Skip to main content
. 2022 Jan 17;22(2):700. doi: 10.3390/s22020700

Table 4.

Training times for the NCFO architectures (seconds).

Optimizer
(# of Users, # of Products) # of Epochs Batch Size Adam Adagrad RMSprop
(50,304) 100 32 145.59 189.61 141.35
64 92.94 93.99 94.92
128 62.35 63.99 63.37
200 32 278.63 285.06 278.89
64 184.44 190.17 181.16
128 122.95 119.85 119.46
400 32 566.35 555.67 565.06
64 367.53 374.39 360.75
128 240.70 236.37 236.96
(100,418) 100 32 250.34 249.61 568.37
64 162.49 163.74 381.78
128 109.51 106.37 245.87
200 32 486.97 499.78 1158.23
64 320.06 323.31 752.08
128 211.67 205.29 483.98
400 32 967.71 993.87 2750.17
64 651.75 1518.80 2127.64
128 403.53 949.84 397.96
(200,553) 100 32 482.37 484.87
64 301.06 305.10
128 198.08 189.73
200 32 965.60 1213.02
64 626.58 603.84
128 402.97 389.71
400 32 2005.65 1880.86
64 1240.91 1177.66
128 756.34 757.84