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Abstract: Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual
meal announcements to manage postprandial glucose control effectively. This poses a cognitive
burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight
glucose control. In order to move towards fully automated closed-loop glucose control, we propose
an algorithm based on a deep learning framework that performs multitask quantile regression,
for both meal detection and carbohydrate estimation. Our proposed method is evaluated in silico
on 10 adult subjects from the UVa/Padova simulator with a Bio-inspired Artificial Pancreas (BiAP)
control algorithm over a 2 month period. Three different configurations of the AP are evaluated -BiAP
without meal announcement (BiAP-NMA), BiAP with meal announcement (BiAP-MA), and BiAP
with meal detection (BiAP-MD). We present results showing an improvement of BiAP-MD over
BiAP-NMA, demonstrating 144.5 ± 6.8 mg/dL mean blood glucose level (−4.4 mg/dL, p < 0.01)
and 77.8 ± 6.3% mean time between 70 and 180 mg/dL (+3.9%, p < 0.001). This improvement in
control is realised without a significant increase in mean in hypoglycaemia (+0.1%, p = 0.4). In terms
of detection of meals and snacks, the proposed method on average achieves 93% precision and 76%
recall with a detection delay time of 38 ± 15 min (92% precision, 92% recall, and 37 min detection
time for meals only). Furthermore, BiAP-MD handles hypoglycaemia better than BiAP-MA based
on CVGA assessment with fewer control errors (10% vs. 20%). This study suggests that multitask
quantile regression can improve the capability of AP systems for postprandial glucose control without
increasing hypoglycaemia.

Keywords: type 1 diabetes; meal detection; carbohydrate estimation; artificial pancreas; multitask
learning; machine learning; deep learning; neural network; quantile regression

1. Introduction

The self-management of diabetes is a burdensome, delicate, and yet critical under-
taking that individuals with diabetes have to engage in daily in order to avert adverse
glycaemic events. Current diabetes management systems such as the artificial pancreas
(AP) and decision support systems have been developed in recent years in order to improve
the management of diabetes. The artificial pancreas is a system that comprises a continuous
glucose monitor (CGM), insulin pump, and an algorithm working in tandem to maintain
blood glucose levels in an acceptable range (70–180 mg/dL). The envisaged endpoint in the
development of the insulin-based artificial pancreas is a fully automated system that does is
not depend on user input throughout the day [1]. One major challenge in the realising this
objective with the artificial pancreas centres on postprandial glucose control. Studies have
shown that when small meals (e.g., 30 g) are missed AP systems are capable of handling
the resulting postprandial increase in glucose [2,3]. However, control is noticeably poorer
with larger sized meals [2,3]. As a result, the current artificial pancreas systems is classified
as a hybrid closed-loop system since it requires meals to be announced prior to mealtime in
order to ensure good control.
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The need for user attention to initiate meal announcements in hybrid closed-loop
systems can lead to sub-optimal outcomes. In the ideal scenario, the user accurately
estimates the meal size by carbohydrate counting and provides that information to the AP
system prior to eating. This has to be done due to the delays associated with subcutaneous
insulin delivery. However, multiple studies have shown that individuals with diabetes
tend to have significant rates of late or missed meal insulin boluses [4]. This can be
attributed to factors such as diabetes distress, stress and forgetfulness among others in a
daily routine [5–7]. These studies generally showed a strong link between late and missed
meal boluses and HbA1c levels. This increase in HbA1c levels can lead to worsening quality
of life over time [8–12]. Furthermore, individuals with diabetes are reported to misestimate
meal sizes between 20% and 59% [13,14].

This appropriately motivates the need for systems such as the AP to be able to detect
unannounced meals and estimate the carbohydrate size in order to control postprandial
hyperglycaemia.

The rest of the paper is organised as follows: Section 2 presents an overview of the
broad categories in the literature for tackling meal detection and some proposed methods
under each category, thus providing the context for our work. In Section 3, we provide a
detailed description of the neural network architecture and proposed framework for de-
tecting and estimating unannounced meals. This builds on preliminary work towards this
task [15]. We also detail the simulation scenario generated by the UVa/Padova simulator
for evaluating the proposed framework. Section 4 presents the results on meal detection
and estimation along with the results comparing our proposed fully closed-loop controller
against baseline configurations of the closed-loop controller. Section 5 comprises a discus-
sion of the earlier presented results in comparison to the related works and elaborates on
the implications of uncertainty quantification towards safely closing the loop in glucose
control. This sets the ground for future work in the area.

2. Related Work

A number of methods have been proposed in the literature towards tackling the
detection and estimation of unannounced meals. These methods broadly fall into the
following categories: (i) threshold-based detection using the rate of change (ROC) of
glucose levels and (ii) outlier detection using model predictions.

Various threshold-based approaches are proposed that analyse a number of rules
regarding the rate of change for meal detection. Dassau et al. [16] propose an ensemble
approach that comprises three or four approaches -the backward difference (BD), the second
derivative of glucose, a Kalman filter (KF) estimation, and a combination of BD and
KF -with meal detection dependent on attaining a majority vote from the approaches.
Ramkisson et al. [17] employ an unscented Kalman filter that extends Bergmans minimal
model to account for a disturbance parameter and tracks a cross-covariance of the forward
difference of this parameter and glucose level, and the rate of change to confirm meal
detection. To include meal size estimation, Samadi et al. [18,19] initially analyse the first
and second derivatives of a filtered CGM signal in order to detect a meal, and then estimates
the meal size from glucose levels and insulin-on-board (IOB) using a fuzzy logic system.

A potential downside of relying on the rate of change and pre-defined thresholds
for meal detection is that when there is significant variability in glucose levels this would
lead to a reduction in the signal-to-noise ratio, and consequently, a relatively high rate of
false positives which can be potentially harmful in this context [18,19]. As a result, some
approaches typically require filtering which may then increase the detection delay and
reduce sensitivity. Even then, the thresholds are selected based on a training dataset with
specific underlying conditions (e.g., sensor noise, sensor drift, insulin sensitivity), so when
these conditions shift significantly over the deployment period this may lead to degraded
performance while going undetected.

The alternative approach is model-based approaches that then detect meals based
on outliers in the glucose trajectory for which various approaches have been proposed
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as well [20–22]. Cameron et al. [20] develop a probabilistic approach that compares
the expected signal and observed signal to detect a meal, and with assumptions on the
meal shapes, estimate the glucose rate of appearance. A variable state dimension (VSD)
approach is introduced where an extended Kalman filter (EKF) is used to predict the
glucose trajectory with a 95% prediction interval [21]. A meal is detected, once the upper
bound is exceeded, and a least-squares approach estimates the meal size. Mahmoudi et al.
propose a similar approach that instead uses an unscented Kalman filter (UKF) to predict
the glucose trajectory [22]. However this work employs two CGM sensors as opposed to
one CGM sensor, and a meal is detected once both glucose trajectory from both sensors
exceed the 95% prediction interval. Zheng et al. [23] employ the minimal model and run
multiple simulations when the difference between the model trajectory and CGM trajectory
is larger than a set value, to explain the likely meal size to reduce this divergence. Finally,
Garcia-Torado et al. [24] rely on a classification model (logistic regression) that continuously
estimates the probability of an unannounced meal and provides a scaled insulin bolus
based on the total daily insulin instead of estimating the carbohydrate content.

This work devises a data-driven approach that leverages a deep multitask learning
framework in order to detect and estimate meals. To the best of our knowledge this is
the first meal detection and estimation framework based on multitask quantile regression,
where the assumption on distribution of errors is relaxed. As a result we make the following
contributions:

• We develop a novel meal detection algorithm based on multitask neural networks and
quantile regression in order to automatically announce meals and estimate meal size.

• We evaluate in silico the performance of the meal detection and estimation algorithm
in moving towards fully closed-loop insulin delivery.

3. Materials and Methods

In this section, we first present a meal detection and estimation algorithm that is based
on a sequence to sequence model that is extended to a multitask setting in order to perform
multiple quantile regression. We first describe the recurrent neural network that makes
up this framework. This method is evaluated using a in silico dataset of 10 adult subjects
generated through the UVa-Padova simulator. We then illustrate the use case in the AP
setting and present results on in silico validation.

3.1. Multitask Deep Neural Network

As mentioned earlier, the deep neural network is based on a multitask sequence-to-
sequence model. The sequence-to-sequence (seq2seq) model is primarily a model that is
used to map one set of input sequences to an associated set of output sequences and has
been used in glucose prediction tasks [25–27]. In this task, the objective is to estimate the
last 20 min of the individual’s glucose trajectory using historical CGM measures, meals,
and insulin.

To fully utilise the information available, a recurrent neural network encoder-decoder
architecture shown in Figure 1 is employed in this framework to estimate the glucose
trajectory. In this model, the encoder and decoder are based on long short-term memory
(LSTM) networks due to their ability to better model sequential data without the issue
of vanishing gradients [28]. The encoder LSTM input sequence—xenc = (xt−i, ..., xt−4)—
comprises the glucose concentration levels from the CGM, insulin delivered and meals and
returns the encoder state representations {c, h}. The decoder generates the output sequence—
ydec = (yt−3, ..., yt)—and estimated quantiles of the glucose trajectory are generated at
the output. The decoder input, xdec = (xt−3, ..., xt), comprises the insulin delivered and
announced/estimated meals and is initialised with the final encoder state.
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Figure 1. The multitask deep neural network architecture for predicting the 20 min glucose trajectory
at multiple quantiles. The multitask seq2seq model predicts glucose trajectory with a 95% prediction
interval (PI) with a lower bound (2.5%) and upper bound (97.5%).

The output sequence generated from the decoder is then fed to the three final layers of
the model that consists of three separate tasks. Each task represents a quantile distribution,
τ, and consequently the model performs a quantile regression for the associated quantile.

3.1.1. Quantile Regression

Quantile regression can be defined as method of estimating a conditional quantile, τ,
where τ ∈ d0, 1e for a target variable, Y conditioned on the input, X [29]. Subsequently, the
resulting prediction interval serves as an approach for estimating the aleatoric uncertainty
in the training data. One approach that we utilise in training a deep neural network to
perform quantile regression is the pinball loss/tilted loss as shown in Equation (1).

Lτ(y(t), ŷ(t)) =

{
τ(y(t)− ŷ(t)), y(t)− ŷ(t) > 0,
(1− τ)(y(t)− ŷ(t) otherwise,

(1)

where y refers to the reference glucose value, ŷ refers to the predicted value, and τ refers to
the quantile that the regression is estimating.

Aleatoric uncertainty captures the uncertainty in the available data for training a model.
This uncertainty may arise due to errors or variability in the data. In this case the errors may
arise from the misestimation of meals or noise in measurements of glucose concentration
levels from the CGM. As a result, once a persistent deviation from the prediction interval is
noted this significant disturbance can be attributed to an unannounced meal. This forms the
basis of the proposed approach to the meal detection and estimation algorithm in this work.

Typically the deep learning model is trained using a mean absolute loss or mean
squared loss [30]. The mean absolute loss minimises the sum of absolute differences
between the predicted value and the target value to perform a regression. Notably, we note
from Equation (1) that at the median quantile (τ = 0.5), the quantile loss is equivalent to
the mean absolute loss. In this work, we extend the utility of the deep learning model to
output the glucose trajectory of multiple quantiles.

In our multitask architecture, each output corresponds to the following quantiles: A
lower bound quantile (τLB), a median quantile (τM = 0.5), and an upper bound quantile
(τUB). The total of the quantile losses, Ltotal , are uniformly weighted and jointly minimised
as seen in Equation (2).

Ltotal =
1
3
dLLB + LM + LUBe (2)

The multitask architecture is beneficial in terms of computation and memory since
the majority of weights are shared as opposed to having independent models for each
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quantile. Furthermore, Tagasovska et al. show that using a multitask architecture also
enables consistent uncertainty quantification when modelling inherent noise in data [31].
Figure 2 below shows that consistent prediction interval of the from our multitask model
for an adult subject. Further results showing the accuracy in obtaining the pre-specified
prediction intervals is detailed in Appendix A.

Figure 2. (Top) A figure showing the multitask seq2seqmodel predicting the 20 min glucose trajectory
for a 95% prediction interval (lightly shaded blue area) over a 24-h period. The estimated glucose
level (red dashed line) closely follows the reference glucose level from the CGM (green line) except
during unannounced meals. In the instance of an unannounced meal—such as dinner just before
9 p.m.—a significant and persistent deviation in glucose trajectory from estimated trajectory occurs
(shown on the right) which leads to a meal detection and estimation. (Bottom) The unannounced
meal and reconstructed estimated meal. Certain meals such as the small snack between 3 p.m. and
6 p.m. are not detected as reliably since they only result in a non-significant deviation in the glucose
trajectory.

3.1.2. Network Training

Prior to training the input features are first normalised. The neural network for
each individual is trained in a two step strategy. The individual dataset is split into 80%
training data and 20% validation data. In order to attain better performance we first train
a generalised model using aggregated data from each individual. The individualised
model for each participant is then obtained by fine-tuning the generalised model on the
individual data.

The LSTM layers for both the encoder layer and decoder layer consist of 64 cells.
The selected optimiser is the Adam optimiser and at the pre-training stage the learning
rate is 1× 10−3, which is then reduced to 1× 10−4 at the fine-tuning stage. The batch size
for both training stages is 128. We set the number of epochs to 100 and implement early
stopping with a patience of 20 epochs to terminate training when validation loss is no
longer improving (∆Lmin = 1× 10−4). The models are developed with Python 3.6 and
Keras v2.2.2 and trained using a NVIDIA GTX 1050.

3.2. Meal Detection and Estimation
3.2.1. Meal Detection

The first stage of the model involves the detection of a meal. First, the last 20 min of
the glucose profile is estimated using the sequence to sequence model. As explained in
the previous section, the model outputs multiple quantiles for a 95% prediction interval
coverage that arises from the errors arising from the input variables. Consequently, in a
scenario where the glucose trajectory persists outside the prediction interval, this implies a
significant deviation beyond noise in the input variables that can be inferred as a missing
input. In this setting, this missing input is attributed to an unannounced ingested meal and
therefore a meal detection flag can be activated.
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The use case of this framework necessitates the priority of safety. As a result, in the
detection of the algorithm, we set the condition that this deviation needs to persist for at
least 3 samples (15 min) to satisfy activating the meal detection flag. In addition, the flag is
only activated if the rate of increase of glucose trajectory is at least 1 mg/dL/min.

3.2.2. Carbohydrate Estimation

Once the meal detection flag is activated we begin the process of estimating the meal
size. This step is achieved with a simple iterative search approach implemented at the
input in order to determine the best possible meal size to estimate the present CGM value.
We condition this iterative search on the mean absolute error (MAE) between the median
quantile of the present estimated glucose level and the reference glucose level from the
CGM. The search is completed once the mean absolute error is less than a threshold, ε.
We initially increase the meal input at 10 g and review the mean absolute error (MAE)
until the result is lower than the threshold. We then reduce the meal increment to 1 g and
rerun the last iteration to obtain a more precise meal size estimate. To mitigate serious
effects of overestimation the maximum meal size for an instant is limited to mMAX = 90 g.
Additional successive meal estimates can be made to supplement the initial estimate

ε = MAEval

=
1
N

N

∑
k=1
|y(k)− ŷM(k)|,

(3)

where ŷM(k) denotes the predicted glucose level for a given sample at the media quantile,
k. y(k) denotes the reference glucose measurement, N refers to the number of samples in
the validation set.

For robustness and verification, a check is included where if the meal size increment
does not lead to the expected physiological increase in trajectory (an increase in MAE),
the meal is discarded as this violates the expected physiological dynamics. The algorithm
pseudocode is detailed in Algorithm 1 below. On a 24 h glucose profile, a graphical
representation of Algorithm 1 of the detection and estimation of meals is shown.

3.3. Fully Closed-Loop Control for Insulin Delivery

A number of closed-loop controllers have been proposed in the literature in order to
facilitate tight glycaemic control [1,32]. Examples of the different types include proportional-
integrative-derivative (PID), model predictive control (MPC), reinforcement learning-based
(RL) controllers, and bio-inspired controllers. The bio-inspired artificial pancreas (BiAP)
is a hybrid glucose controller based on that has been validated in previous work [3] and
is employed in this work to evaluate the meal detection and carbohydrate estimation
algorithm performance. It should be noted, however, that this proposed algorithm is
agnostic to the choice of controller.

As shown in Figure 3 the meal detection and estimation module provides an estimate
of the carbohydrate size to the bolus calculator in the BiAP controller to determine the meal
insulin bolus. However, because of the increase in glucose levels due to the meal ingestion,
the controller begins to deliver insulin to cover the meal. This insulin is delivered as the
deviation remains below the upper bound and the meal flag is not raised. In addition the
meal size estimate may be overestimated. The prudent measure to cover these scenarios
is to remain conservative and minimise the possibility of precipitating a late postprandial
hypoglycaemic event. Consequently a weight (W = 0.5) is applied to the calculated meal
bolus, and no correction bolus to compensate for hyperglycemia is applied together with
the meal bolus. Furthermore, the basal insulin delivery is suspended for 1 h after the meal
bolus is delivered.
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Algorithm 1 Meal Detection and Estimation Algorithm

Require: X = {G, I, M}, ε
Ensure: Output meal size, mE

Initialise model parameters θ from memory
N ← 2
for t ∈ 28, ..., T do

[yu, ym, yl ]← f (X|θ)
Compare yu and yCGM
Let k be number of samples where yu < yCGM
if k > N AND ∆BG/∆t ≥ 1 then . Activate meal detection

mE ← 0
error ← Abs(ym(t)− yCGM(t))
while error > ε AND mE < mMAX do . Perform meal estimation

if fine_search then
mE ← mE + 1

else
mE ← mE + 10

end if
M← mE
[yu, ym, yl ]← f (X|θ)
error ← Abs(ym(t)− yCGM(t))
if error ≤ ε then

mE ← mE − 10
Activate fine_search

end if
if verify appropriate glucose dynamics then

mE ← 0 . Discard meal estimate
break

end if
end while

else
mE ← 0

end if
end for

Figure 3. The system architecture of the bio-inspired artificial pancreas with the meal detection and
estimation algorithm incorporated.
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3.4. Performance Metrics

We employ multiple metrics to comprehensively evaluate the meal detection and
estimation framework. To assess the detection of meals we use the following metrics:
precision, recall, F-score, and detection time delay.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

A true positive (TP) is identified when the detection flag is raised and the delay in
identifying the meal is less than 120 min. Otherwise, this event is identified as a false
negative (FN). A false positive (FP) is identified when a meal flag is raised in the absence
of a meal. In the eventual use case of a meal detection algorithm, the detection of an
unannounced meal would prompt a bolus to be delivered either indirectly by notifying the
user with an alert, or directly in a sensor augmented pump. Subsequently, it is important
that the metrics not only assess the effectiveness of the algorithm in detecting unannounced
meals, but also we assess the quality of the meal detection. The recall (sensitivity) assesses
the ability of the algorithm is detect a meal, whereas the precision assesses the quality
of meal detection. For the meal detection time, we evaluate based on the median delay
between the detected meals and the actual meals. For assessing the effectiveness of CHO
estimation, we analyse the meal size errors and percentage error.

The performance of glycaemic control is evaluated using a comprehensive set of
metrics that are typically used in the literature [33]. We primarily report the following
glycaemic metrics: percentage time spent in euglycaemia (70 mg/dL < BG < 180 mg/dL),
percentage time spent in hyperglycaemia (BG ≥ 180 mg/dL), percentage time spent in
hypoglycaemia (BG ≤ 70 mg/dL), mean glucose concentration level. We evaluate the level
of control with a number of indices, particularly, the high blood glucose index (HBGI), low
blood glucose index (LBGI), and risk index (RI).

Finally, we provide a visual comparison of the quality of closed-loop glycaemic control
of the different configurations with a control-variability grid analysis (CVGA) [34]. This
visualisation is complemented with a numeric assessment of the quality of control.

Statistical Analysis

We evaluate the differences in the controller performance with different configurations:
meal announcement, meal detection, and unannounced. For determining the statistical
significance, we first perform a preliminary test for normality using a Shapiro–Wilk test. We
use a paired t-test if normality is accepted, and a Wilcoxon signed-rank test when normality
is rejected. Significance level is set at p-value < 0.05. For multiple pairwise comparisons,
we adjust the significance level to p-value < 0.025 using Bonferroni correction. The data
from the results are presented as Mean ± SD.

3.5. In-Silico Dataset

The University of Virginia/Padova (UVa/Padova) T1D Simulator is used to generate
a challenging scenario for training, validating and testing the models. For the meal pro-
tocol scenario we choose four meals with the following average carbohydrate size at the
associated average meal times: 70 g (7 a.m.), 100 g (1 p.m.), 30 g (5 p.m.), and 80 g (8 p.m.).
A meal-time variability (σT = 60 min) and meal size variability (CV = 10%) is introduced
in order to generate realistic scenario of inter-day variability in meals. In addition, to
account for additional variability in meal composition, the simulator meal library was
supplemented with a further 16 new meals as described by the authors in [35].

To generate more realistic scenarios, we modify the original version of the simulator
to introduce additional intra-day variability on insulin absorption and insulin sensitivity.
Variability of insulin absorption is assumed to be ±30% and the insulin sensitivity varies in
a sinusoidal manner with a selected daily period.
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As mentioned earlier, studies have shown that individuals with diabetes are not al-
ways prompt with meal announcements and also the carbohydrate counting is consistently
misestimated. In order to model this behaviour, a trigger for skipping and delaying meal
announcement was randomly generated based on an average 2.5 meal announcements
skipped, and 2 meals delayed per week [10]. Carbohydrate counting uncertainty is incor-
porated in the simulator [−30%, +10%] with a uniform distribution. The values are selected
due to the bias towards underestimation rather than overestimation of carbohydrate size.
These parameter choices are then used consistently across all tests and comparisons.

As noted earlier, a 2-month scenario is generated for training and validating the
models in an offline setting. Furthermore, the duration of the simulation scenario in testing
the proposed algorithm is also 2 months however, this is executed in an online setting.

4. Results
4.1. Meal Detection and Estimation Performance

In this section, we report the results on the performance of the framework in detecting
and estimating the unannounced meals in the simulation scenario. The performance is
reported on each mealtime and for the snacks.

Table 1 shows the meal detection performance of the meals and snacks at different
mealtimes. The average breakfast meal size is of moderate size (70 ± 7 g). The method
obtains a precision 86 ± 7% and a recall 90 ± 5%. In terms of detection time these meals
are flagged at 38 ± 13 min. The lunch meals are the largest size considered in this study
at 100 ± 10 g. At lunchtime, the proposed method detects lunch with 98 ± 2% precision
and 97 ± 3% recall. This detection is completed in 37 ± 15 min. Finally, for dinner, the
average size during this mealtime is 80 ± 7 g which can also be considered moderate-sized.
For this proposed method, we detect dinner meals at 94 ± 5% precision and 89 ± 4%
recall. The snacks ingested after lunch are of a relatively smaller size at 30 ± 3 g. Although
the precision is high at 97 ± 5%, the recall is relatively low at 24 ± 15%. In addition,
the detection time is 41 ± 23 min. The observation is made that the recall and detection
time performance is dependent on the size of the meal, where small meals (snacks) show the
worst performance and large meals (lunch) show the best performance, with moderately
sized meals (breakfast and dinner) showing intermediate performance. On the other hand,
we notice that the performance in terms of precision is consistently high (86–98%) across
different meal sizes.

Table 1. Cohort performance metrics for the meal detection performance for the different mealtimes.
The meals section involves accounting for algorithm performance without snacks included.

Metric

CHO (g)

Breakfast Lunch Snack Dinner Overall
(Meals)

70 ± 7 100 ± 10 30 ± 3 80 ± 7 70 ± 27
(83 ± 15)

Meal Detection Performance

Precision (%) 86 ± 7 98 ± 2 97 ± 5 94 ± 6 93 ± 4
(92 ± 4)

Recall (%) 90 ± 5 97 ± 3 24 ± 14 89 ± 4 76 ± 5
(92 ± 3)

Delay (min) 38 ± 13 36 ± 11 41 ± 23 37 ± 15 38 ± 15
(37 ± 13)

Following the evaluation of the meal detection performance, we analyse the perfor-
mance of the proposed method on meal estimation. Figure 4 shows the comparison of the
estimated meal size and the actual meal sizes and shows the distribution of estimation
errors in meals. First, we note that carbohydrate estimation is performed in relation to
the median glucose level trajectory which have varying errors and thus can lead to under-
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and overestimation of meals. In total, 80% of the estimated CHO have a estimation error
within 25 g, whereas only 6% of detected CHO is larger than 50 g, of which snacks rep-
resent the majority. The distribution of the estimation errors, shown in Figure 4, shows
that the proposed method is slightly biased towards overestimation with an average error
18 ± 15 g. This justifies applying the weight to the mealtime insulin bolus for the insulin
delivery strategy to mitigate postprandial hyperglycaemia without significantly increasing
hypoglycaemia risk.

Figure 4. (Top) Estimated meal size versus true meal size for detected meals to determine the
accuracy of meal size error. (Bottom) The distribution of estimated meal sizes and true meal sizes.
The probability densities of meal and snack size errors is also shown.

4.2. Closed-Loop Glucose Control

In this section, we report results of the performance of the BiAP controller with
different configurations. The different configurations used in this study are described
below:

BiAP-NMA: In this configuration, meals are not announced prior to the selected
mealtimes for bolus priming. The controller is therefore only able to respond to the
postprandial glucose excursion through feedback from the CGM signal. Since there is no
external input from the user for meal announcement this is a fully closed-loop configuration.
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BiAP-MD: This is a fully closed-loop configuration that corresponds to the BiAP con-
troller with the meal detection and estimation module incorporated. In this configuration,
the insulin bolus is delivered as explained in the closed-loop insulin delivery.

BiAP-MA: This hybrid closed-loop configuration corresponds to the controller with
meal announcement included. Meal announcement involves the individual estimating the
meal size and input this in the controller in order to deliver a preprandial insulin bolus. The
behaviour of the individual is modelled as earlier described to account for carbohydrate
misestimation, missed boluses and late boluses.

The performance of the controllers in enabling tight glycaemic control is reported
in Table 2. BiAP-MD and BiAP-NMA are the two closed-loop controllers that are de-
scribed as fully closed-loop. A comparison of the performance between these two con-
trollers reveals that the meal detection and estimation algorithm improves the control
of postprandial hyperglycaemia. This is evident from the significant reduction in time
spent in hyperglycaemia (∆TAR = −4.2%, p = 0.0009) and lower risk of hyperglycaemia
(∆HBGI = −0.8%, p = 0.0005). Overall, BiAP-MD reports a significantly lower mean glu-
cose level (−4.4 mg/dL, p = 0.003) than the BiAP-NMA controller and provides relatively
tighter glycaemic control (∆TIR = +3.9%, p = 0.0007). Finally, this is accomplished without
a statistically significant increase in time spent in hypoglycaemia (∆TBR = +0.1%, p = 0.4)
or risk of hypoglycaemia (∆LBGI = +0.1, p = 0.1).

Table 2. A comparison of the performance in terms of glycaemic metrics and risk indices between
different configurations of the BiAP: meal announcement (BiAP-MA), meal detection (BiAP-MD),
and without either detection or announcement (BiAP-NMA). p-values calculated with Wilcoxon
signed-rank test are underlined.

Metric
Controller

p * p †
BiAP-MA BiAP-MD BiAP-NMA

Glycaemic Targets

Mean BG
(mg/dL) 137.7 ± 5.0 144.5 ± 6.8 148.9 ± 9.8 0.002 0.003

TIR (%) 84.7 ± 5.1 77.8 ± 6.3 73.9 ± 7.9 0.002 0.0007
TAR (%) 13.7 ± 4.4 20.7 ± 6.0 24.9 ± 7.8 0.002 0.0009
TBR (%) 1.5 ± 1.3 1.4 ± 0.9 1.3 ± 1.2 0.8 0.4

Risk Indices

HBGI 3.2 ± 0.8 4.3 ± 1.1 5.1 ± 1.5 0.002 0.0005
LBGI 0.5 ± 0.4 0.6 ± 0.4 0.5 ± 0.3 0.3 0.1

RI 3.7 ± 1.0 4.9 ± 1.3 5.6 ± 1.6 0.002 0.002

p * = BiAP-MD vs. BiAP-MA; p † = BiAP-MD vs. BiAP-NMA.

A further comparison is made between the BiAP-MA and BiAP-MD controller. The first
observation is that BiAP-MA has lower mean blood glucose level (−6.8 mg/dL, p = 0.002)
than BiAP-MD. In addition, we see significant improvement in tight glycaemic control with
BiAP-MA over the proposed BiAP-MD controller: increased time in range (+6.9% mg/dL,
p = 0.002), reduced time spent in hyperglycaemia (−7%, p = 0.002), and reduced associ-
ated risk of hyperglycaemia (−1.1, p = 0.002). This difference in performance highlights
the advantage of the individual pre-bolusing for meals over automatic meal detection and
estimation. The accumulation of errors in meal announcements may lead to an increase
in time spent in hypoglycaemia (+0.1%, p = 0.8) and associated risk of hypoglycaemia
(+0.1%, p = 0.8), however, these are not observed to be statistically significant. The differ-
ence in 24 h glucose profiles of an individual using the BiAP controller with the different
configurations over the 2-month period is highlighted in Figure 5.
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Figure 5. A comparison of the 24 h glucose profile of Adult 3 from the virtual cohort over the 2-month
period between the BiAP controller with meal detection and the two baseline configurations. The
red and green lines mark the hyperglycaemia and hypoglycaemia threshold, respectively. (Top)
BiAP-NMA vs. BiAP-MD:A comparison between the BiAP controller performance without and with
the meal detection and estimation incorporated. (Bottom) BiAP-MA vs. BiAP-MD: A comparison
between the BiAP controller performance with user-initiated meal announcement and automatic
meal detection and estimation.

An analysis of the CVGA plots on the population level as shown in Figure 6 reveals
a difference in the quality of glycaemic control for the different configurations. The first
comparison we consider is between the fully closed-loop BiAP controllers (BiAP-NMA and
BiAP-MD). The general numerical assessment shows that both configurations demonstrate
a similar performance with 90% in Zone A+B and 10% in Lower D zone. In detail, however,
the observation seen in Table 2 BiAP-MD exhibits tighter glycaemic control than BiAP-
NMA is further buttressed in this plot. In total, 10% of BiAP-MD markers were observed
in the Upper B zone which is an improvement in comparison to 20% of BiAP-NMA
markers, therefore displaying a lesser tendency towards benign control deviations into
hyperglycaemia.
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Figure 6. Control variability grid analysis for the BiAP controller with the different configurations
reported. Each marker represents a virtual adult in the simulation assessed for the 2 month period.

On the other hand, for the second comparison we consider quality of glycaemic
control between BiAP-MA (hybrid closed-loop configuration) and BiAP-MD (fully closed-
loop configuration). BiAP-MA shows marginally worse quality control with 80% of the
population in Zone A+B compared to BiAP-MD with 90% in Zone A+B. As seen in Table 2
earlier, BiAP-MA provides tighter glycaemic control that BiAP-MD, however, this can
is more likely to lead to more instances of hypoglycaemia particularly when meals are
overestimated and delayed. This would explain the higher instance of individuals from
the population in Lower D zone and therefore a failure to deal with hypoglycaemia during
control.

5. Discussion
5.1. Comparison with Other Approaches

As discussed in the related works section, a number of methods have been proposed
towards detection and estimation of unannounced meals. These generally come under
Kalman filters and/or heuristic rules. The reported metrics of the approaches are shown in
Table 3 below.

We first examine the performance of models that use heuristic rules such as inspecting
the rate of change of glucose concentration levels. Dassau et al. [16] evaluated their
meal detection algorithm on 17 subjects who consumed breakfast (22–105 g). The CGM
sampling time interval is 1 min. The detection time from meal onset the ensemble method
is reported to be 30 min. This discrepancy in sampling time and reported metrics makes a
fair comparison difficult.

Samadi et al. [18] studied an in silico population of 30 individuals comprising 10 adults,
10 adolescents, and 10 children. The overall performance is reported to be 91.7% precision
and 91.3% recall. The meal detection time is not provided but the meal estimate error is
23.1%. However, the performance of the adult cohort is more comparable with the study
undertaken in this chapter. Due to the higher variability in adults the results are lower, with
79% precision, 87% recall, and 22% meal size error. This is further supported by a study
with 11 adult clinical subjects that showed 93.5% recall and 79% precision with a detection
time delay of 34 min on average [19]. Zheng et al. [23] report on average a 88% recall
and 93.3% precision with a detection delay time of 26 min when evaluated on 100 in silico
subjects. A meal size estimation error of 1.2 ± 3.6 g is reported, although this comparison
is unfair as the meal sizes and size range evaluated on is relatively small (14–40.8 g).
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Table 3. A comparison of reported performance metrics in the literature for automatic meal detection
and estimation algorithms with our proposed approach.

Algorithm
Performance Metrics

Precision Recall F-Score Delay Size Error UQ

Dassau
et al. [16] - - - 30 min - 7

Ramkissoon
et al. [17] 92.5% 82% 0.87 38 min - 7

Samadi
et al. [18] 79% 87% 0.86 - 23% 7

Samadi
et al. [19] 79% 93.5% 0.86 35 min - 7

Zheng
et al. [23] 93% 88% 0.91 26 min - 7

Xie and
Wang [21] 84% 76% 0.80 45 min 43% 3

Mahmoudi
et al. [22] - 99.5% - 58 min - 3

Ours 93% 76% 0.84 38 min 31% 3

Ours—
Meals 92% 92% 0.92 37 min 19% 3

UQ = Uncertainty Quantification.

Finally, Ramkissoon et al. [17] also evaluate their approach on 10 in silico adults.
Their trade-off setting, which is meant balance between false positives (FP) and recall,
demonstrates 82% recall and 38 min detection time from meal start time. The authors report
a false positive rate of 0.2 per day, and from the reported data a mean 92.5% precision is
determined. However this approach does not estimate meals for enabling postprandial
control.

The proposed approach is more comparable to those of Xie and Wang [21] and Mah-
moudi et al. [22] as these rely on uncertainty quantification and outlier detection to detect
unannounced meals. Mahmoudi et al. [22] study 10 adult subjects from an in-silico cohort.
The reported recall (99.5%) for this method is relatively higher than our proposed method.
However, this comes at the expense of the detection time as this is longer at 58 min, and the
precision is not reported. Xie and Wang [21] evaluate the VSD performance with 30 in-silico
participants. The reported recall (76%) and precision (84%) are relatively lower than the
our proposed method. In addition, the meal detection delay is further (45 min) than our
proposed method and has worse meal estimate error. Both approaches use a Kalman filter
to quantify uncertainty although this assumes the distribution of errors is Gaussian and
may be the reason for the differences in performance. The primary difference in using mul-
tiple quantile regression as opposed to Kalman filters is that the assumption of normality is
relaxed.

Given the importance of the precision and recall, we compare the algorithms using
the F-score which is the harmonic mean of the two metrics. Our proposed method achieves
an average F-score of 0.84 for both meals and snacks. Given that meals are the primary
challenge for automated postprandial glucose control, we also consider that when our
approach is solely evaluated on meals—as is done with other methods—it achieves the
highest average F-score of 0.92.

5.2. Misestimation of Carbohydrate Content

One of the primary challenges in developing a suitable framework for detection and
estimation of unannounced meals is the misestimation of carbohydrate content, either by
underestimation or overestimation. As noted in Figure 2, the error in the model prediction
varies, i.e., the median glucose prediction level is sometimes higher or lower than the true
CGM signal. Consequently, the use of the mean absolute error of the validation results in
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the possibility of underestimation or overestimation of carbohydrate content during meal
estimation. In addition, different meals and snacks tend to lead to different glucose rates
of appearance when ingested which may lead to misestimation if the model only learns a
single glucose rate of appearance. The effect of this limitation is partly addressed by the
90g limit on estimated meals at any instant which explains the concentrated horizontal line
observed in Figure 4.

In future work, the extent of misestimation can be minimised by improving the
predictive performance of the model. This may be achieved by incorporating physiological
factors—for example, explicitly allowing different rates of appearance of glucose from
different meals/snacks—in our current approach. This would have the subsequent effect
of reducing the extent of misestimation of carbohydrate sizes by reducing the error in
predicted glucose levels.

5.3. Safety Monitoring with Uncertainty Quantification

Safety is an important factor in the development of automated insulin delivery systems.
Consequently, safety considerations are generally considered not only in the evaluation but
in the development and deployment of such systems as well. A prominent challenge once
such data driven models are deployed is that a scenario such as dataset shift can lead to
sub-optimal performance [36]. Dataset shift occurs when there is a change in the conditions
present in the training setting. This can be the case when the individual’s physiological state
(e.g., menstrual cycle, illness, stress), behaviour, and/or the attached CGM sensor noise
is different during deployment. The result of this can be increase in the number of false
negatives or in the worse case of increased variability as noted in [19], an increase in false
positives. This could increase potential risk of hypoglycaemia and lead to compromised
control performance.

Although overcoming this remains an area of active research, our proposed method
could provide an avenue to monitor the possible cases of significant distribution shift. In
deployment, the prediction intervals could be monitored over successive periods (e.g.,
overnight) to detect if a significant deviation has occurred in their coverage. This is
possible given that the computed aleatoric uncertainty is generally unaffected by significant
distribution shifts [37]. This can serve as a marker for when the deployed model needs to be
retrained in the event that the model is not robust to such distribution shifts. An alternative
approach would be based on monitoring the epistemic uncertainty. Epistemic uncertainty
captures the uncertainty stemming from input samples being different form samples the
model was trained on in the training set [37]. In the case of epistemic uncertainty, no action
would be undertaken in regions with high epistemic uncertainty. Ultimately, uncertainty
quantification should be an essential component for this application area moving forward
and form the basis of future work for building safe and reliable systems.

6. Conclusions

Current artificial pancreas systems are hybrid closed-loop controllers and therefore
require the user to perform manual meal announcements in order to adequately handle
postprandial hyperglycaemia. Although preprandial bolusing is shown to be most benefi-
cial in achieving glycaemic targets, this places a cognitive burden on the user. Furthermore,
the quality of glycaemic control is dependent on how well the individual is engaged with
timely meal announcement and accurate carbohydrate estimation, which studies show is
not always the case.

We develop a novel algorithm for meal detection and estimation of unannounced
meals based on neural networks and multitask quantile regression. Compared to exist-
ing algorithms, this proposed approach achieves a better F-score for meal detection and
competitive meal estimation performance based on simulation results. In addition, this
algorithm provides a significant improvement in an artificial pancreas system to provide
more effective closed-loop control. The hybrid closed-loop configuration shows better
glycaemic control than our proposed approach, however, is worse at dealing with hypogly-
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caemia during control from the CVGA assessment. This study suggests that our proposed
algorithm can serve as a viable approach for achieving fully automated closed-loop insulin
delivery.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Artificial Pancreas
BiAP Bio-inspired Artificial Pancreas
BG Blood Glucose
CGM Continuous Glucose Monitor
CHO Carbohydrate
CSII Continuous Subcutaneous Insulin Infusion
CV Coefficient of Variation
CVGA Control-variability grid analysis
DNN Deep Neural Network
EKF Extended Kalman Filter
FN False Negative
FP False Positive
HBGI High Blood Glucose Index
HbA1C Glycated Haemoglobin
LBGI Low Blood Glucose Index
LSTM Long Short-Term Memory
MAE Mean Absolute Error
PI Prediction Interval
RI Risk Index
RMSE Root Mean Square Error
Seq2Seq Sequence-to-Sequence
T1D Type 1 Diabetes
TN True Negative
TP True Positive
TIR % Time In Range
TAR % Time Above Range
TBR % Time Below Range
UKF Unscented Kalman Filter
VSD Variable State Dimension

Appendix A

The model architecture is primarily a multitask encoder-decoder architecture based
on LSTM recurrent neural networks. These models are trained on 80% of the training
dataset and validated on the remaining 20%. The predictive performance of the model is
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evaluated using the RMSE, MAE, and PI coverage (pre-specified at 95%). Table A1 shows
the performance for each individual.

Table A1. Performance metrics for neural network on validation set: The parameters of the meal
detection and estimation framework are selected based on performance of the model on the validation
set. This is based on last 20% of the training data in order to attain the predictive accuracy and
prediction interval necessary.

ID
Metric

RMSE MAE PI

1 5.8 4.0 95.3

2 5.9 4.1 94.5

3 8.0 4.6 94.7

4 5.7 4.0 94.9

5 7.7 4.3 93.6

6 5.7 4.1 94.9

7 6.7 4.8 94.7

8 7.2 4.3 93.7

9 5.0 3.7 97.3

10 8.4 4.3 95.4

Average 6.6 ± 1.1 4.2 ± 0.3 94.9 ± 1.0
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