Skip to main content
. 2022 Jan 7;22(2):434. doi: 10.3390/s22020434
Algorithm 1: Steps for the presented method.
INPUT:
TrD, Ann
OUTPUT:
Localized RoI, EfficientDet, Classified glaucoma diseased portion
TrDtraining data.
AnnPosition of the glaucomatous region in suspected images.
Localized RoI—Glaucomatous area in output.
EfficientDetEfficientNet-B0 based EfficientDet network.
Classified glaucoma diseases portion—Class of identified suspected region.
imageSize ← [x y]
Bbox calculation
      µ ← AnchorsCalculation (TrD, Ann)
EfficientDet—Model
     EfficientDet EfficientNet-B0-Based EfficientDet (imageSize, µ)
      [dr dt] ← Splitting database in the training and testing set
The training module of glaucoma recognition
For each sample s in → dr
ExtractEfficientNet-B0-keypoints → ds
Perform features Fusion (ds) → Fs
End
Training EfficientDet on Fs, and compute processing time t_Edet
η_Edet DetermineDiseasedPortion(Fs)
Ap_ Edet Evaluate_AP (EfficientNet-B0, η_ Edet)
For each image S in → dt
(a) Calculate key points via trained network € → βI
 (b) [Bbox, localization_score, class] ← Predict (βI)
 (c) Output sample together with Bbox, class
(d) η ← [η Bbox]
End For
Ap_ ← Evaluate model € employing η
Output_class ← EfficientDet (Ap_€).