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Abstract

Computational methods to predict molecular properties regarding safety and toxicology represent 

alternative approaches to expedite drug development, screen environmental chemicals, and thus 

significantly reduce associated time and costs. There is a strong need and interest in the 

development of computational methods that yield reliable predictions of toxicity, and many 

approaches, including the recently introduced deep neural networks, have been leveraged towards 

this goal. Herein, we report on the collection, curation, and integration of data from the public 

datasets that were the source of the ChemIDplus database for systemic acute toxicity. These efforts 

generated the largest publicly available such dataset comprising > 80,000 compounds measured 

against a total of 59 acute systemic toxicity endpoints. This data was used for developing multiple 

single- and multi-task models utilizing Random Forest, deep neural networks, convolutional and 

graph convolutional neural network approaches. For the first time, we also reported the consensus 

models based on different multi-task approaches. To the best of our knowledge, prediction 

models for 36 out of the 59 endpoints have never been published before. Furthermore, our 

results demonstrated a significantly better performance of the consensus model obtained from 

three multi-task learning approaches that particularly predicted the 29 smaller tasks (less than 
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300 compounds) better than other models developed in the study. The curated dataset and the 

developed models have been made publicly available at https://github.com/ncats/ld50-multitask, 

https://predictor.ncats.io/ and https://cactus.nci.nih.gov/download/acute-toxicity-db (dataset only) 

to support regulatory and research applications.

Graphical Abstract

INTRODUCTION.

Early in silico assessment of small molecule toxicity is an indispensable step in drug 

discovery and development that helps reduce costs and labor, can inform on regulatory 

decision making, and has parallel applications in environmental chemical screening 

and prioritization1–6. The advent of big data in chemistry and biology, complemented 

by advances in screening technologies, has enabled the development of large-scale 

toxicity prediction models4,7–10. While the ChEMBL database11 serves as a major public 

resource of compound bioactivity data, there are other open-access databases that provide 

information on the toxicity of small molecules, such as TOXNET12 (www.nlm.nih.gov/

toxnet/index.html) and DSSTox13. Dedicated resources with information related to specific 

toxicity endpoints are also becoming increasingly available14–16. RTECS® (Registry of 

Toxic Effects of Chemical Substances) is currently made available as a proprietary database 

that provides in vivo data for more than 180,000 chemical substances with a major focus 

on acute toxicity17. ChemIDplus18 on the other hand is a publicly available database that 

contains more that 150,000 compounds having acute systemic toxicity outcome records 

(e.g., lethal dose, 50% or LD50) in different species and multiple routes of administration.
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A wide range of quantitative structure-activity relationship (QSAR) methods has been 

employed for computational toxicity prediction19–29. Machine learning methods such as 

Random Forest and Support Vector Machines have served as popular tools for building 

cheminformatics models30,31, and more recently, neural networks have emerged as robust 

methods that perform exceedingly well on large datasets and provide better extrapolation 

in comparison to traditional QSAR models4,32–36. However, models trained on small 

datasets often result in poor predictive performance on unseen external data37,38, and could 

potentially benefit from learning on biologically related endpoints. In this context, multi-task 

learning facilitates simultaneous modeling of multiple endpoints to develop better models, 

particularly when the endpoints are mechanistically correlated with one other36,39–41. Erhan 

et al.42 were the earliest to report single-task and multi-task predictive models for a family 

of biological targets in 2006. Later, a series of unified QSAR models were developed to 

predict antimicrobial activity of drugs against multiple fungal and bacterial species43–45. In 

2008, Varnek et al.46 applied multi-task learning for modeling 11 types of tissue-air partition 

coefficients along with another inductive knowledge transfer technique known as Feature 

Net. In Feature Net approach, additional tasks are used to build models, predictions from 

which are used as descriptors for modeling the main task. Here, in the case of acute systemic 

toxicity, there are multiple specific endpoints in ChemIDplus18 that have a limited number 

of data points (e.g., human, cat, and rabbit lethal doses), but the expectation is that there 

is a finite number of mechanisms by which chemicals cause lethality and that these would 

be fairly consistent across species. Compounds that have data in one endpoint would then 

inform predictions on structurally similar compounds for related endpoints.

In 2018, at the CATMOS Meeting, Zakharov et al. proposed multi-task deep learning 

approach to model toxicity across 9 different endpoints47,48. Later, Sosnin et al.49 extended 

this approach for a total of 29 toxicity endpoints using data from RTECS® to report 

that these models outperformed single-task models based on other machine learning 

methods. More recently, Zakharov et al.4 proposed a novel deep learning consensus 

architecture (DLCA) to model more than 1000 endpoints using bioactivity data available 

from publicly accessible resources such as ChEMBL and Tox21 (https://tripod.nih.gov/

tox21). Different types of graph convolutional neural networks (GCNN) were proposed and 

validated on benchmark datasets that include several multi-task classification and regression 

tasks50–52. Other studies showed that the implementation of transfer learning53–55 led to 

improved model performance40,41,56. In the toxicity domain, studies have used Tox2157, 

ToxCast58, SIDER59, and the recently introduced ClinTox dataset for benchmarking 

different machine learning methods19,50,57. While most of these datasets comprise multiple 

endpoints, consensus of multi-task approaches has not been extensively investigated. 

However, consensus modeling approaches have been reported to outperform simple 

QSAR models60–62. Thus, in this study, we consider consensus approaches that combined 

predictions from different multi-task learning approaches to predict acute toxicity.

Considering the chemical space coverage of the dataset and the sparsity of the measurements 

against 59 different endpoints, we thought that the acute toxicity data from ChemIDplus18 

could be an ideal case study, both to improve existing models using multi-task learning 

and to implement and test new multi-task algorithms. Although several groups24,25,49,63–65 

previously reported QSAR models for acute toxicity endpoints, most of which are publicly 
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accessible, much of the modeling data were not made publicly available and therefore the 

quality could not be assessed. Here, we formulated the primary goals of the study as follows: 

i) collect, curate, and integrate all available data for systemic acute toxicity into the largest 

publicly available multi-species toxicity dataset; ii) use this dataset for benchmarking and 

comparing state-of-the-art single- and multi-task machine learning methods; iii) use the most 

recent advances in multi-task modeling to improve existing, or develop novel, models for a 

total of 59 acute toxicity endpoints spanning multiple species and routes of administration. 

Of the 59 endpoints, prediction models for 36 endpoints have not been previously reported 

in literature to the best of our knowledge.

MATERIAL AND METHODS.

Dataset.

The quality of experimental data is a crucial part of building machine learning models. 

In this study, we used data which are publicly available from ChemIDplus18. A set of 

165,182 measurements related to 456 endpoints, representing 25 dosing routes across 28 

species and expressed as LD50, lethal dose low (LDLo) and toxic dose low (TDLo) were 

extracted. The dataset consists of toxicity measurements in different units (mg/kg, mL/kg, 

gm/m3 and many others). In order to have a harmonized dataset, we considered the data 

from three measurement units: mg/kg, μg/kg, and ng/kg. This led us to a dataset of 159,968 

measurements for 91,642 compounds tested against 437 endpoints.

Data curation.

The initial dataset containing 91,642 compounds was curated following a protocol 

previously developed by Fourches et al.66–68. Briefly, salts and solvents were stripped 

from all compounds followed by removal of counterions, large organic compounds (Da 

>= 2,000), mixtures, and inorganic compounds. Specific chemotypes such as aromatic, 

nitro groups, sulfo groups, tautomers, and protonation state were standardized using 

the ChemAxon Standardizer software (https://chemaxon.com/)69. If duplicates presented 

discordant potencies (i.e., > 0.2 −log units), both entries were excluded; if the reported 

potencies were similar, an average of the values was calculated, and one entry was retained 

in the dataset. Stereocenters were kept and enantiomers analyzed. After curation, 85,848 

compounds and 255 endpoints were retrieved. In order to generate reliable prediction 

models, we removed the endpoints that had less than 100 reported measurements. This 

led us to a dataset of 80,081 unique compounds with 122,594 measurements against at least 

one of the 59 endpoints. Table S1 in the Supporting Information provides information on the 

number of measurements across each endpoint.

Molecular Descriptors.

Although the use of public descriptors in combination with commercial descriptors to model 

acute toxicity was previously reported49, we intended to stick to descriptors available in the 

open source domain. In 2018, Zakharov47 reported the superior performance of multi-task 

deep learning models for acute toxicity endpoints with Avalon fingerprints in comparison 

to Morgan fingerprints and RDKit descriptors. Therefore, we decided to use only Avalon 
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fingerprints (1024 bits)70,71 in this study and calculated them using the RDKit Fingerprints 

node72 available in the KNIME analytics platform73.

Machine Learning Methods.

We used deep neural networks (DNNs) to build both multi-task (MT-DNN) and single-

task (ST-DNN) models. In addition, we used Random Forest to build single-task (ST-

RF) baseline models due to their widespread application and robust performance in 

cheminformatics and machine learning74–77. These methods are briefly explained below.

Deep Neural Networks (DNN)

DNNs have been reported to outperform most other machine learning methods for the 

prediction of molecular properties4,49,78,79. A DNN is an alteration of an artificial neural 

network (ANN) that consists of several sequential hidden layers. Each layer in a DNN is 

represented by a linear vector transformation Wx+b where W is a matrix of tunable weights 

and b is a bias vector, followed by a nonlinear transformation function (i.e., sigmoid). In 

our study, we developed multi-task DNN models utilizing the multi-layer feedforward neural 

networks implemented in Keras80 using the Tensorflow backend81. The loss function was 

minimized using the Adam algorithm82. In order to further identify the best hyperparameters 

for DNN, we used the grid search function available from the scikit-learn83 library. The grid 

search was performed for the following parameters: (i) number of epochs; (ii) batch size; 

(iii) activation function, (iv) learning rate of Adam optimizer, and (v) dense layer candidates, 

i.e., the number of neurons in each dense layer. The detailed list of hyperparameters 

optimized for the MT-DNN model can be found in Table S2 in the Supporting Information. 

While some parameters were fixed based on previous experience with the dataset, some 

were exhaustively searched to find the optimal performing hyperparameters. In the case of 

single-task DNN models, we used the best performing hyperparameters from the multi-task 

DNN since it would not be practical to evaluate an extensive list of hyperparameters over 

59 different tasks individually. However, the learning rate for Adam optimizer was tuned for 

each task separately.

Random Forest

Random Forest (RF) is an ensemble of decision trees84. In this study, the single-task 

regression models (ST-RF) were built using the RF implementation in scikit-learn83. The 

number of trees was arbitrarily set to 100, since it has been shown that the optimal number 

of trees is usually 64 – 128, while further increasing the number of trees does not necessarily 

improve the model’s performance75,85. Due to the robust nature of RF86, no parameter 

optimization was performed.

Model Benchmarking

In addition to the single-task baseline models, we also benchmarked our DNN models 

with models reported in the literature. We first explored the ‘deep learning consensus 

architecture’ (DLCA) proposed by Zakharov et al.4. The approach averages the outputs of 

separate DNNs built using different descriptors inside a single neural net. This imposes 

a constraint on the learning algorithm to prevent propagation of corresponding errors, 
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which leads to an improvement in the consensus results. In this study, we developed 

a DLCA model that combines descriptors-based and so-called descriptors-free models. 

The descriptors-based models were generated using three different types of fingerprints 

(Morgan, Avalon, and AtomPair), and RDKit descriptors. The descriptors-free model was 

created using SMILES notation and a convolutional neural net architecture based on 1D 

convolutional and GlobalMax pooling layers following by hidden dense and output layers 

(the architecture and training parameters are provided in Table S2 in the Supporting 

Information).87,88).

Next, we used the recently published graph convolutional neural networks (GCNN)52,89–93. 

In this study, we developed multi-task GCNN models by using a message-passing variant 

of GCNN as implemented in ChemProp51. These networks construct a learned molecular 

representation by operating on the graph structure of the molecule. Further, we also 

performed hyperparameter grid optimization and used the best settings to generate models 

for final validation. Optimization for the GCNN models was performed as proposed by 

Swanson et al.51,94,95.

Consensus Models

In this study, we developed two different consensus models from the best performing 

individual multi-task models. The first consensus model is based on the multi-task DNN 

model with hyperparameter grid optimization (MT-DNN), and multi-task GCNN model with 

grid optimization (GCNN). This is referred to as ‘consensus A’ in the rest of the study. The 

second is based on MT-DNN, GCNN, and multi-task DLCA models, referred as ‘consensus 

B’ in the rest of the study.

Model Validation and Statistical Performance.—To estimate the performance of 

the models developed in this study, we applied a 5-fold cross-validation procedure96. The 

dataset was randomly subdivided into five parts, where four parts were used as the training 

set for model building, and the remaining part was used as the test set for the assessment of 

predictive accuracy. As it was observed that the selection of hyperparameter plays a crucial 

role in the model performance97, in-order to have a fair and unbiased comparison, the best 

hyperparameters were selected based on grid search performed on the first fold of the dataset 

and applied on the remaining four folds. Further, in addition to random split, we also applied 

a scaffold-based splitting procedure as proposed by Yang et al.51

The performance of each model for 5-fold CV procedure was assessed on the basis of root 

mean squared error (RMSE) (Eq. 1), and determination coefficient R2 (Eq. 2),

RMSE = 1
n ∑i

n Y l − Y i
2

(1)

R2 = 1 −
∑i

n Y l − Y i
2

∑i
n Y i − Y 2 (2)
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Y  is the predicted value for each particular compound; Yi is the observed value for 

each particular compound; Y  is the mean value over all compounds; n is the number of 

compounds.

The difference between the model performance was evaluated using the Wilcoxon paired 

singed-rank non-parametric statistical test. For the given two methods, the predicted 

performance (RMSE and R2) for each of the 59 tasks was compared pairwise to identify 

the method that significantly outperforms the other. We defined the statistical significance as 

p-value less than 0.05.

Calculation of the Applicability Domain.—Applicability domain (AD) is a crucial part 

of the QSAR methodology that, if used correctly, may significantly improve the prediction 

results4,98. There are multiple ways to calculate the applicability of a QSAR model99–103. 

In this study, we used two different approaches for estimation of the model’s AD. In the 

first approach, we estimated the Tanimoto similarity104,105 between the test set compounds 

and nearest neighbor in the training set using Morgan fingerprints. For each fold, we filtered 

out those compounds that were below a certain similarity threshold and further calculated 

the RMSE (endpoint-wise) and the coverage of predictions as the percentage of compounds 

that fall within the model’s AD. In the second approach, since the DLCA model4 provides 

an integrated output from models based on different descriptors, we extracted the prediction 

output for each compound from individual descriptor models and calculated the standard 

deviation (SD) of prediction for each compound. Then, for each endpoint, we calculated 

the mean (μ) and standard deviation (σ) from the standard deviation of prediction for each 

compound. We then filtered out those compounds that were above the μ + 0.5 σ (t1), μ + σ 
(t2), μ + 2σ (t3) and μ + 3σ (t4), simultaneously and calculated the RMSE and coverage on 

the remaining.

RESULTS AND DISCUSSION

Data Overview.

After curation, 80,081 compounds remained in the dataset, with 122,594 measurements 

available for 59 endpoints. However, not all of these compounds were measured for all 

endpoints. The most frequently reported endpoints were for mouse, rat, and rabbit. For 

mouse, there were 12 different measurement types, i.e. combinations of dosing routes 

and acute systemic outcomes expressed as LD50, LDLo, and/or TDLo were reported 

(70,442 unique measurements). The second most reported species was rat (14,948 unique 

measurements) followed by rabbit (3,447 unique measurements) with 11 and 9 different 

measurement types, respectively. Oral, intravenous, and subcutaneous were the 3 most 

frequently studied routes of administration. The sparsity of the data matrix (80081×59) 

was found to be >97% (Table S3 in the Supporting Information). Next, PCA plots were 

generated based on Avalon fingerprints and the median acute systemic toxicity values across 

different endpoints for each molecule (Figure 1). Overall, the compounds span a fair extent 

of chemical space and potency. As can be seen, the majority of the overlapping chemical 

structures do not have distinct toxicity profiles. This indicates that the modelability106 of 

the dataset should be high, because ‘structurally similar molecules tend to exhibit similar 
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properties’. This supports the idea of applying multi-task learning, in which the smaller tasks 

(endpoints with less than 300 measurements) are simultaneously learned with the larger 

tasks and the learner optimizes the performance across all tasks.

Modeling Results.

We evaluated the performance of multi-task regression models for different acute systemic 

toxicity endpoints, across species and dosing routes. We built multi-task DNN (MT-DNN), 

single-task models (DNN and Random Forest), multi-task DLCA (DLCA) and GCNN 

models. In order to avoid any bias that might occur due to the splitting schemes employed, 

all models were evaluated in a five-fold cross-validation scheme96,107. Figure 2 provides 

a comparison of the average performance (RMSE, R2) over 59 endpoints for different 

models generated in this study. The best results (average RMSE = 0.65; average R2 = 0.57) 

were obtained from the consensus B models, which is a consensus of the predictions from 

multi-task DNN, GCNN, and DLCA models. The DLCA models alone provided an average 

RMSE of 0.68. In general, our MT-DNN model performed slightly better than the GCNN 

model. The single-task DNN models on the other hand, performed the worst amongst all 

models in all folds. Though the single-task models based on Random Forest provided 

better performance than single-task DNNs, their performance was inferior compared to the 

multi-task models. The superior performance of the Random Forest model could be due to 

the robustness of algorithm108 as compared to the DNNs that require relatively large datasets 

in order to fit the hidden layers109,110. A similar performance trend was observed with 

the R2 values (Table S4 in the Supporting Information). Except for MT-DNN and GCNN, 

the difference in performance for any given pair of methods was found to be statistically 

significant (p < 0.05; Table S5 in the Supporting Information).

With respect to specific endpoints, our best model (consensus B) predicted LD50 values 

fairly well for several species and several routes of administration, for example mouse oral, 

intravenous, intraperitoneal; rabbit skin; rat intraperitoneal, skin and others. The mouse oral 

LD50 had the best RMSE (RMSE = 0.43, R2 = 0.50), and was one of the most frequently 

measured endpoints with 23,373 values in the final dataset. The rabbit subcutaneous LDLo 

endpoint had the highest R2 value (R2 = 0.76, RMSE = 0.61) for our consensus B model, 

although it had one of the lowest incidences, with only 241 measurements. It should be 

noted that LDLo was predicted with lower accuracy than LD50 toxicity for all species 

and route of administration types, followed by TDLo. A possible reason could be that 

LD50 endpoints have comparatively higher numbers of measurements since it is more often 

evaluated as compared to TDLo and LDLo. Moreover, TDLo and LDLo are non-standard 

toxicity measurements and thus are less reliable due to lack of harmonized protocols causing 

variability in experimental conditions. The detailed model performance statistics can be 

found in Table S6 in the Supporting Information.

In addition to ‘random split,’ we also performed ‘scaffold split’, which is challenging, but a 

more realistic evaluation of the predictive power of the models4,51. ‘Scaffold split’ ensures 

that there is no molecular scaffold overlap between the train and test sets which indirectly 

mimics the evolution of new chemical space. As the ultimate goal of modeling is to predict 

properties of newly synthesized chemicals, performance assessment using ‘scaffold split’ 
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can be considered a more realistic evaluation where new chemicals may not bear any 

resemblance to compounds in the training set111. In concordance with this, our results 

indicate superior performance of ‘random split’ in comparison to ‘scaffold split’. For the 

scaffold-split, DLCA model showed the best prediction results, followed by MT-DNN and 

GCNN models which provided similar performance. Detailed model statistics are provided 

in Table S4 in the Supporting Information.

Comparison to Previous Studies.

Outside of our own presentation at CATMOS meeting,47,48 only Sosnin et al.49 reported 

multi-task models for a total of 29 toxicity endpoints. They provided a comparison of 

both multi-task and single-task models using a wide range of molecular descriptors. It 

was shown that the best performance was obtained by averaging of the predictions of the 

top-five individual multi-task models (RMSE = 0.68; on 29 endpoints). In our study, the 

consensus B model combining three multi-task approaches provided the best performance 

with RMSE = 0.65 and R2 = 0.57 on 59 endpoints. Although we would like to benchmark 

the performance of our models against the results of Sosnin et al.,49 direct comparison 

is impossible because of the different numbers of compounds and endpoints. For some 

overlapping endpoints, we have fewer compounds in our dataset because of a more rigorous 

data curation procedure applied in this study. Furthermore, the raw data for our study 

were obtained from the ChemIDPlus portal, and therefore could have different numbers 

of compounds and measurements compared to the latest version of RTECS® dataset 

available from commercial vendors. These two reasons outlined above may explain the 

discrepancy in the number of measurements across different endpoints in Table S1 (in the 

Supporting Information). Ideally, future comparisons will be possible using newly obtained 

data. Despite the challenges in directly comparing the results, we checked for toxicity 

endpoint overlap with Sosnin et al.,49 and found that 23 were in common with the 59 

endpoints addressed in this study. Of these 23 endpoints, we noticed that only 18 endpoints 

had a comparable number of measurements in both studies, considering a threshold of 

at least 300 measurements per endpoint (Table S1). We therefore drew parallels between 

both studies for these 18 relatively similar datasets. The best results from Sosnin et al.49 

were achieved by a consensus model (RMSE = 0.54, R2 = 0.60). Our consensus B model 

provides an RMSE of 0.53 (R2 = 0.61) on the same 18 endpoints (Table S7 in the Supporting 

Information). Furthermore, we provide curated data and prediction models for 36 acute 

toxicity endpoints that to the best of our knowledge have never been published before. 

These include different combinations of species (dog, chicken, rabbit etc.), exposure route 

(oral, skin, intramuscular, etc.) and dose metric (LD50, LDLo, TDLo). While most of these 

represent non-standard endpoints in terms of internationally harmonized OECD guidelines, 

such studies are often performed and submitted to regulatory authorities as part of chemical 

toxicity evaluation packages. Ideally, the models presented here would substitute for future 

studies being performed using animals, saving considerable resources and providing reliable 

predictions using alternative approaches that have been trained on information from multiple 

species.
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Multi-task Models versus Single-task Models.

It is clear from the results (Figure 3 and Table S6 in the Supporting Information) that 

our multi-task DNN models outperformed the single-task models on the smaller tasks 

(endpoints with fewer chemicals tested). This is expected according to the results from 

previous studies39,49,112–114 and due to the ability of multi-task methods to co-learn larger 

and smaller tasks115. Thus, multi-task models can learn from related tasks and thus tend 

to provide better performance on small (related) tasks compared to a single-task model 

trained using a smaller dataset. This emphasizes the advantage of using multi-task learning 

approaches for such understudied endpoints.

Applicability Domain Analysis.

Applicability domain (AD) of a QSAR model defines the limitations in its structural 

domain and response space. In this study, based on the two approaches (as presented in 

the ‘Materials and Methods’ section: ‘Calculation of the Applicability Domain’), the RMSE 

and the corresponding coverage (for the predictions from the DLCA model) were calculated 

and are presented in Figure 4 below with respect to the threshold values of AD (0.1–0.9) and 

SD (t1–t4) cut-offs. Figure S1 in the Supporting Information shows the R2, AD cut-off, SD 

cut-off and the corresponding coverage.

Figure 4 shows an inverse correlation between the coverage and the accuracy of model 

prediction, meaning the higher the AD threshold, the better the accuracy of the model (lower 

RMSE) as expected. Based on the second approach, the higher the SD cut-off, the less 

accurate the model’s predictions (greater RMSE). The best results were obtained with AD 

= 0.9, which resulted in an RMSE value of 0.54 and 8% as the coverage of prediction. 

Considering both the coverage and the prediction accuracy, we found that t1 (mean + 0.5 

SD) cut-off provides an optimal ratio between them, resulting in an RMSE value of 0.60 and 

coverage of 82%. Considering the Tanimoto similarity values, those predictions satisfying an 

AD threshold of 0.7 can be regarded as reasonable predictions (RMSE= 0.60; Coverage = 

51%). Thus, both AD approaches could be used to select compounds with certain prediction 

confidence.

Online Service for Prediction of Acute Toxicity Profile of Chemical Compounds.

The MT-DNN model developed during the study are accessible via the NCATS Predictor 

(https://predictor.ncats.io/). Users can provide different molecular representations such 

as SMILES, SDF (structure data format) files or two-dimensional images of chemical 

structures as input. As an output, the online interface provides predictions for all 59 

endpoints and reports the applicability domain assessment for each compound based on 

different models. The applicability domain calculation is based on the Tanimoto similarity 

to the nearest compound within the training set. A compound with a similarity value to the 

nearest neighbor falling in the region of (i) 1 to 0.7 is considered to be predicted with a 

high confidence; (ii) 0.7 to 0.5 is considered to be predicted with a medium confidence; 

(iii) less than 0.5 is considered to be predicted with a low confidence. This web service is 

provided to help researchers and regulators rapidly identify and prioritize compounds with 

toxic liabilities and gain additional insights based on the predicted profiles against the 59 

multi-species acute-toxicity endpoints.
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CONCLUSIONS.

Predicting molecular properties of small molecules is an essential step in modern drug 

discovery and environmental chemical assessment. Increasingly accurate computational 

methods for toxicity prediction are facilitated by data availability, novel algorithms, and 

computing power. Herein, we report on the collection, curation, and integration of all 

freely available data for systemic acute toxicity into the largest publicly available dataset 

(59 multi-species acute systemic toxicity endpoints and more than 8000 compounds). We 

used it for the development of deep-learning-based multi-task models and benchmarking 

them against state-of-the-art modeling techniques such as RF and recently proposed 

graph neural network architectures. We demonstrate that the MT-DNN approach offers a 

statistically significant advantage over single-task models, especially for endpoints with 

smaller number of compounds. Among multitask models, the DLCA model showed the 

best performance for both random and scaffold splitting procedures. Consensus predictors 

constructed from the results of MT-DNN, GCNN, and DLCA yielded the statistically 

highest predictive power. Both the curated acute toxicity dataset and the best performing 

models are made freely accessible to the research and regulatory community via the NCATS 

Predictor (https://predictor.ncats.io/), https://github.com/ncats/ld50-multitask as well as 

https://cactus.nci.nih.gov/download/acute-toxicity-db (dataset only) and can be readily used 

to predict and analyze acute toxicity of small molecules measured for different species and 

routes of administration.
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ABBREVIATIONS

RTECS® Registry of Toxic Effects of Chemical Substances

QSAR Quantitative Structure-Activity Relationship

GCNN Graph Convolutional Neural Networks

LD50 Lethal Dose, 50%

LDLo Lethal Dose low

TDLo Toxic Dose low

DNN Deep Neural Network

MT-DNN Multi-Task Deep Neural Network

ST-DNN Single-Task Deep Neural Network
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ST-RF Single-Task Random Forest

RF Random Forest

DLCA Deep Learning Consensus Architecture

RMSE Root Mean Squared Error

AD Applicability domain

SD Standard Deviation

PCA Principal Component Analysis

CATMOS Collaborative Modeling Project for Predicting Acute Oral Toxicity

OECD Organization for Economic Co-operation and Development
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Figure 1. 
Two-dimensional PCA plot for the complete dataset based on Avalon fingerprints. The color 

scale represents the median toxicity value of the compounds against different endpoints in 

−log(mol/kg), i.e., the higher the values, the more toxic the compounds.
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Figure 2. 
Average performance (a) RMSE, (b) R2 of all 59 endpoints for each approach over five-fold 

cross-validation based on training and test data generated using random splitting. The error 

bar represents the standard deviation of the average performance over five-folds.
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Figure 3. 
Performance (a) RMSE, (b) R2 of the best multi-task models obtained using different 

architectures and the single-task models for different endpoints ordered by the total number 

of measurements available in the dataset. (IM: intramuscular; IP: intraperitoneal; IV: 

intravenous; P: parenteral; S: skin; SC: subcutaneous; U: unreported; O: oral; mammal: 

mammal (species unspecified))
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Figure 4. 
Distribution of the DLCA prediction results (RMSE) and coverage values over AD (0.1–0.9) 

and SD (t1–t4) cut-offs. The error bar represents the standard deviation of the average 

performance over five-folds.
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