61 [45]

Tupaia narmovirus TPMV NC_002199.1 NP_054693.1 Q9WS38 [46]

Respirovirus

Bovine respirovirus 3 BPIV3 NC_002161.1 N/A N/A [47]

Caprine respirovirus 3 CPIV3 NC_028362.1 N/A N/A [48]

Human respirovirus 1 HPIV1 NC_003461.1 NP_604436.1 Q8QT30 [49]

Human respirovirus 3 HPIV3 NC_001796.2 NP_599251.1 UPI0000161E9C [50]

Murine respirovirus SeV NC_001552.1 NP_056872.1 O55527 [51]

Porcine respirovirus 1 PPIV1 NC_025402.1 YP_009094446.1 S5LSI4 [52]

Squirrel respirovirus GSqRV LS992584.1 SYZ47172.1 A0A383S9W5 [53]

Salemvirus Salem salemvirus SalV NC_025386.1 YP_009094334.1 Q9IZB9 [54]

N/A: no sequence accession number available in GenBank or UniProt; C protein ORFs of these viruses were
identified in the genome sequence and translated. Prototype species NiV, MeV and SeV in bold face.

3. All Three Types of C Proteins Include an Intrinsically Disordered Part

While the primary amino acid conservation of C proteins is very low, it is sufficient to
categorize them into three distinct groups [55] (Figure 2, left). Proteins from the Henipavirus,
Salemvirus and Jeilongvirus genera form group 1; proteins from the Morbillivirus and
Narmovirus genera form group 2 and proteins from the Respirovirus and Aquaparamyxovirus
genera form group 3 (Figure 2, top to bottom).

Secondary structure predictions indicate that the carboxy-terminal part of all C pro-
teins is rich in alpha-helixes, whereas little secondary structures are predicted for the
amino-terminal part, which appears to be intrinsically disordered (Figure 2, right). The C
proteins of groups 1 and 2 show high similarities in their predicted secondary structures,
whereas group 3 C proteins are more distant from the other two groups.

Notably, when the P and the C reading frames overlap, only one of them is predicted
to fold into alpha-helixes or beta-strands, whereas the other appears to be intrinsically
disordered (Figure 1C), a characteristic of dynamic protein structures [60]. Intrinsically
disordered segments may be required for the P protein to walk the polymerase down the
ribonucleocapsids (RNPs) during replication and transcription and may allow C to interact
with several different cellular partners.
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Figure 2. Sequence and structure comparison of paramyxoviral C proteins. Phylogenetic analysis of
the C protein sequences (left). Different genera are highlighted in individual colors. Prototype species
underlined. Sequences were aligned using the PROMALS3D tool [56], and a phylogenetic analysis
was done via the neighbor-joining clustering method using the EMBL-EBI Simple Phylogeny tool [57].
Predicted secondary structures of the different C proteins (right). Alpha-helices are depicted in blue,
beta strands in orange and unstructured (coiled) regions are shown in grey. Translation initiation
codons are indicated by arrows. Predictions were performed with the JPred tool [58]. The red box
indicates the region in the SeV C protein for which a tertiary structure is available (PDB 3WWT) [59].
Figure generated with BioRender.com.

4. Functional Insights from the SeV C-STAT1 Complex Structure

The structures of intrinsically disordered proteins are difficult to determine, but
complexes of parts of the SeV C protein (amino acids 98–204) with two different cellular
partners have been crystallized. In one complex, the C protein associates with the signal
transducer and activator of transcription 1 (STAT1), a transcription factor involved in the
interferon (IFN) response (PDB 3WWT) [59]. The second partner is the ALG2-interacting
protein X (ALIX), a component of the endosomal sorting complex required for transport
(ESCRT) (PDB 6KP3) [61].

Figure 3A provides a lateral view of the SeV C-STAT1 complex, illustrating the com-
pact globular folding of the C alpha-helical domain (Figure 3A, gold), which may be similar
in other C proteins. Notably, STAT1 and ALIX bind to opposite surfaces of the SeV C protein
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(Figure 3A,B). Several functions of the C proteins have been mapped to the alpha-helical
carboxy-terminal half, which is consistent with the suggestion that this intrinsically disor-
dered part either binds different proteins or controls the access of different partners to the
alpha-helical part.

Figure 3. Structural features of the SeV C protein. (A) SeV C protein (amino acid residues 99–204,
shown in gold) in a complex with STAT1 (silver) (PDB 3WWT) [59]. Residues important for bind-
ing to ALIX (LXXW motif) are shown in red; potential Tsg101-binding residues (QWLQ-motif)
are shown in blue. (B) SeV C protein (amino acid residues 99–204, shown in gold) in a complex
with the BRO1 domain of ALIX (light blue) (PDB 6KP3) [61]. (C) Conserved ALIX-binding mo-
tifs in respiroviruses (top five sequences), and homologous residues in morbilliviruses (bottom
four sequences). (D) Conserved Tsg101-binding motifs in henipaviruses (top three sequences), and
homologous residues in respiroviruses (bottom 5 sequences). Figure generated with BioRender.com.

Several lines of evidence support this assumption. First, SeV and HPIV1 use several
alternative start codons within the intrinsically disordered segment for the translation
initiation of elongated (C’) or truncated (Y1, Y2) C proteins [62,63]; even the smallest so far
detected C protein isoform Y2 retains the majority of its biological functions [64]. More-over,
the morbillivirus CDV also generates C proteins with multiple alternative start codons, but
only a recombinant CDV unable to express all C proteins is strongly attenuated in vitro
and in vivo [65]. Finally, biochemical studies on artificially truncated C proteins of SeV,
HPIV3 and MeV suggest that their amino terminus is not essential for C protein functions
on regulation of viral replication or innate immunity control [66–68].
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5. C Proteins Are Basic and Shuttle between Cytoplasm and Nucleus

Small proteins (<25 kDa molecular weight) can traverse the nuclear pore complex by
diffusion [69]. Since the molecular weights of C proteins range from 17 to 27 kDa, it is not
surprising that initial studies reported both the cytoplasmic and nuclear localization of
MeV and SeV C proteins [20,70]. In contrast, a report suggested that the NiV C protein is
exclusively localized in the cytoplasm [71]. More recent mechanistic analyses revealed that
MeV, SeV and NiV C proteins all shuttle between the cytoplasm and nucleus.

In particular, the MeV C protein sequence 75DLEKAMTTLKLWE87 includes a nuclear
export signal (NES) [D/E/Q]X0–1[L/I/M]X2–3[L/I/V/M/F]X2–3[L/M/V/F]X[L/M/I/V]
X0–3[D/E] [72], and MeV C may interact with the chromosomal region maintenance 1 nu-
clear export protein (CRM1; also known as exportin 1, XPO1). Moreover, a basic amino acid
stretch in this protein amino terminal region (41PPARKRRQ48) serves as the monopartite
nuclear localization signal (NLS) for nuclear import by importin-α/β [72,73]. Thus, NES
and NLS sequences allow nucleocytoplasmic shuttling of the MeV C protein [72,73].

For SeV and NiV C proteins, nonclassical NES and NLS that may act independently
of CRM1 or importin-α/β have been identified [74,75]. Notably, the location of these se-
quences within the C proteins of different genera is not conserved, suggesting independent
evolution. The independent evolution of nucleocytoplasmic shuttling implies relevance for
the viral replication cycle, even if these viruses replicate only in the cytoplasm. By inter-
fering with the nuclear import/export machineries, C proteins may regulate the cellular
localization of host factors or the export of host mRNAs from the nucleus [76].

6. C Proteins Enhance Virulence through Multiple Mechanisms

In the nucleus or cytoplasm, C proteins have evolved several different functions.
These include the regulation of viral transcription and replication, enhancement of viral
polymerase processivity, control of the innate immune response and support of particle
assembly and budding (Figure 4). Some of these functions are conserved across the
paramyxovirus genera, and others are characteristic of one genus.

The development of reverse genetics technology for mononegaviruses [77,78] was
instrumental for the identification and characterization of the different C protein functions.
Genetic deletion of the C ORF from the MeV strain Edmonston B revealed that this protein is
not required for MeV replication in IFN-defective Vero cells [9,79,80]. Similarly, C-deficient
respiroviruses, henipaviruses and other morbilliviruses are replication-competent in certain
transformed cell lines [81–84] but replicate less efficiently than wild-type viruses in other
cell lines or in primary cells [13,65,85–87].

Hence, C proteins are essential antagonists of innate immune responses, a conclusion
consistent with the finding that C-deficient viruses generally show a high degree of attenu-
ation in vivo [13,15,50,65,82,84,88–90]. For respiroviruses and morbilliviruses, C-deficient
mutant viruses exhibit strongly reduced pathogenesis in their natural hosts or animal
models [15,65,82]. A C protein-deficient NiV was attenuated in vitro and showed reduced
pathogenesis in two different animal models: hamsters and ferrets [91,92]. However, in
both cases, the virus could still cause a fatal disease, and in the ferrets, the disease progres-
sion was only marginally altered compared to wild-type NiV infection [92]. Taken together,
these findings indicate that paramyxoviral C proteins are virulence factors. However, how
do they work?
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Figure 4. Overview of the localization and functions of the C protein in the paramyxovirus life cycle,
and antagonism of the innate immunity pathways involved in paramyxovirus sensing. (Top left)
After cell entry, the viral polymerase transcribes mRNAs and replicates the viral genome. C proteins
regulate these processes and prevent the formation of immunostimulatory DI genomes (panhandle
structures). (Center) Type-I IFN (IFNβ) induction after the sensing of DI genomes by cellular
receptors PKR, RIG-I and MDA-5. C proteins can interfere with these processes by blocking the
signal transduction cascade at multiple steps in the cytoplasm and nucleus. (Bottom right) Type-I
IFN signaling activates the JAK/STAT pathways involving STAT1 and STAT2. The SeV C protein
binds and sequesters STAT1; the other C proteins inhibit STAT1 phosphorylation. (Bottom left) The
HPIV3 C protein also blocks the inflammasome-mediated activation of IL1β. (Top center) The C
proteins interact with ESCRT components to enhance virus particle assembly and budding. SeV
C interacts with ALIX, and NiV C interacts with Tsg101. (Top right) Several C proteins shuttle
between the cytoplasm and nucleus utilizing the nuclear pore complex (NPC). Figure generated with
BioRender.com.

7. C Proteins Regulate Viral Transcription and Replication

Analyses of SeV transcription suggested that its C proteins regulate viral RNA syn-
thesis. The addition of C proteins to a SeV in vitro transcription system reduces the
amount of transcribed viral mRNA [93], but C-deficient or partially C-defective SeV
produce more mRNA than wild-type SeV [94]. A C-deficient SeV exhibits an altered
genome-to–antigenome ratio [95], possibly due to promotor selectivity [96]. In particular,
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in wild-type SeV particles and infected cells, there are about five times more genomes than
antigenomes [95], but this ratio changes with SeV deficient in C’ and C proteins [94,95,97].
Thus, the C protein may control genome or antigenome synthesis, dictating negative
genome polarity by promoting the initiation of RNA synthesis from the antigenomic trailer
sequence [97].

Another effect of the C protein is to alter the ratios of different viral RNA species in
infected cells [98–100]. In particular, a C-deficient MeV exhibits a steeper transcription gra-
dient than its parental virus [101]. C-deficient Nipah, HPIV3, J and Beilong viruses also have
different transcription alterations [102–106]. Altered ratios of the viral RNA species can
affect the production of progeny viruses either directly by delaying specific replication pro-
cesses or indirectly due to the enhanced induction of innate immunity. Notably, C-deficient
SeV, HPIV3, MeV and CDV caused enhanced innate immunity activation [65,101,107–110].

8. C Proteins Minimize Production of Immunostimulatory DI RNA

Innate immunity can be activated by viral double-stranded RNA (dsRNA) accidentally
generated during viral replication. DsRNA can activate the cytoplasmic pattern recognition
receptors that include the RNA sensors retinoic acid inducible gene-I (RIG-I), melanoma
differentiation associated gene 5 (MDA-5) and the double-stranded (ds) RNA-dependent
protein kinase (PKR). These sensors induce the transcriptional upregulation of type-I IFN
(Figure 4, IFN induction).

In infections with C-deficient SeV, HPIV1, MeV and CDV, large amounts of copy-back
defective interfering RNAs (DI RNAs) have been detected [101,107,110], and their struc-
tures have been characterized [65,101,111,112]. DI RNAs arise when the viral polymerase
randomly detaches from the template RNA strand during replication. The polymerase,
still bound to the newly synthetized RNA fragment, reinitiates synthesis using the nascent
RNA strand as the new template [101,113,114]. Consequently, the newly generated RNA
molecule is a hybrid of (−)- and (+)-strand RNA with complementary 5′ and 3′ ends. These
ends can form double-stranded panhandles that efficiently activate dsRNA sensors RIG-I,
MDA-5 and PKR (Figure 4), contributing to virus attenuation [65,101,110–112].

9. C proteins Interact with the Polymerase Complex

Thus, C proteins minimize the production of DI RNAs, but how? The mechanisms
under investigation include different interaction partners or interaction sequences for dif-
ferent viruses (Figure 5). For SeV C, a direct interaction with L was initially proposed. It
was observed that the SeV C protein colocalizes with the RNP and that this association
is resistant to treatment with detergents [115]. The direct association of SeV C and L is
consistent with the results of pull-down assays [116]. Other studies conducted with the
closely related HPIV3 and the morbillivirus RPV are consistent with direct or indirect
C–L interactions [117,118]. The interaction site of SeV C with L was mapped to several
charged amino acid carboxy-terminal domains [119], and it was found that the C–L and P–L
interaction sites do not overlap [120,121]. The precise understanding of how SeV C interacts
with the polymerase complex awaits high-resolution structural analyses that are not yet
available, but some considerations can be done based on the available high-resolution struc-
ture of the polymerase of another negative-strand RNA virus [122]. By binding to L, SeV C
may simply stabilize the L–P complex or rearrange the individual L domains in specific
configurations, thereby affecting mRNA synthesis and genome/antigenome replication.

In contrast to SeV C, the MeV C protein interacts initially with the N and P proteins [68,123].
This suggests other potential action mechanisms (Figure 5). By interacting with P and N, the
MeV C protein may influence the encapsidation process of the nascent RNA strand. Improper
encapsidation may lead to stalling of the viral polymerase and, eventually, the premature
termination of RNA synthesis. Alternatively, MeV C may directly stabilize the interaction
of the polymerase complex with the template RNP and secure the proper movement of the
polymerase along the RNP. As shown for SeV C, absence of the MeV C protein may result in
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the premature termination of RNA synthesis. Notably, the alpha-helical carboxy-terminus of
the MeV C protein is essential and sufficient for its interaction with P [68].

Figure 5. Schematic representation of the replicating paramyxovirus RNP and potential roles of
C proteins in enhancing polymerase processivity. The viral nucleocapsid consists of RNA (orange
curved line) encapsidated with N (blue shapes). The viral polymerase consisting of L (purple) and
tetrameric P (grey) extracts viral RNA from the nucleocapsid and synthesizes a complementary
sequence (green curved line). P moves the polymerase along the genomic RNA by sequentially
interacting with helically arranged N subunits. P also interacts with free N to encapsidate the nascent
RNA strand. C proteins may enhance polymerase processivity through one or several of the four
indicated mechanisms. Figure generated with BioRender.com.

Interestingly, recent studies have identified several host factors that are recruited to
paramyxoviral replication centers to support viral RNA synthesis [124–127]. The MeV C
protein specifically recruits host factor SHCBP1 to the viral polymerase complex, which
had a positive effect on viral replication [127]. It is likely that C proteins of other paramyx-
oviruses may also recruit host factors supporting viral replication (Figure 5).

In summary, paramyxoviral C proteins are integral parts of the viral replication
complex, controlling polymerase activity and thereby ensuring proper RNA synthesis.
Although the C proteins from individual genera may act through different molecular
mechanisms, the control of replication is likely a major function that affects the virulence
and pathogenesis of all C protein-expressing paramyxoviruses.

10. C Proteins Directly Interfere with Innate Immunity Activation

C proteins can directly block the innate immune system at multiple levels (Figure 4).
Together with the V proteins [24–28,128], C proteins interfere with IFN induction and
signaling and also prevent inflammatory responses. C proteins of different genera share
some mechanisms of action, but some C proteins have unique characteristics, probably
reflecting viral adaptations to specific hosts or tissues.

10.1. Interferon Induction

While the IFN induction pathway (Figure 4, center) is a major target of paramyxoviral
V proteins [24,128], C proteins also target it. SeV deficient for all four C proteins [SeV(4C−)]
is a strong inducer of IFN expression ([129,130] due to its inability to prevent dsRNA
generation [112]. On the other hand, the ectopic expression of SeV and BPIV3 C proteins
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inhibits phosphorylation and the dimerization of IFN regulatory factor 3 (IRF3) by TANK-
binding kinase 1 (TBK-1) induced by foreign stimuli, such as Newcastle disease virus
infection, poly(I:C) treatment, 5′-triphosphate containing RNA or infection with SeV DI
particles [130–132]. This indicates that the respirovirus C protein may directly interfere with
the signal transduction cascade leading to type-I IFN production, but the direct interaction
partner has not been identified.

The C proteins of the morbilliviruses MeV, RPV and PPRV also interfere with IFN
induction [73,133,134]. However, the phosphorylation, dimerization and nuclear translo-
cation of IRF3 are not affected in cells expressing the MeV or RPV C proteins. On the
other hand, the nuclear localization of MeV C is essential for the efficient inhibition of
IFNβ induction, suggesting the inhibition of processes involved in IFNB gene transcrip-
tion occurring in the nucleus [73]. Notably, MeV vaccine strain C proteins, which have a
mutation in the NLS and, therefore, low nuclear accumulation, have a reduced ability to
inhibit IFNB transcription [73]. A recent proteomic analysis of MeV C protein interaction
partners revealed a weak interaction with the p65 subunit of the nuclear factor kappa B
(NF-κB) transcription factor [135], which, in addition to IRF3, is part of the IFNB enhanceo-
some [136]. While the MeV growth was similar in parental and in p65 knockout cells,
growth of the MeV-CKO mutant was significantly enhanced, suggesting that the blocking
of p65 by MeV C enhances viral replication [135]. Finally, a recent study suggested that the
PPRV C protein can block IFNB promoter activation when a constitutively active form of
RIG-I, or its downstream adapter mitochondrial antiviral signaling (MAVS), is expressed
but not when downstream signaling components are overexpressed [137]. This suggests
that the PPRV C protein, in contrast to the MeV and RPV C proteins, may target a step in
the beginning of the signal transduction cascade.

10.2. Interferon Signaling

Upon the binding of IFNα or IFNβ to the type-I IFN receptor complex (IFNAR1/2),
a signaling cascade involving receptor-associated tyrosine janus kinases JAK1, JAK2 and
TYK2 leads to phosphorylation of the transcription factors STAT1 and STAT2 (Figure 4,
IFN signaling). These then associate with IRF9 to form the IFN-stimulated gene factor 3
(ISGF3) complex, which drives the expression of several hundred IFN-stimulated genes
(ISGs) under control of the IFN-stimulated response element (ISRE). These genes encode
proteins with direct antiviral properties, as well as regulators (activators and suppressors)
of the IFN response signaling pathways [138].

Like many other viruses, paramyxoviruses target the IFN-signaling cascade and
thereby prevent ISG expression in infected cells. Many paramyxoviruses have evolved
more than one mechanism that inhibit IFN signaling. Most importantly, V proteins of
paramyxoviruses, and, to some extent P proteins, block IFN signaling by targeting STAT1,
STAT2, and the janus kinases [25–28,128]. V proteins bind and block STAT1 via different
mechanisms. While some V proteins, such as those of rubulaviruses, target STAT1 for
proteasomal degradation [25–28], others, like morbillivirus V proteins, block its nuclear
translocation [86,139]. Morbillivirus V proteins, in addition, bind to STAT2, and their
zinc-binding carboxy-terminal domain (VCT) mediates this interaction [140]. In addition,
SeV C proteins suppress IFN signaling, indicating how crucial efficient blocking of the IFN
response is for this virus [141].

The paramyxovirus C proteins also contribute to silencing the IFN response. SeV C
protein binds STAT1 [142,143], preventing both phosphorylation and dephosphorylation
of its residue Y701 that is critical for activation [144,145]. Interestingly, different SeV C
proteins act through two different mechanisms. Whereas the long proteins C’ and C induce
STAT1 degradation [143,146,147], the shorter Y1 and Y2 proteins efficiently block STAT1
phosphorylation without inducing degradation [66,146–148].

The co-crystal structure of parts of the SeV C protein with STAT1 (PDB 3WWT;
Figure 3A) [59] allows to infer the mechanism underlying this inhibition. The C protein
carboxy-terminal globular domain binds to the amino terminal STAT1 domain (ND) via
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charged and hydrophilic interactions along nearly parallel alpha-helices. Unphosphory-
lated STAT1 forms homodimers or heterodimers via ND interactions, and this dimerization
and a conformational change between the subunits lead to the exposure of the Y701 phos-
phorylation site to the IFNAR–JAK complex [149]. The crystal structure suggests that SeV
C locks STAT1 homodimers and STAT1-STAT2 heterodimers in a conformation unfavorable
for phosphorylation [59,150].

While this mechanism depends on the interaction of SeV C proteins with STAT1,
additional mechanisms independent of this interaction contribute to the blocking of IFN
signaling [151]. By binding to the cytoplasmic tail of IFNAR2, the SeV C protein blocks
activation of the janus kinases JAK1 and TYK2 [152]. Notably, this additional mechanism
to prevent STAT phosphorylation is conserved across respirovirus C proteins [152,153]
and may require the amino terminus [154], while STAT1 binding is specific for the SeV C
protein and involves the carboxy-terminus [59].

Morbillivirus C proteins, as exemplified by MeV and RPV, also interfere with IFN
signaling by blocking STAT phosphorylation [155,156]. However, a direct comparison of
the antagonistic activities of P, V and C proteins suggests that V is the major morbillivirus
antagonist of IFN signaling [25–28]. In contrast, the activity of the C protein is much
lower and may vary between different virus strains [155–157]. It is also unknown whether
morbillivirus C proteins target IFNAR or JAKs similar to respirovirus C proteins to prevent
STAT phosphorylation. Direct interactions of morbillivirus C proteins with either STAT1 or
STAT2 have not been detected [156,157].

10.3. Inflammation

Inflammatory responses are critical for viral clearance but can also lead to severe
pathology in the form of a cytokine storm or cytokine release syndrome. These side effects
are reported for numerous respiratory pathogens, such as highly pathogenic influenza
A viruses and SARS-CoV-2, as well as pathogens causing hemorrhagic fevers, such as
the Ebola virus [158–160]. They are mediated by the excessive production and release of
chemokines; IFNs and proinflammatory cytokines such as interleukin 6 (IL-6), IL-1β and
IL-18. The transcriptional upregulation of IL-1β and IL-18 during RNA virus infections
occurs after viral RNA sensing by RIG-I and MDA-5; however, these cytokines are ex-
pressed as inactive pro-forms, which require further activation (Figure 4). This activation is
mediated by inflammasomes and inflammasome-associated caspases.

For the recognition of RNA viruses, NLR family pyrin domain containing 3 (NLRP3) is
the main inflammasome component [161]. The NLRP3 inflammasome can be activated by
viral PAMPs but also by other stimuli (or danger-associated molecular patterns), including
uric acid crystals and reactive oxygen species [162,163]. Moreover, nitric oxide (NO), which
is generated upon viral infection by inducible nitric oxide synthase (iNOS), is an important
regulator of the NLRP3 inflammasome [164]. The expression of iNOS is stimulated by
various transcription factors, including NF-κB and IFN-γ-activated STAT1 homodimers, in
response to viral infections [165,166].

The NiV C protein suppresses cytokine and chemokine expression in infected en-
dothelial cells [91,167]. Infection with C protein-deficient NiV (NiV∆C) led to increased
chemokine and cytokine expression, including IL-1β, and, consequently, reduced patho-
genesis compared to wild-type NiV infection in a hamster model [91]. The transcriptional
upregulation of IL-1β by NiV∆C may be a direct consequence of increased RIG-I/MDA-5
activation by this virus. However, evidence for the inflammasome-mediated activation of
IL-1β is missing. Notably, NiV is a hemorrhagic fever virus not associated with a cytokine
storm [168].

The SeV C protein affects NO generation by limiting the dsRNA levels in infected
cells, which otherwise would trigger an IFN response and lead to the upregulation of
iNOS [169,170]. This may, in turn, affect inflammasome activation and the activation of
proinflammatory cytokines. A more direct effect on the NLRP3 inflammasome has been
reported for the SeV V protein: V directly interacts with NLRP3 and inhibits its assembly
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into a functional inflammasome [171]. A similar function was reported for the HPIV3 C
protein [172]. The HPIV3 C protein binds to NLRP3 and directs it towards proteasomal
degradation, thereby disabling inflammasome assembly. Intriguingly, blocking the NLRP3
inflammasome seems so important for respiroviruses that the C protein has taken over this
function from the V protein in V-deficient viruses. In summary, paramyxoviral C proteins
can directly bind to, and interfere with, the function of several cellular proteins required
for IFN induction, IFN signaling and inflammation. These C protein tasks are carried out
in addition to those supporting efficient and accurate viral replication.

11. C Proteins Support Viral Particle Assembly and Budding

Another task performed by C proteins during the paramyxovirus replication cycle is
the support of particle assembly and budding. It was recognized early that the matrix (M)
protein is essential to form and release new functional virus particles [173–176]. On the
other hand, the M proteins of viruses from different subfamilies have distinct functional
characteristics. Those of Orthoparamyxovirinae and Avulavirinae support the budding of
virus-like particles (VLPs) that are generated in the absence of any other viral protein or a
viral infection, proving that the M protein drives viral budding [177–180].

In the subfamily Rubulavirinae, however, M protein expression alone does not support
the efficient budding of VLPs [181,182]. For this subfamily, the co-expression of other struc-
tural proteins (H, F and N) is required to achieve particle formation efficiencies comparable
with a viral infection. The fact that co-expression of the glycoproteins H and F, as well as
proteins of the RNP, modulate the budding of viruses of different Paramyxoviridae genera
indicates that the M protein is not solely responsible for the budding process [178,181–186].

Notably, for viruses of the genera Respirovirus and Henipavirus, C proteins are involved
in viral budding (Figure 4) [183,187]. The co-expression of the SeV C protein with other
structural proteins enhances the release of particles in a VLP system [183]. Closer exam-
ination of the involvement of SeV C in budding identified the host protein ALIX as an
interaction partner of the SeV C protein [188]. ALIX connects the ESCRT-1 protein complex
with the ESCRT-3 complex [189–191]. These complexes facilitate protein transport through
the multivesicular body and endosomal sorting [192,193].

Recently, the crystal structure of the carboxy-terminal domain of the SeV C protein (Y3)
in a complex with the BRO1 domain of ALIX (PDB 6KP3) was resolved at 2.2 Å [61]. Within
this structure, a LXXW motif in the SeV C protein interacts with ALIX (Figure 3B), and
tryptophan is essential for this interaction [61]. However, for efficient C protein-induced
budding, an amino-terminal peptide of 23 residues is also required for the membrane
anchoring of C [188,194,195]. Therefore, only the C’ and C proteins are efficient inducers of
SeV budding, whereas the Y1 and Y2 proteins are not [194]. Notably, the LXXW motif is
conserved among respiroviruses (Figure 3C), and the HPIV1 C protein interacts with ALIX
as well [196].

These data suggest that respiroviruses utilize the ESCRT pathway for budding. Indeed,
interference with this pathway results in a decreased release of Sendai-VLPs [188,197] and
reduced HPIV1 titers [196]. On the other hand, redundancies in the functions of viral M
and C proteins, as well as the different ESCRT systems, suggest that respiroviruses rely
on multiple parallel mechanisms for efficient particle release [197,198]. Interestingly, C
proteins of some morbilliviruses, namely MeV, CDV and PMV, possess a LXXW motif
(Figure 3C). However, MeV C protein does not bind ALIX, and the virus particle release
is inefficient and seems independent of the ESCRT pathway [188,199], suggesting that the
release of morbillivirus particles may follow a different mechanism.

The NiV C protein interacts with ESCRT factor Tsg101 [187]. This interaction depends
on two residues: W103 and L104, which are conserved among henipaviruses (Figure 3D).
This WL dipeptide is also conserved in some respirovirus C proteins (Figure 3D), but the
evidence for an interaction of respirovirus C proteins with Tsg101 is missing.

In conclusion, the budding mechanisms of paramyxoviruses differ between genera.
Respiroviruses and henipaviruses use the ESCRT system for efficient particle release, but the
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corresponding C proteins have different supporting roles. In contrast, particle release from
morbillivirus-infected cells is inefficient and independent of the ESCRT system [199]. These
viruses rely on the formation of intercellular fusion pores for cell-to-cell spreading [200–202],
and it is unclear whether C proteins participate in these processes.

12. Concluding Remarks

The small C proteins expressed by viruses of three genera of the Orthoparamyxovirinae
subfamily control a wide range of viral and cellular processes. All of them modulate
the viral polymerase activity, thereby assuring proper RNA synthesis and avoiding the
generation of aberrant replication products, which would trigger innate immune responses.
In addition, some C proteins directly interfere with the function of specific innate immunity
proteins. Finally, some C proteins support efficient viral budding.

While C proteins were initially categorized as nonstructural or accessory, we now
understand better why they are so important for viral pathogenesis. Since C protein-
deficient viruses are highly attenuated, they could serve as novel live-attenuated vaccines.
In addition, novel antiviral therapeutics may target some C protein functions, to be used in
combination with existing fusion and polymerase inhibitors [203–205]. In consideration of
the multiple functions of paramyxovirus C proteins in the control of virus replication and
of the host innate immune response, we propose that C should stand for “control”.
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