Skip to main content
. 2022 Jan 14;12(2):263. doi: 10.3390/nano12020263

Table 3.

Basic information about the discussed methods of green synthesis and the main characteristics of the synthesized NPs.

Type of Catalyst Applied Plant Extract in Experiments Method of Synthesis Size of the Newly Synthesized Particles Structure of the Newly Synthesized Particles Type of Pollutant in the Photocatalytic Experiments Applied Irradiation Efficiency of the Photocatalytic Degradation (%) Reaction Rate Constant Study
TiO2 Leaf extract of Azadirachta indica Plant-mediated synthesis Average crystal size in the range of 12.7–16.8 nm Mesoporous structure of TiO2 Rhodamine 6 G UV irradiation 64% after 57 min of irradiation 0.0321 min−1 [29]
TiO2 Aloe Vera gel from the plant leaf Hydrothermal synthesis Size of pure TiO2 57 nm, while the Ag@TiO2 38 nm Combination of anatase and rutile phase Picric acid Visible irradiation After 50 min of irradiation a decent amount of PA was removed Not mentioned [33]
TiO2 Leaf extract of Cinnamomum camphora Synthesis under ambient conditions 12.6 ± 1.7 nm Spherical shape and anatase phase of the Au-Ag/TiO2 methyl orange (MO), rhodamine B and methylene blue UV-Vis irradiation (Xe lamp) 89.4% of MO after 60 min of irradiation; Complete degradation in the case of mixture dyes after 60 min of irradiation 0.0356 min−1 in the case of MO degradation; For the mixture the constant was not mentioned [34]
TiO2 Leaf extract of Deinbollia pinnata Sol–gel method Average crystal size in the range of 19–21 nm Aggregated, semi-spherical shape with anatase phase Methyl orange UV irradiation 97.53% after 150 min of irradiation Not mentioned [35]
TiO2 Leaf extract of Euphorbia hirta Plant-mediated synthesis Avarage crystal size in the range of 20–50 nm Spherical shape and cubic phase of TiO2 Methylene blue (MB), MO, alizarin red (AR) and crystal violet (CV) Direct sunlight 86.8% (CV); 81.3% (AR); 77.5% (MO) after 6 h of irradiation Not mentioned [36].
ZnO Leaf extract of Syzygium Cumini Not mentioned 11.35 nm Agglomerated, well-crystallized hexagonal wurtzite structure Methylene blue Sunlight irradiation 91.4% after 180 min of irradiation Not mentioned [37]
ZnO Pullulan, product of Aureobasidium pullulans fungus Precipitation method Average particle size 110.86 nm Flower-like strucutre Methyl orange UV irradiation 97% after 300 min of irradiation Not mentioned [38,39]
ZnO Leaf extract of Cinnamomum tamala Plant-mediated synthesis Average particle size 35 nm Hexagonal wurtzite crystallite structure Methylene blue Direct sunlight 98.07% after 90 min of irradiation Not mentioned [40]
ZnO Plant extract of Gynostemma pentaphyllum Co-precipitation method 35.41 nm Hexagonal structure of crystalline nanoparticles Malachite green UV irradiation 89% after 180 min of irradiation Not mentioned [41]
ZnO Peel extract of Cavendish bananas Plant-mediated synthesis 15.3 nm Triangular and spherical shaped particles with hexagonal wurtzite structure BB9 organic dye; Crystal violet (CV) and Congo red (CR) UV-Vis irradiation (xenon lamp) 100% of BB9 after 90 min of irradiation; 97.79% of CV and 81.70% of CR after 420 min of irradiation 0.5254 h−1 for CV and 0.2837 h−1 for CR [42]
ZnO Leaf extract of Alchornea laxiflora Plant-mediated synthesis 29–38 nm, depending on the volume of leaf extract Quasi-hexagonal shape with hexagonal crystallographic phase Congo red Direct sunlight 87% after 60 min of irradiation 0.0401 min−1 [43]
ZnO Peel extract of banana Plant-mediated synthesis 18.86–20.72 depending on the type of banana Nanocrystalline ZnO Not mentioned Not mentioned Believed to be effective in the photodegradation Not mentioned [46]
ZnO Jujube fruit extract Plant-mediated synthesis 19 nm Highly spherical shape with hexagonal wurtzite structure Methylene blue (MB) and Eriochrome black-T (ECBT) Direct sunlight 85% of both dyes after 300 min of irradiation 0.0087 min−1 for MB and 0.0067 min−1 for ECBT [47]
ZnO Leaf extract of Prunus cerasifera Plant-mediated synthesis Average crystal size 12 nm Aggregated spheroidal shape with wurtzite hexagonal phase Bromocresol green (BG), Bromophenol Blue (BB), Methyl red (MR) and Methyl blue (MB) Direct sunlight 93.12% of BG; 90.54% of BB; 88.49% of MR and 76.76% of MB after 10 min of irradiation Not mentioned [48]
ZnO Leaf extract of Becium grandiflorum Biological approach Average crystal size of 20 nm Hexagonal wurtzite structure Methylene blue UV irradiation 69% after 200 min of irradiation 0.0019 min−1 [49]
ZnO Root extract of Codonopsis lanceolata Modified co-precipitation method 500 nm Spherical, flower-like shape with hexagonal wurtzite structure of ZnO Methylene blue UV irradiation 90.3% after 40 min of irradiation 0.057 min−1 [50]
ZnO Leef extract of Peltophorum pterocarpum Plant-mediated synthesis 11.64 nm Flowershaped particles with hexagonal wurtzite phase of ZnO Methylene blue Sunlight irradiation 95% after 120 min of irradiation 0.021 min−1 [51]
ZnO Husk extract of Zea mays (Z-ZnO) and peel extract of Artocarpus heterophyllus (A-ZnO) and Punica granatum (P-ZnO) Co-precipitation method under low temperature 28 (Z-ZnO), 55 (A-ZnO) and 25 (P-ZnO) nm Z-ZnO flower-like; A-ZnO cauliflower-like and P-ZnO small nanoflower structure with hexagonal ZnO wurtzite phase Antibacterial activity Visible light irradiation 93.2% (Z-ZnO), 85.7% (A-ZnO) and 99.2% (P-ZnO) after 180 min of irradiation 0.0130 (Z-ZnO), 0.0091 (A-ZnO) and 0.0280 (p-ZnO) min−1 [52]
ZnO Leaf extract of Sapindus mukorossi Plant-mediated synthesis 10–1000 nm Spherical-spiral shape Methylene blue Sunlight irradiation 99% (ZnO-PMMA); 98% (Ni2O3-PMMA); 93% (CuO-PMMA); 90% (Fe3O4-PMMA) after 130 min of irradiation 0.1349 (ZnO-PMMA); 0.1321 (Ni2O3-PMMA); 0.1263 (CuO-PMMA); 0.1231 (Fe3O4-PMMA) min−1 [53]
ZnO Leaf extract of curry with coconut water Plant-mediated synthesis 1.80, 1.62 and 1.88 nm with respect to 10-, 15- and 20-mL concentration of extract Agglomerated, irregular spherical shape Methylene blue Sunlight irradiation 98.45% after 60 min of irradiation 0.0579 min−1 [54]
ZnO Leaf extract of Stevia rebaudiana Co-precipitation method Average crystallite size 4.71 nm Agglomerated flower-like shape with hexagonal wurtzite structure of the ZnO Methylene blue UV irradiation 76% after 30 min of irradiation Not mentioned [55]
ZnO Root extract of Saponaria officinalis Precipitation method 42–5500 nm Sowrd-like shapes with hexagonal wurtzite phase of ZnO Methylene blue Visible light irradiation 15–42% depending on the applied catalyst, after 40 min of irradiation Lower than the used reference value (i.e. lower than 0.0344 min−1) [56]
ZnO Leaf extract of Amaranthus dubius Plant-mediated synthesis 82–250 nm for ZnO and 71–280 nm for 1% Fe-ZnO Spherical cubic phase Naphthalene UV irradiation 63.5% (ZnO) and 71.7% (Fe-ZnO) after 240 min of irradiation 0.0045 (ZnO) and 0.0054 (Fe-ZnO) min−1 [57]
ZnO Leaf extract of Rosemary Plant-mediated synthesis Average crystalline size 28.946 ± 0.002 nm Quasi-hexagonal structure with high degree of agglomeration Textile effluent Visible light irradiation 63% after 100 min of irradiation 0.0111 s−1 [59]
ZnO Leaf extract of Solanum lycopersicum Plant-mediated synthesis Average crystalline size 33 nm Agglomerated spherical shape with hexagonal wurtzite structure of ZnO Congo red Sunlight irradiation 80% after 300 min of irradiation Not mentioned [60]