Skip to main content
. 2022 Jan 7;12:795672. doi: 10.3389/fpsyt.2021.795672

Table 3.

Competing CFA and ESEM measurement models.

Model Type χ2 df CFI TLI RMSEA SRMR AIC BIC aBIC Meets Criteria
Confirmatory factor analytical models
Model 0 Unidimensional first-order factor model 2345.02 77 0.78 0.74 0.13 [0.128–0.132] 0.07 77662.47 77893.38 77759.95 No
Model 1 Three first-order factor model 1283.34 74 0.88 0.86 0.10 [0.091–0.100] 0.06 76606.79 76854.19 76711.23 No
Model 2 Second-order factor model 1283.34 74 0.88 0.86 0.10 [0.091–0.100] 0.06 76606.79 76854.19 76711.23 No
Model 3 Bifactor model 868.74 64 0.92 0.89 0.08 [0.079–0.088] 0.05 76212.19 76514.57 76339.84 No
Exploratory structural equation models
Model 4 Three first-order ESEM 634.78 52 0.94 0.90 0.08 [0.073–0.084] 0.03 76002.23 76370.59 76157.73 Yes
Model 5 Higher-order ESEM 983.42 55 0.91 0.85 0.10 [0.091–0.102] 0.08 76344.87 76696.73 76493.40 No
Model 6 Bifactor ESEM 272.29 41 0.98 0.95 0.06 [0.050–0.062] 0.02 75661.74 76090.52 75842.76 Yes
Model 7 ESEM within CFA 634.78 52 0.94 0.90 0.08 [0.073–0.084] 0.03 76002.23 76370.59 76157.73 Yes

χ2, Chi-square; df , degrees of freedom; TLI, Tucker-Lewis Index; CFI, Comparative Fit Index; RMSEA, Root Mean Square Error of Approximation [90%CI]; SRMR, Standardized Root Mean Square Residual; AIC, Akaike Information Criterion; BIC, Bayes Information Criterion; aBIC, Adjusted Bayes Information Criterion.