Algorithm 1: Steps for the presented method. |
INPUT: |
TrD, Ann |
OUTPUT: |
Localized RoI, EfficientDet, Classified glaucoma diseased portion |
TrD—training data. |
Ann—Position of the glaucomatous region in suspected images. |
Localized RoI—Glaucomatous area in output. |
EfficientDet—EfficientNet-B0 based EfficientDet network. |
Classified glaucoma diseases portion—Class of identified suspected region. |
imageSize ← [x y] |
Bbox calculation |
µ ← AnchorsCalculation (TrD, Ann) |
EfficientDet—Model |
EfficientDet ← EfficientNet-B0-Based EfficientDet (imageSize, µ) |
[dr dt] ← Splitting database in the training and testing set |
The training module of glaucoma recognition |
For each sample s in → dr |
ExtractEfficientNet-B0-keypoints → ds |
Perform features Fusion (ds) → Fs |
End |
Training EfficientDet on Fs, and compute processing time t_Edet |
η_Edet ← DetermineDiseasedPortion(Fs) |
Ap_ Edet ← Evaluate_AP (EfficientNet-B0, η_ Edet) |
For each image S in → dt |
(a) Calculate key points via trained network € → βI |
(b) [Bbox, localization_score, class] ← Predict (βI) |
(c) Output sample together with Bbox, class |
(d) η ← [η Bbox] |
End For |
Ap_€ ← Evaluate model € employing η |
Output_class ← EfficientDet (Ap_€). |