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Abstract

Comprehensive sampling of the carbonate system in estuaries and coastal waters can be difficult 

and expensive because of the complex and heterogeneous nature of near-shore environments. We 

show that sample collection by community science programs is a viable strategy for expanding 

estuarine carbonate system monitoring and prioritizing regions for more targeted assessment. 

‘Shell Day’ was a single-day regional water monitoring event coordinating coastal carbonate 

chemistry observations by 59 community science programs and seven research institutions in the 

northeastern United States, in which 410 total alkalinity (TA) samples from 86 stations were 

collected. Field replicates collected at both low and high tides had a mean standard deviation 

between replicates of 3.6 ± 0.3 μmol kg−1 (σmean ± SE, n = 145) or 0.20 ± 0.02%. This level 

of precision demonstrates that with adequate protocols for sample collection, handling, storage, 

and analysis, community science programs are able to collect TA samples leading to high-quality 

analyses and data. Despite correlations between salinity, temperature, and TA observed at multiple 

spatial scales, empirical predictions of TA had relatively high root mean square error >48 μmol 

kg−1. Additionally, ten stations displayed tidal variability in TA that was not likely driven by 

low TA freshwater inputs. As such, TA cannot be predicted accurately from salinity using a 

single relationship across the northeastern US region, though predictions may be viable at more 

localized scales where consistent freshwater and seawater endmembers can be defined. There was 

a high degree of geographic heterogeneity in both mean and tidal variability in TA, and this single-

day snapshot sampling identified three patterns driving variation in TA, with certain locations 

exhibiting increased risk of acidification. The success of Shell Day implies that similar community 

science based events could be conducted in other regions to not only expand understanding of the 

coastal carbonate system, but also provide a way to inventory monitoring assets, build partnerships 

with stakeholders, and expand education and outreach to a broader constituency.
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1. Introduction

Ocean and coastal acidification (OCA) has emerged during the last decade as a topic of 

serious concern, because of its impacts on marine organisms and coastal economies [1, 2]. 

There is a strong scientific consensus about the drivers and projections of ocean acidification 

in the open ocean, but the dynamics of acidification in coastal ecosystems are less clear. In 

addition to absorption of carbon dioxide, the coastal carbonate system is driven by a number 

of factors including freshwater discharge, stratification, water residence time, eutrophication, 

biogeochemical processes, and upwelling [3–11]. Natural biogeochemical cycling, which 

can be strengthened by eutrophication, combined with site-specific differences in tidal 

flushing and water residence time, leads to large spatio-temporal variations in seawater 

carbonate system parameters [11–17].

Many drivers of OCA are strongly localized and are likely determined by characteristics 

specific to both watersheds and estuaries, rendering regional generalizations of OCA 

conditions difficult. As a result, the OCA research community has identified the need for 

additional monitoring to better understand the drivers of the coastal carbonate system and 

quantify localized risk of future OCA [18–21]. Monitoring conditions across multiple spatial 

and temporal scales is important for developing models that inform management and for 

identifying and prioritizing opportunities for mitigation and adaptation (e.g. [22–24]; see 

also state OCA Action Plans).

OCA risk assessments for coastal regions involve comprehensive analyses of current and 

potential future biogeochemical conditions and prediction of the ecological consequences 

of OCA, combined with knowledge of societal impacts within specific estuaries (e.g. 

[2, 25, 26]). Marine calcifiers are particularly at risk from OCA, and mollusks at most 

life stages are sensitive to reduced carbonate mineral saturation state (Ω) and pH (e.g. 

[27, 28]). Previous studies have consistently shown negative effects of OCA on critical 

shellfish life history stages, including fertilization, shell formation, and larval development 

(e.g. [18], and references therein, [29–31]). Reduced shell strength and growth, increased 

mortality, and altered behavior have been shown for juveniles and adults of some species, 

although responses in laboratory experiments have been variable, and both species and 

sub-population specific [18, 32–38]. Because of the strong potential sensitivity of mollusks 

to OCA and limited mobility within a coastal estuary, areas with significant wild shellfish 

populations and aquaculture operations are candidate locations for enhanced monitoring and 

determination of localized drivers of the carbonate system.

Total alkalinity (TA), a measure of the ability of a solution to resist a change in pH, is 

one of four parameters that describes the seawater carbonate system. Sample collection is 

straightforward due to the lack of sensitivity of TA to gas exchange, and sample storage 

over short periods of time does not require inhibition of biological activity with poisoning 

agents such as mercuric chloride [39, 40]. In the absence of biological processes, TA is 

also conservative with salinity, and relationships between salinity and TA have been used 

in the monitoring of coastal acidification [41]. TA can be a useful indicator of marine 

ecosystems’ vulnerability to acidification pressure from various CO2 sources; however, 

TA is not typically monitored by community science organizations because of financial 
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and analytical barriers. The widespread adoption of community science for water quality 

monitoring has overcome these hurdles for other parameters, e.g. temperature, salinity, 

dissolved oxygen, and nutrients [42–45]. In addition, community science has proven to 

be important for public outreach, engagement, education, and adoption of practices that 

expand and promote environmental stewardship. Many monitoring organizations have also 

been vocal advocates of the development and implementation of management solutions to 

improve coastal water quality such as garnering support for nutrient pollution regulation, 

upgrades to wastewater treatment facilities, and expansion of sewer networks. Expanding 

site-specific monitoring programs to include observations of coastal carbonate chemistry 

may be a capacity-building step toward public education and the implementation of local 

management actions to reduce the drivers of acidification [22, 24, 46, 47].

We carried out ‘Shell Day’ on 22 August 2019, as a synoptic water monitoring event 

coordinating coastal TA observations among community science programs and research 

institutions from Long Island Sound (LIS) to Downeast Maine. To our knowledge, this study 

represents the first large-scale set of synchronous measurements of salinity and TA along 

the northeastern United States coast. The sampling was motivated by two years of outreach 

and capacity-building activities by the Northeast Coastal Acidification Network aimed at 

training community-based water monitoring programs in methods to measure carbonate 

chemistry parameters [40, 47], an effort to be detailed in a companion manuscript, Gassett et 
al [48]. Shell Day had three major goals: (a) to evaluate the efficacy of community science 

for TA monitoring; (b) to assess geographic heterogeneity in mean and tidal variability in 

TA; and (c) to determine if a regional relationship between salinity, temperature, and TA 

could be used to estimate TA. This manuscript describes the successes, shortcomings, and 

uncertainties in achieving these goals.

2. Methods

2.1. Site selection and sampling design

Minimum requirements for participation in Shell Day were the capacity to measure water 

temperature and salinity; some organizations used thermometers and refractometers, and 

others used multiparameter datasondes or handheld units. Fifty-nine water monitoring 

organizations participated, collecting samples from 86 stations. Sampling stations were 

chosen by individual monitoring organizations, with suggested criteria for choosing 

locations including: stations with long sampling records, proximity to wild shellfish 

populations, shellfish aquaculture operations or hatcheries, stations with relatively easy 

access to facilitate repetitive sampling, and/or stations with large variability in salinity.

An Environmental Protection Agency (EPA) approved quality assurance project plan was 

developed along with a datasheet, sampling protocol, training video, and a webinar tutorial 

to instruct community scientists on a standardized sampling protocol (all available at 

necan.org/shellday). Surface water samples were collected in pre-cleaned and labeled 

borosilicate glass or HDPE bottles provided to participating organizations. Samples were 

collected at low, mid, and high tides at each station to assess the tidal variation of TA. 

Samples were collected directly from the water body or using common sampling devices 

such as buckets, Van Dorn samplers, or Niskin bottles. Temperature, salinity, and other 
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water characteristics were measured either directly in the water body at the targeted depth 

of sample collection (handheld units and multiparameter datasondes) or from the water 

collected in a container (refractometers). To assess the consistency of the sampling protocol, 

sample handling, and sample storage, field duplicates were collected at both low and 

high tides. Water samples were placed on ice and stored in the dark upon collection and 

either returned to the lab on the day of collection or stored overnight on ice until samples 

could be returned to the nearest laboratory. Upon delivery to a laboratory, water samples 

were either analyzed immediately or fixed by laboratory staff with saturated mercuric 

chloride to inhibit biological activity and analyzed over several weeks. Participants were 

also asked to provide metadata such as location (upper/mid/lower estuary), proximity to wild 

shellfish populations or aquaculture operations (yes/no/unknown), and other information 

such as salinity instrument type and date of last calibration. In order to ensure safety of 

volunteers collecting water samples, participants were notified during the pre-sampling 

training webinar about inclement weather plans, and no volunteers handled hazardous 

laboratory materials.

Spatial data layers from the Northeast Ocean Data Portal (NODP) on commercial 

aquaculture operations [49] and shellfish habitat suitability [50] were used to corroborate 

participant responses and identify other sampling stations located within 1 km of wild 

shellfish populations and aquaculture operations.

2.2. Sample processing

Seven laboratories analyzed samples for TA via automated open-cell Gran titration (Method 

1: [51]) or modified single-point titration (Method 2: [52]) (table 1). Each laboratory used 

certified reference material (CRM) from Dr A G Dickson’s laboratory at the Scripps 

Institute of Oceanography to standardize measurements. Although an inter-laboratory 

comparison would increase the confidence in and comparability of our results, such 

comparison was beyond the scope of this study. TA data were quality controlled by each 

laboratory based on instrument performance, laboratory replicates, and analyses of CRM. 

Data were excluded from analyses if the standard deviation between field duplicates was 

greater than 1% of the mean. Reported salinity was converted from practical salinity to 

absolute salinity using the Gibbs Seawater Matlab toolbox [53]. A subset of 11 samples had 

salinities verified on a benchtop salinometer (Guildline Portasal).

2.3. Data analysis

Empirical relationships between physical variables (temperature, salinity, latitude) and TA 

were evaluated for both the entire dataset and groupings of stations by subregion (figure 1) 

using simple linear regression (salinity only) and multiple linear regression (MLR) using 

equations with similar form as Juranek et al [54] and Alin et al [3]:

TANortheast = A1 + A2 S − Sr + A3 T − T r
+A4( Lat ) + A5 S − Sr T − T r
+A6 S − Sr × Lat + A7 T − Tr × Lat .

(1)
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TAi = A1, i + A2, i Si − Sr,i + A3, i T i − T r,i
+A4, i Si − Sr,i T i − T r,i

(2)

where TA is total alkalinity, S is salinity, T is temperature, Lat is latitude, the r-subscript 

indicates a reference temperature and salinity, defined as the mean temperature or salinity 

for the dataset analyzed and the subscript i indicates subregions. Subregion delineation 

was informed by Gledhill et al [18], with station groupings including LIS, Narragansett 

Bay (NB), Buzzards Bay/Vineyard Sound (BB/VS), Cape Cod Bay/Central Gulf of Maine 

(CCB), and northern Gulf of Maine (GOM) (see figure 1). Latitude was only included as a 

predictor variable when evaluating the entire dataset (equation (1)).

3. Results

A total of 410 samples were collected. Field duplicates were collected at low and high 

tides at most stations, leading to 264 unique samples. Eight sets of field duplicates with 

a%-standard-deviation from the mean of more than 1% were excluded from this analysis. 

There was good agreement between the remaining pairs with a mean standard deviation 

between duplicates of 3.6 ± 0.3 μmol kg−1 (±SE, n = 145) or 0.20 ± 0.02%. The TA of 122 

of 145 sets of duplicates (84.1%) differed by less than 10 μmol kg−1. Laboratory verification 

of a subset of salinity measurements (n = 11) showed average differences between field 

and lab salinity (±SD) of 1.9 ± 2.1, and salinometer measurements were used in place of 

field observations where available. Additionally, ten field salinity values were higher than 

typically observed in the coastal New England region (>34) and were excluded from the 

interpretation.

There was a high degree of geographic variation in TA (table 2), and also in station 

mean and distribution over a tidal cycle (figure 2). Simple regression analysis indicated 

a correlation between salinity and TA across the entire dataset (r2 = 0.668, p < 0.0001, 

not shown) that was improved (r2 = 0.820, p < 0.0001, table S1 and figure S1 (which are 

available online at stacks.iop.org/ERL/16/024009/mmedia)) by excluding data from stations 

where high tidal variability in either salinity or TA was not accompanied by variability in 

the other parameter (figure 3, open circles, see paragraph below). The best correlations, 

with both the highest r2 and lowest root mean squared error (RMSE), were achieved by 

incorporating temperature (for all data combined and by subregion) and latitude (for all data 

combined) as predictor variables via MLR (tables 3 and S2, figure 3 filled circles only). 

Despite a relatively high r2 for fits combining all data, RMSE was large (121.1 μmol kg−1). 

Analyzing the data in groupings by subregion improved the prediction for some regions and 

worsened the prediction for others (figure 3, tables 3, S1 and S2).

Station-level standard deviation was used to assess tidal variations in TA and salinity (figure 

4).Three patterns of variation were identified: stations with (a) low or proportional variation 

in both TA and salinity; (b) low variation in salinity but high variation in TA (σTA > 

200μmol kg−1, σsal < 2.5); (c) high variation in salinity but low variation in TA (σsal > 2.5, 

σTA < 100 μmol kg−1). The majority of sampling stations fell into the first (n = 71) category, 
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four into the second category, and six into the third category. Five stations did not have 

enough samples to evaluate variability over a tidal cycle.

Participants identified 47 sampling locations that they believed were in close proximity 

to shellfish aquaculture or wild shellfish populations. Spatial data layers from the NODP 

identified 18 and 58 stations within 1 km of shellfish aquaculture operations or suitable 

shellfish habitat, respectively. Some stations overlapped these three data sources, and 

combining data sources yielded 72 stations monitored on Shell Day that were likely near 

shellfish populations. Five stations in close proximity to shellfish had mean TA that was 

lower than the 20th percentile in the dataset (TA < 1750.7 μmol kg−1), six stations had tidal 

variability in TA greater than the 80th percentile (σTA > 120.4 μmol kg−1), and six stations 

had both low mean and high tidal variability.

4. Discussion

4.1. Efficacy of sampling design

To the authors’ best knowledge, Shell Day was the most geographically extensive, single-

day effort to sample and analyze carbonate system parameters of seawater in coastal New 

England (figure 1, table 2), and the first to evaluate a community science strategy for 

discrete carbonate system monitoring. Individual sampling programs have carried out more 

comprehensive monitoring of single embayments and estuaries (e.g. [11, 17, 55, 56]), but the 

single-day sampling over a tidal cycle provides a unique snapshot of variability in TA and 

salinity across both time and space (figure 2). Long term and high-precision observations 

may be required to discern location-specific drivers of OCA, but synoptic approaches such 

as Shell Day can help prioritize locations for more targeted assessments (see section 4.4).

The good agreement between field replicates indicates that the community-based sample 

collection and handling protocols generally yielded high-quality TA measurements (figure 

S1). The success of Shell Day suggests that community science organizations with capacity 

for additional water sample collection could collaborate with laboratories to add TA to 

sampling programs to improve understanding of OCA, while increased community science 

participation can serve to facilitate long-term observations. Such combined science and 

outreach efforts may also help communities and managers better understand the complex 

dynamics of OCA and increase public engagement in addressing this environmental 

challenge.

4.2. Empirical relationships between salinity, temperature and total alkalinity

The entire salinity-TA data set displays high variability (figure 3) and suggests that dilution 

with low TA freshwater exerts a strong control on coastal TA across the Northeast (figure 

3, filled symbols). However, ten Shell Day sampling stations exhibited strong deviations 

from this overall trend (figure 3, open symbols), illustrating the potential importance of other 

localized processes. For instance, several stations exhibited TA of ca. 2000 μmol kg−1 and 

reported salinity that approached zero, implying differences in freshwater endmembers at the 

watershed scale (see section 4.3). Additionally, the geographic subsets of the data identified 

in figure 1 show distinct salinity-TA relationships, with differences in both the salinity-TA 
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slope and the zero-salinity intercept. Many environmental and water quality factors may 

vary at the subregion and watershed scale, such as underlying gradients in both coastal and 

freshwater endmembers spanning this large region (e.g. figure S4, [18]) that could contribute 

to these differences in salinity-TA regressions (figure 3).

One project goal was to determine if a region-wide empirical relationship could be used to 

accurately estimate TA from salinity and temperature, two parameters typically monitored 

by community science programs. Although strong regional relationships between salinity, 

temperature, and TA have been observed in other studies (e.g. [3, 54, 57–59]), the Shell Day 

data suggest there is not likely to be a single Northeast-wide relationship that can accurately 

predict TA in coastal waters. For the entire region, the best empirical relationship still had 

a high RMSE (121.1 μmol kg−1), which contrasts with the tight salinity-TA relationships 

observed in the more open ocean environments of the Northwest Atlantic continental shelf 

[16, 60]. Even by subregion, RMSE was still high (>48 μmol kg−1) in all statistically 

significant empirical fits (table 3). This error is 10–50 times greater than the laboratory 

measurement uncertainty, which is typically on the order of 1–4 μmol kg−1.

Ultimately, the goal of empirical fits to predict TA should be to achieve a low RMSE so 

as to limit additional uncertainty in carbonate system calculations. For example, Alin et al 
[3] and Juranek et al [54] predicted TA with an overall RMSE of 6.4 and 4.8 μmol kg−1, in 

the Southern California Coastal Current and Northeast Pacific regions, respectively. In the 

nearshore and estuarine environments of Washington state, Fassbender et al [59] predicted 

TA from salinity with an error of 17 μmol kg−1, which they estimated was appropriate 

for ‘weather’ quality calculations of Ω and pH, but not ‘climate’ quality calculations [61], 

where a prediction error on TA needed to be <10 μmol kg−1. A similar error propagation 

analysis to determine maximum error acceptable for TA predictions is unfortunately not 

possible with this dataset owing to the lack of additional carbonate system measurements. 

Thus, given this high uncertainty, salinity and temperature alone, at least as measured in 

the Shell Day dataset, are not sufficient to estimate TA across the entire Northeast United 

States region. However, empirical relationships to predict TA may be possible using more 

localized datasets. This is supported by the reduced error when predicting TA from salinity 

and temperature for some of the subregions, reinforcing the need to understand drivers of the 

carbonate system at the watershed scale (tables 2 and S1).

Several factors could drive the high predictive error when estimating TA from proxies in the 

coastal environment of the Northeast. Processes that influence TA such as sulfate reduction, 

denitrification, calcification, or calcium carbonate dissolution could be responsible for some 

of the variation in the salinity-TA relationship, but we lacked the data to evaluate the 

contribution of these processes. Challenges with the collection of high-quality salinity data 

may also have led to increased variability in the salinity-TA relationship. For instance, 

imprecise calibration of handheld salinity meters or lower precision and accuracy of 

refractometers (used at 23 of the sampling locations) may have contributed to this poor 

correlation. Furthermore, if the water column was stratified at the time of sample collection, 

small differences between the depth of the salinity measurement and the depth that the 

water was sampled for TA analysis could lead to decoupling of salinity from TA. Empirical 

fits between temperature, salinity, and TA using only laboratory salinometer measurements 
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on the water collected for TA analysis in the GOM region, rather than field observations, 

showed much smaller RMSE (30.1 vs 177.1 μmol kg−1, respectively) and higher r2 values 

(0.993 vs 0.772, respectively) (tables S1 and 3) than the overall GOM region, although this 

dataset was also much smaller. The reduced error implies that more accurate measurements 

of salinity may improve the predictive capacity of a subregional empirical relationship, 

although more data would be needed to fully evaluate this hypothesis.

4.3. Carbonate system variability

Station-level standard deviation values for salinity and TA provide insight into factors that 

influence tidal variability in TA during the time of sampling (figure 4). For instance, stations 

that displayed little or proportional variability in both TA and salinity (Group 1, figure 

4) likely illustrate conservative mixing with low-TA freshwater as the dominant driver of 

TA variability over a tidal cycle. Most of the observations fall into this category, which 

reflects the strong impact of freshwater inputs on TA concentration (see also section 4.2). 

Stations with low variability in both TA and salinity may reflect either coastal or riverine 

endmembers, but given the limited nature of this dataset (three samples per station) and 

relatively high uncertainty in reported salinity (1.9 ± 2.1), it is not possible to distinguish 

natural variability in salinity from measurement uncertainty for observations where σsalinity 

was less than approximately 2 units.

Stations with large changes in TA but low salinity variation (Group 2, figure 4) could 

be influenced by alkalinity production from sediments [62–65]. For example, at a single 

sampling station, Wang et al [64] observed a nearly 200 μmol kg−1 increase in TA from high 

to low tide during summer, which was attributed to anoxic or suboxic processes occurring in 

marsh sediments such as sulfate reduction or denitrification that led to significant alkalinity 

export during ebb tide. Production of dissolved organic carbon can also lead to increased 

contributions of organic alkalinity that could cause tidal variations in TA without changes in 

freshwater inputs [66]. Organic acids have been estimated to modify coastal TA by up to 100 

μmol kg−1 [64, 66, 67], potentially representing 20%–50% of the signal observed at these 

four sampling stations.

The six stations with large variation in salinity but little change in TA over a tidal 

cycle (Group 3) may reflect high alkalinity freshwater contributions. Compilations of 

river alkalinity measurements collected over the past several decades indicate that most 

observations of freshwater TA in the New England region are relatively low (200–1000 

μmol kg−1, [17, 56, 68], figure S4) in comparison to expected seawater values (>2000 μmol 

kg−1), but a number of rivers that discharge into coastal Maine, New Hampshire, northern 

Massachusetts, and LIS have much higher TA (>1000 μmol kg−1, [55, 68], figure S4). 

However, more data along with repeat sampling over multiple tidal cycles would be needed 

to better understand these anomalous relationships between TA and salinity.

4.4. Using distributed monitoring for targeted assessments

Assessment of the vulnerability of communities, economies, and ecosystems to OCA 

requires detailed syntheses of social and biogeochemical conditions (e.g. [26, 69]). No 

single sampling program could provide those syntheses, but efforts like Shell Day may 
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help identify locations for in-depth evaluation of vulnerability to OCA. Although explicit 

biological thresholds for mean or variability in TA for shellfish are not known, extreme 

values within the distribution of the Shell Day dataset may be used to suggest locations for 

further study. For example, stations in close proximity to shellfish that also had low mean 

TA, high tidal variability in TA, or both, are likely to experience higher levels of coastal 

acidification stress, or be at risk for future acidification due to low buffering capacity (figure 

5, [18]). In addition, DIC tends to be higher than TA in rivers and groundwater in New 

England [17, 56, 70] and carbonate system buffering diminishes as DIC increases relative 

to TA [64, 71–73]. Thus, regions of low TA, especially if caused by mixing with high DIC, 

low TA freshwater, are likely to have a higher sensitivity to future increases in CO2 from 

either atmospheric or local biological sources. Highly variable environments have also been 

proposed as locations that promote adaptation and/or evolution of resilience to acidification 

stress ([74] and references therein), and the distributed, single-day monitoring approach may 

identify potentially resilient populations of shellfish.

4.5. Recommendations for community-based sampling and measurements of seawater 
parameters

These results suggest two important practical considerations for future studies. First, the 

development of empirical relationships between salinity and TA relies on high-quality 

measurements of both salinity and TA, but during Shell Day, salinity was measured less 

accurately than anticipated. Refractometer-based salinity measurements often differed from 

laboratory measurements by several units, and even sensor-based salinity measurements 

sometimes yielded implausible values. These problems emphasize the importance of careful, 

well-documented calibration and verification procedures. In addition, in a strongly stratified 

water column, salinity measured in the water column using handheld instruments may 

differ from the actual salinity of the discrete water sample collected for TA analysis. At a 

minimum, salinity and TA should be measured at precisely the same water depth or, ideally, 

salinity should be measured on a subsample of the water sample used for TA measurements.

More broadly, Shell Day responds to the call to expand coastal monitoring, build 

partnerships that utilize existing monitoring efforts to observe coastal carbonate chemistry, 

and increase education and outreach on behalf of OCA as an indicator of climate change and 

water quality [46]. A natural expansion of this approach would be the addition of a second 

carbonate system parameter. The cost and calibration of equipment poses challenges for in 
situ measurements of pH and pCO2, while bottle sampling for dissolved inorganic carbon, 

pH, or pCO2 has significant challenges related to the collection, handling, and preservation 

of samples that are sensitive to gas exchange. Adjustments would need to be made to the 

sampling protocol, such as providing sampling devices designed to minimize gas exchange, 

using gas-impermeable borosilicate glass bottles, and more rapid preservation of samples 

immediately after collection. These approaches may not be appropriate for community 

science because sample preservation typically involves using a concentrated solution of 

mercuric chloride, a hazardous substance.

Community science driven seawater monitoring can serve many purposes. This project 

was designed to pilot a community science based approach to characterizing single-day 
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variations in TA across a large geographic range. A targeted sampling design prioritizing 

specific ecosystems, communities of interest, and/or drivers of coastal carbonate chemistry 

could be developed in collaboration with academic researchers to address specific questions 

or enhance evaluation of regional differences in vulnerability to acidification. For example, 

the EPA’s National Coastal Condition Assessment added TA to its suite of standard 

measured parameters beginning in 2020. Future efforts could also target sites with shellfish 

aquaculture or large populations of wild shellfish, or be timed to address specific processes, 

such as the spring freshet, peak respiration, major storm events, or seasonal patterns of 

eutrophication.

5. Conclusions

The success of the Shell Day sampling effort illustrates the potential of community science 

to contribute to carbonate system monitoring. These results reveal ways to improve sampling 

methodology and show the value of TA as a potential tool for OCA studies. This project 

highlighted opportunities for laboratories and research facilities to collaborate with coastal 

monitoring programs and community science organizations, developed resources that could 

be used to support future events at other locations (e.g. Quality Assurance Project Plan, 

data sheets, sampling protocols, educational documents and videos), and identified areas 

of expansion such as procedures to collect samples for other carbonate system parameters. 

Community science efforts can provide a way for state and local governments to inventory 

monitoring assets, establish collaborations among laboratories to build capacity for seawater 

monitoring, and engage constituencies in education and outreach programs that increase 

public understanding of ocean and coastal acidification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sampling locations. Sampling stations are colored by geographic groupings corresponding 

to regions in tables 2 and 3, and figure 3. Groupings are the northern Gulf of Maine (GOM, 

blue), central Gulf of Maine/Cape Cod Bay (orange, CCB), Buzzards Bay/Vineyard Sound 

(BB/VS, yellow), Narragansett Bay (NB, purple), and Long Island Sound (LIS, green).
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Figure 2. 
Left panels show subsets of locations of sampling stations moving from north to south down 

the Northeast US coast: northeastern Maine (top), southwestern Maine, New Hampshire, 

northern Massachusetts (2nd), Cape Cod, Martha’s Vineyard, and Nantucket, Massachusetts 

(3rd), Rhode Island, Connecticut, and New York (bottom). Right panels show distribution 

of station alkalinity measurements. Boxplots are generated using all data from each station, 

representing up to six samples collected. Station numbers for each boxplot correspond to 
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numbers in the map panels on the left. Red lines indicate the station median, the box the 

interquartile range, and whiskers correspond to ±2.7σ.
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Figure 3. 
Salinity-total alkalinity (TA) relationships. Each station is represented by at most three 

points, showing the TA and salinity values for low, mid, and high tide, as available. Open 

circles are from the ten stations where tidal variability in salinity and TA was unexpected. 

Data points are colored by regional grouping shown in figure 1. Lines are calculated from 

regression analyses using the mean temperature for each region. Dashed lines for LIS 

and NB are included for completeness, but the slopes with respect to salinity were not 

statistically significant (p > 0.05, table S1).
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Figure 4. 
Standard deviation in total alkalinity vs standard deviation in salinity over a tidal cycle from 

each sampling station. Open circles are stations with low or proportional variation in salinity 

and alkalinity (group 1), closed triangles have large variation in alkalinity but small variation 

in salinity (group 2), and closed circles have large variation in salinity but small variation in 

alkalinity (group 3).
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Figure 5. 
Station mean and standard deviation in total alkalinity. Open circles are locations identified 

as near shellfish aquaculture, wild populations, or suitable shellfish habitat. Closed circles 

indicate stations not adjacent to aquaculture or wild shellfish habitats. Vertical and 

horizontal lines indicate the extreme low and high values (20th and 80th percentiles for 

mean and standard deviation, respectively) in the distribution of the Shell Day data.
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