Skip to main content
. 2022 Jan 13;14(2):328. doi: 10.3390/nu14020328

Figure 8.

Figure 8

Schematic depiction of the possible mechanism of action of 3-hydroxyphenylacetic acid (3-HPAA) involving the production of NO in endothelial cells and activation of sGC in vascular smooth muscle cells (green arrows) and other pathways investigated in the current study. SKCa—small conductance Ca2+-activated K+ channels; IKCa—intermediate conductance Ca2+-activated K+ channels; M3—muscarinic receptor subtype M3; PLC—phospholipase C; DAG—diacylglycerol; PKC—protein kinase C; IP3—inositol trisphosphate; IP3R—inositol trisphosphate receptor; SR—sarco/endoplasmic reticulum; TRP—transient receptor potential channel; Ca/CaM—calcium-calmodulin complex; COX—cyclooxygenase; PGs—prostaglandins; eNOS—endothelial nitric oxide synthase; NO—nitric oxide; MEJ—myoendothelial junction; sGC—soluble guanylate cyclase; GTP—guanosine triphosphate; cGMP—cyclic guanosine monophosphate; PKG—protein kinase G; Cav1.2 (L-type)—L-type calcium channels; EC—endothelial cell; VSMC—vascular smooth muscle cell.